# Large Scale Evaluation of Chemical Structure Recognition 4<sup>th</sup> Text Mining Symposium in Life Sciences October 10, 2006



Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

Dr. Marc Zimmermann

# **Overview**

- Brief introduction Chemical Structure Recognition (chemOCR)
- Manual conversion of images
- Up scaling and automatisation
- Protocol database and parameter evaluation
- 2 methods of validation
- Test and benchmark data sets
- Examples, results and lessons learned



### **Chemical Structure Recognition – an Overview**





Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

#### The chemOCR Process

- is a multi step process:
  - 1. image preprocessing
  - 2. image conversion
  - 3. semantic entity recognition
  - 4. chemical structure assembly
  - 5. reconstruction validation
  - 6. post processing
- for each step a specific module has been implemented
- modules can be assembled into workflows



# Look And Feel Of CSR



#### Fraunhofer Institut

Algorithmen und Wissenschaftliches Rechnen

### The Interactive User Mode

- a graphical user interface has been developed
- the user can trigger each module separately
- there are curators and editors to interfere with the process

the main advantages are:

- full control of the process
- easier than redrawing of the image
- teaching and learning capabilities of the system

| <ul> <li>✓</li> </ul>        | Configure Workflow       |                                                |                                                                   | ×                                   |           |
|------------------------------|--------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|-----------|
| Preprocessing                | Toggle a<br>on and o     | all preprocessing alg<br>other sections off.   | orithms                                                           |                                     |           |
| 🗌 pre- <u>B</u> lur & resize | Blurring<br>module i     | of the input image –<br>is under constructior  | this<br>1.                                                        |                                     |           |
| Reconstruction               | Toggle a<br>on and o     | all reconstruction algo<br>other sections off. | orithms                                                           |                                     |           |
| Connected Compon             | ents Extract o<br>image. | connected componer                             | nts from                                                          |                                     |           |
| 🗹 Tag Text                   | Identify (<br>text area  | components that ma<br>as.                      | p to                                                              |                                     |           |
| ✓ Tag Thick Chirals          | ldentify (<br>thick we   | chirals which are dra<br>dges.                 | iwn as                                                            |                                     |           |
| ✓ Vectorize Image            | Convert                  | bitmap into vectors.                           |                                                                   |                                     |           |
| ✓ Tag Dotted Chirals         | Group si<br>into one     | ingle lines of dotted<br>vector.               | chirals                                                           |                                     |           |
| Tag Dauble I                 | Image (                  | Character recongniti                           | on                                                                |                                     |           |
| V Tay Double t               | Decognized               | Action                                         |                                                                   |                                     |           |
|                              | IRI                      | You                                            | r tavouriti                                                       | 2:                                  |           |
| V OCK                        | GOCR N                   | N -                                            |                                                                   |                                     |           |
| Cluster Text                 |                          | АТОМ                                           | Juse Type                                                         |                                     |           |
| Create Chem It is rec        | commended not to say     | e this pattern, becaus                         | se it is al                                                       | ready reco                          | ognized.  |
| Create Molec                 | d Filename:              |                                                |                                                                   |                                     |           |
| Validation                   | marc/workspace/CSR/e     | etc/ocrdb/db_057_mer                           | ck_scree                                                          | n_result_2€                         | 5159.pnm  |
| ✓ Validate reco              |                          |                                                | A                                                                 | pply                                | Cancel    |
|                              | Have a look at th        | e current list of recon                        | structed                                                          | snippets:                           |           |
| com <u>P</u> are to re       | e Type                   | Reconstructed Letter                           | IBL R C                                                           | GOC Asp                             | Filen     |
| ✓ Marvin <u>E</u> ditor ★    | RGROUP                   | *                                              | <un <<="" th=""><th>:unc <u.< th=""><th> /ho</th></u.<></th></un> | :unc <u.< th=""><th> /ho</th></u.<> | /ho       |
| Postprocessi 2               | INDEX                    | 2                                              | <un <<="" th=""><th>:unc <u.< th=""><th> /ho</th></u.<></th></un> | :unc <u.< th=""><th> /ho</th></u.<> | /ho       |
| □ I <u>U</u> PAC name        |                          |                                                |                                                                   |                                     |           |
| ✓ InChI name                 | DOTTED_CHIKAL            | NUCHAR                                         | <un <<="" th=""><th>:unc <u.< th=""><th> /no</th></u.<></th></un> | :unc <u.< th=""><th> /no</th></u.<> | /no       |
| ✓ view in <u>3</u> D         | DOTTED_CHIRAL            | NOCHAR                                         | <un <<="" th=""><th>:unc <u.< th=""><th> /ho</th></u.<></th></un> | :unc <u.< th=""><th> /ho</th></u.<> | /ho       |
| select image 2               | INDEX                    | 2                                              | <un <<="" th=""><th>:unc <u.< th=""><th> /ho</th></u.<></th></un> | :unc <u.< th=""><th> /ho</th></u.<> | /ho       |
| All It is n                  | ecommended not to s      | ave this pattern, beca                         | use it is                                                         | already re                          | cognized. |
|                              |                          |                                                | Che                                                               | ck All                              | Done      |



Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

# Adding New Modules – Using JAVA APIs and RPCs

| Chemical Structur                                        | e Recognition                                               |
|----------------------------------------------------------|-------------------------------------------------------------|
| <u>File Workflow View Help</u>                           |                                                             |
| Loaded Image Blured Image Text-Masked Image Vector Graph | File Edit View Insert Tools Help Marvin                     |
| Workflow plugin technology                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $      |
|                                                          |                                                             |
| <ul> <li>beautify 2D</li> </ul>                          |                                                             |
| file format conversion                                   |                                                             |
|                                                          |                                                             |
| 2D to 3D conversion                                      | JUC JUC                                                     |
| <ul> <li>name generation</li> </ul>                      |                                                             |
| property calculation / prediction                        |                                                             |
| - property calculation / prediction                      |                                                             |
| •                                                        | IUPAC name:<br>InChl identifier InChl=1/C17H18F3NC<br>babel |
|                                                          |                                                             |
| Chemical Structure Reconstruction – ready                |                                                             |



setting up the batch mode:

