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EAO – A FRAMEWORK FOR 
 OPTIMIZING DECENTRALIZED 
PORTFOLIOS AND GREEN SUPPLY

1. Summary

Background and target: 

The optimization of single assets or a 

 portfolio of assets is a ubiquitous task 

in energy and commodity trading. 

Assets may be of various types, such as 

storage  facilities (e.g. batteries or water 

reservoirs for power, heat or gas storage), 

 decentralized or large power plants to 

produce or convert a commodity, transport 

via shipping or pipeline as well as sourcing 

or supply contracts partly with terms such 

as minimum or maximum offtake.

Implementation for a specific problem of 

the above class is typically done using linear 

programming, mixed integer programming 

or dynamic programming. The problem 

setting is well known and there are many 

publications on specific applications as well 

as commercial software solutions. However, 

for some problems commercial software 

packages do not provide enough flexibility 

to model all relevant features properly and 

implementation work must be invested to 

solve such problems adequately. Hence we 

have seen people repeatedly working on 

seemingly different problem settings which 

could probably be solved with much less 

effort using a modular framework.

The aim of this technical report is to 

 formulate a unifying way of describing 

such tasks and to discuss a modular 

framework that enables practitioners to 

optimize single assets as well as simple 

or complex  portfolios without the need 

to resort to specific (and often expensive) 

software  applications or the need to 

implement the mathematics themselves. 

We believe that the solution presented 

here, and implemented in the Python 

package EAO, can be useful in many real 

life setups – from building a virtual power 

plant from  decentralized assets to scaling 

1 Organic redox flow  batteries, 

a technology to store large 

 quantities of energy from 

 renewable sources.
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power purchase agreements (PPA) in green 

power supply or optimizing a portfolio of 

 sector-coupling assets.

Green power supply as an illustration: 

In this report we explore a problem setting 

that we have been facing recently: In 

decentralized power, wind and photovoltaic 

(PV) assets are combined with new storage 

solutions such as batteries and diverse small 

scale CHP (combined heat and power) 

units with local heat demand. As more 

and more companies work on minimizing 

their  carbon footprint, they ask suppliers 

to deliver power directly from green 

sources without detours via certificates. 

Since volatile renewable generation 

typically does not match load profiles, the 

challenge for suppliers is to create and 

steer a cost  optimal portfolio of renewable 

sources,  flexible sources and storage that 

 guarantees a certain fraction of green 

power for the client.

2. Introduction

2.1 Asset optimization in energy and 

commodity trading 

Asset optimization is a common task in 

energy and commodity trading. Let us 

start by describing some specific examples 

without going into much detail – we will 

rather show later on how their common 

structure can be exploited to build a  generic 

framework to solve all of the  following 

examples with the same approach.

Decentralized power: 

Power generation has been facing 

daily operation. With the wider application 

of volatile renewable generation, CHP 

plants as well as newer applications such 

as power to heat and power to gas, a 

separation no  longer holds. To name two 

examples: flexibility from heat storage 

generates a  flexibility on the power side via 

power to heat and CHP, that may directly 

compete with batteries. Flexible power 

to heat or power to gas can use surplus 

renewable power and links power, heat 

and gas markets.

Gas supply: 

Gas supply is typically governed by 

 long-term supply contracts with 

complex terms such as minimum offtake 

volumes, seasonal storages, pipelines 

and  consumption from gas power plants 

and clients. As markets liberalize, a joint 

 optimization of all assets (contracts or 

physical) is essential.

Other fuel markets: 

The above arguments hold as well for other 

fuel markets such as coal. While coal may 

be declining in importance, in the current 

transition phase, the impact of sector 

coupling is highly prevalent in this market: 

steam coal is practically only used for 

power generation. 

drastic changes in recent years. Large scale 

 generation assets such as coal or nuclear 

 power plants have been and are being 

 replaced by a large number of smaller 

decentralized assets. To take PV as an 

example, the World Energy Outlook 2020 

[10] forecasts the installed capacity of solar 

PV worldwide to surpass that of coal by 

2026 1. 