- a specific workflow is predefined
- a suitable parameter set is chosen
- each image becomes one job which is send to one computer
- all results are assembled

advantages:

- large speed up
- less human resources
- vast number of results



disadvantages:

- no control
- errors occur
- checking the results is time consuming



Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

#### Many Images ⇒ Many Parameters?



Fraunhofer Institut

Algorithmen und Wissenschaftliches Rechnen 4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

# **Technical Solution For Up Scaling**





Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

#### **Protocol Database for the Reconstruction Process**



# **Result Validation Using Training and Test Data**



Algorithmen und Wissenschaftliches Rechnen

4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

### Validation Classes – A Closer Look

| Reconstructed Molecules (2)          | Valid    | lation (2)                               | 3D-View (2) |  |
|--------------------------------------|----------|------------------------------------------|-------------|--|
| Recons                               | structed | d Molecule                               | (2)         |  |
| Parameter                            |          | Value                                    |             |  |
| Input image:                         |          | /home/marc/workspace/CSR_New/e           |             |  |
| Output SDF:                          |          | ./result/top100/001_merck_screen_r       |             |  |
| Formula (mass):                      |          | C17N103 (266.19)                         |             |  |
| Number of Atoms/Bonds:               |          | 28/32                                    |             |  |
| Number of fragments:                 |          | 1                                        |             |  |
| Reconstruction Score:                |          | 0.91                                     |             |  |
| – check #atoms:                      |          | failed 22 /                              | 21          |  |
| – check #bonds:                      |          | failed 26 / 25                           |             |  |
| <ul> <li>check bondtypes:</li> </ul> |          | failed 242000022400000                   |             |  |
| – check #rings:                      |          | ok.                                      |             |  |
| – check mass:                        |          | failed 278.2 / 266.19                    |             |  |
| – check sum formula:                 |          | failed C18N103 / C17N103                 |             |  |
| – check fragments:                   |          | ok.                                      |             |  |
| – check molecule graph:              |          | <ul> <li>not implemented yet.</li> </ul> |             |  |

### reconstruction / test molecule



validation test

Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

*result validation* can only be used if the molecule is already known or the expert is checking the result:

- good for bug fixing and training of the process
- can't be used for the data generation process

 $\Rightarrow$  need a different strategy for the *batch mode*:

- identify and predict reconstruction errors
- alert the user only if interaction is needed
- choose a threshold for the precision



prediction and recognition can be based on

- the use of chemical knowledge bases
- image properties, i.e. measure the complexity of the problem
- instance based machine learning, i.e. teach the system

the main goal is to assemble a *reconstruction score* without knowing the correct solution

 $R_{score} = w_1 \cdot complexity + w_2 \cdot chemical likelihood + w_3 \cdot known errors < T_{alert}$ ?

weights w can be set by regression analysis



chemical knowledge bases

- OCR errors and unknown super atoms
- valence checking
- known scaffolds

image properties

- strange bond drawings (size, angles, ...)
- pixel density, size of connected components
- complexity

instance based machine learning (IBL)

- atom and bond distributions
- Lipinski score (i.e. drug like)











#### The Results – Current Status



SCAI

Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

#### Not Too Bad...





Fraunhofer Institut Algorithmen und Wissen-schaftliches Rechnen

# Questionable...





Algorithmen und Wissenschaftliches Rechnen 4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

# **Really Bad...**



Fraunhofer Institut

Algorithmen und Wissenschaftliches Rechnen

### Patent Images...



Fraunhofer Institut

Algorithmen und Wissenschaftliches Rechnen

- need perfect reconstruction ⇒ start molecule editor
- need for indexing and retrieval
  - ⇒ use similarity and substructure searches
  - ⇒ specify reporting threshold





Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

4<sup>th</sup> Text Mining Symposium in Life Sciences, October 10, 2006 Marc Zimmermann

# A Glimpse at the Future: Multi Modal Extraction From Patents



#### Fraunhofer Institut

Algorithmen und Wissenschaftliches Rechnen

# **Lessons Learned**

- a generic chemOCR framework has been established
- there is and there will not be a "one-fits-all" solution
- CSR can be adapted and optimized (parameters, error models, image preprocessing, ...)
- although we have looked into many examples, we have not seen so far all sorts of image sources (e.g. legacy of old documents)
- we will continuously improve our methods as new challenges come

along

- You can get hands on experience on CSR in an evaluation project
- SCAI provides: training, installation support, bug fixing, fitting CSR to the data, *long term research agenda*



# The Team (in the order of appearance)

- Marc Zimmermann\*
- Tanja Fey
- Le Thuy Bui Thi
- Christoph Friedrich\*
- Yuan Wang
- Maria-Elena Algorri\*
- Miguel Alvarez
- Angelika Weihermüller\*
- Wei Wang
- Peter Kral\*
- Carina Haupt\*



#### \*) currently improving CSR



Fraunhofer Institut Algorithmen und Wissenschaftliches Rechnen

# **CSR** Online Demo Available During The Break



CSR can extract chemical depictions from various image sources and convert them into SMILES and SD files, which can be further used in nearly all chemical software; it allows for the modification of reconstructed molecules by a structure editor; it maintains the superatom and bond (single, double, triple, or chiral) information; and it accepts user curation in each stage and scoring schema to improve its performance.