Decentralized assets may be wind and solar 

PV generators with volatile generation, 

small combined heat and power plants 

(CHP) that produce power in combination 

with heat (typically consumed locally and 

leading to complex restrictions), power to 

heat or power to gas assets or batteries 

to just name a few. At the same time, 

flexibility in consumption is used more 

extensively. The term "prosumer" subsumes 

the idea that the clear distinction between 

production and consumption becomes 

fuzzier as consumers may themselves 

invest in small assets (down to batteries in 

households) and monetize their flexibility in 

consumption. Operators face the need to 

optimize a large portfolio of hundreds of 

such assets. The challenge often lies in the 

fact that all assets are somewhat special, 

e.g. the operator needs to take into account 

the specific restrictions of each CHP plant 

with its own combination of heat storage 

facilities. The operator will therefore try 

to translate the joint behavior of all assets 

into one "virtual power plant" that can be 

handled and marketed by traders.

Sector coupling: 

Commodity sectors in energy have 

 traditionally been treated separately in 1 Note that several scenarios are analyzed.
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Traditionally, coal plants were used 

for base or mid power with very 

stable  generation volumes, and thus 

very stable coal consumption. Today, 

coal consumption is highly volatile, as 

coal plants are pushed out of the market 

when renewable generation is high, 

heat demand is low or gas prices are low 

enough so that producing power from 

gas is cheaper. Consequently, a joint and 

robust optimization – of power plants, 

long-term sourcing contracts, storage 

at various locations, shipping and rail 

transport – that takes uncertainty into 

account, is essential.

Green energy supply:

In the early years of power from wind, 

PV and biomass, these have mostly 

been  running under regulated feed-in-

tariffs, where offtake and remuneration 

were guaranteed by regulation. As 

those technologies,in particular PV, have 

become competitive, they require new 

marketing channels. At the same time, 

consumers are putting more importance 

on minimizing their carbon footprint. 

New products have been developed to 

meet those new  demands: green power 

purchase  agreements (PPAs) guarantee 

the asset owner a fix price. Structured 

downstream contracts guarantee a 

minimum fraction of green energy to 

the consumer. As  large-scale batteries 

are  becoming cheaper, they are used 

to bridge the time difference between 

generation and consumption.

We explore green energy supply in more 

detail. The example serves us as an 

per commodity) and connections 

(transport) between those.

•  In each node, commodities are 

 conserved, i.e. the dispatch of all assets 

and transports must add to zero for 

each commodity for each point in time.

Prototype assets: 

Assets may be quite complex in reality. 

However, we have found that there are a 

few prototype assets that can be used in 

many different circumstances, if they are 

defined in a generic way:

•  Storage: for any commodity, storages 

are mathematically very similar. They 

are defined by the capacity (maximum 

 dispatch) in or out, storage size, costs 

and efficiency. Physically it could be 

anything from a battery to a pile of coal

illustration of the main features of energy 

asset optimization and, at the same time, 

we believe that we can shed some light on 

the main features and challenges of these 

new products.

2.2 Framework to solve this family of 

problems

As we will outline in the following, literature 

is vast and commercial software packages 

that solve specific tasks exist. However, 

from our own practical experience, what 

seems to be missing is an approach that 

takes advantage of the common structure 

of most applications in asset optimization 

in energy and commodity trading. Despite 

available textbooks and literature, as well 

as commercial software, problems are often 

solved in-house and much energy is wasted 

in reinventing the wheel.

The common structure is key: 

The main structure of the framework is 

illustrated in figure 3. The assets to be 

optimized and the involved commodities 

may be very different, but they have in 

common that:

•  Assets may have a complex structure 

of restrictions and states. However, 

we are interested in their "dispatch", 

the  quantity of a commodity that goes 

in or out of the asset at each point in 

time. There can be various different 

 commodities involved at the same time.

•  Assets do not interact directly. The 

 connection of assets in a portfolio 

is given implicitly via the flow of 

 commodities between the assets.

•  The main structure of a portfolio is given 

by nodes (i.e. virtual trading locations 

3  Illustration of a portfolio  setup 

in energy asset  optimization. 

The starting point are assets, 

which may have a complex 

 structure. As they are added to 

the  portfolio, they may interact 

via their  consumption or supply 

of a  commodity. The commodities 

used in this illustration are heat 

and  power. Nodes are locations or 

virtual trading points, where the 

commodity is exchanged between 

assets. Nodes themselves may be 

linked by (potentially limited) 

transport. In each node, the sum of 

flows must be zero for each point 

in time for each commodity.

Wind farm 

Solar PV

Battery

Combined 
heat & power asset

Heat storage

Customer A 
power load

Customer B 
power load

Grid connection 

Power market

Local power

Local heat

Node assignmentNode

Asset Transport
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•  Basic contracts: in its basic form, a 

commodity may be bought or sold at a 

given price up to a certain quantity per 

time step.

•  Complex contracts or production assets: 

in their more complex form, contracts 

and production assets can be  represented 

by basic contracts in  combination with 

more restrictions.  Those are typically 

minimum and  maximum offtake over 

certain time frames or certain limits for 

each point in time.

•  Transport: whether pipeline, cable or 

shipping, transport is defined as getting 

a commodity from one location (node) 

to another in a specified time and at 

given efficiency and cost.

New assets are often similar to those 

of the base type and come with just a 

few more specific restrictions or cost 

components. In this case we found it very 

useful to have a framework at hand that 

allows us to inherit from the base classes 

to be able to  specifically add the missing 

functionality instead of building new assets 

from scratch. To name two examples, we 

implemented  scaled assets that allow the 

user to  optimize the overall capacity of an 

asset against fixed costs and we introduced 

structured assets where the user may 

"wrap" several assets in one more complex 

asset.

Formulation as a linear programming 

problem: 

Our framework makes use of linear 

programming (LP) or alternatively mixed 

integer programming (MIP). The very first 

step is to define a common time grid for 

The EAO software package is not trying 

to  compete with commercial software 

 applications. Instead, we are trying to 

bridge the gap between "implementation" 

from scratch for each application and a 

"black box solution". It offers a modular 

tool box in Python, that provides standard 

assets such as contracts, transport and 

 storages and a translation to obtain a 

closed LP formulation on the level of the 

portfolio. It also to manages serialization 

and input or output. New assets are easily 

added by an experienced Python user. 

Its mathematical basis is described in a 

separate section.

2.3 Literature

Throughout the report we deliberately 

put only limited focus on a thorough 

literature review. The application of LPs in 

the optimization of large-scale portfolios 

is by no means new and has been widely 

discussed. Our goal is rather to provide a 

lean introduction to our approach and to 

directly dive into its application for green 

energy supply as an important topic in the 

industry today.

In our experience, LPs are very well suited 

for the optimization of assets in energy and 

commodity markets. Problems may quickly 

become large, but target functions and 

restrictions mostly translate to LPs in a very 

direct manner. Dynamic programming is the 

method of choice when optimizing single 

assets in greater detail.

the time range analyzed, which is used 

for all assets. This discretizes the asset 

dispatches to a number of points in time. 

In this section we keep the discussion 

at a  descriptive level. Please refer to the 

 separate sections on mathematical details.

Combination of assets into a portfolio:

Once the internal mechanics of assets are 

formulated as restrictions of an LP, assets 

can be combined to form a portfolio. 

Here, the common structure as described 

above can be exploited. The main idea 

is that assets only interact via the flow 

of  commodities they generate, i.e. their 

dispatch. In the formulation of LPs, this 

means that assets come with their own set 

of variables and restrictions. Without any 

interaction, those LPs can be combined in 

one large LP for the whole portfolio. The 

interaction comes into play only as we 

introduce the common set of restrictions, 

that the sum over all dispatches in each 

node must be zero for each time step.

The idea is trivial, but it is essential for 

being able to reduce complexity in setting 

up a generic framework for portfolio 

optimization. We can define detailed and 

specific assets separately and then combine 

them modularly in any portfolio structure.

The EAO Python package: 

We implemented a modular Python 

framework named EAO 2, based on the 

above principles. This package enables the 

practitioner to use standard assets, define 

new specific assets, combine and optimize 

them in a portfolio or structured assets 

for specific or multi commodity use cases. 

2  See https://github.com/EnergyAsset­

Optimization/EAO



In our implementation we use CVXPY [4], a 

package to formulate convex optimization 

problems that serves as an interface to 

common solvers. Other packages can 

be integrated as well. Through CVXPY, 

our approach directly extends to mixed 

integer programs (MIPs). In the definition 

of our assets we have avoided MIPs where 

possible, as we have found that careful 

approximations in problem definition can 

spare us much trouble if the problem can 

be kept convex.

Linear programming in energy and 

commodity markets: 

The application of LPs in energy is not 

new at all and omnipresent. Besides earlier 

works such as [6], the topic is described 

in text books on finance and commodity 

trading (e.g. [7]) as well as in a very large 

number of articles that describe specific 

implementations. Commercial software 

packages are available for specific purposes 

such as market simulation and optimization 

of single assets. From our experience, 

"black-box" software packages are a good 

choice for companies and teams with 

limited experience in modeling. However, 

very often companies implement their own 

solutions from scratch as they feel there 

is the necessity for a specific solution that 

suits their requirements.

Stochastic programming and robust 

optimization:

Uncertainty plays an important role in 

energy and commodity trading. Most 

assets such as flexible generation assets 

or storages can be seen as complex 

options that have an extrinsic value that 

not seen so far an approach that would suit 

generic types of larger portfolios.

In our software package, we have 

implemented the two-stage setup where 

sampling is used to optimize a decision 

"today" under an uncertain future. We 

believe that for many cases this approach is 

good in practice, if the user keeps in mind 

its limitations. Please refer to the separate 

sections on mathematical details.

Robust optimization such as the maxi-min 

approach aims at improving the worst 

case in a distribution (see e.g. [9]). For 

a limited number of price samples it is 

easily implemented in an LP approach. The 

maxi-min approach is included in the EAO 

package together with some examples to 

show where it is a good optimization target 

and where it is not.

3. Green energy supply

3.1 Customer efforts to minimize their 

carbon footprint

Traditionally, customers in the power sector 

have been passive. Via full supply contracts, 

they resorted to utilities to securely provide 

them with power when needed. This has 

been changing in past years as customers 

started to monetize their flexibility in 

demand, e.g. allowing utilities or other 

service providers to cut demand in return 

for discounts. This exists throughout the 

world, a great example being the demand 

response program from PJM, the regional 

transmission operator in the eastern 

USA ([8]). In PJM, demand response is an 

should not be ignored in optimization. 

We leave  quantitative finance aside here 

and  concentrate on the question how 

 uncertainty can be treated in optimization. 

Stochastic Linear Programming (SLP) was 

proposed by [2] early on to deal with 

 uncertainty in a principled manner. The 

approach is very clear, but if extended to a 

multi-stage case, quickly creates problems 

that cannot be handled practically. 

[12] gives a very nice introduction to 

the topic. Other authors explore this 

framework for various applications: [3] 

for portfolio  optimization and [13] for 

energy.  Particularly for hydro power 

generation, stochastic planning techniques 

are important and are in use in countries 

such as Brazil and Colombia with a large 

dependence on hydro power. See e.g. [5] 

for a review of optimization algorithms 

used in hydro power.

As compared to other approaches, the 

SLP approach is easily applied to various 

setups. Other approaches could be dynamic 

programming or least squares Monte 

Carlo. Dynamic programming is, from 

our  experience, a great alternative when 

 optimizing single assets. As long as the 

 state space can be represented with a 

limited number of states, it allows us to 

implement basically any transition rule and 

is extremely fast. However, as soon as just a 

few assets are combined in a portfolio, the 

state space basically explodes.

Least squares Monte Carlo, similarly, may 

be a good choice for specific applications 

such as the optimization of a single 

storage, options, etc. However, we have 



 important factor in securing energy supply.

As customers are putting their carbon 

footprint on the agenda, supply with green 

energy is gaining importance. Major deals 

include Microsoft’s deal to secure 500 MW 

solar PV 3 as well as similar activities by 

Google 4. PPAs are a well-known concept 

in energy markets. Customers, traders or 

utilities guarantee to take power over a 

long period at a fixed price. This enables 

developers to invest in assets, as the secure 

income allows them to obtain financing 

for their investment. Green PPAs are a 

vehicle to secure green power supply for 

a company and provide a new way of 

 financing green assets (mostly wind and PV) 

in addition to regulators’ subsidy schemes.

Green PPAs or own assets are an important 

starting point for green power supply. A 

limitation lies in the fact that power is not 

easily stored. It has to be produced basically 

at the same time as it is consumed. Since 

the demand profile is typically fixed just as 

the production from wind and PV assets is 

given by whether conditions, the fraction 

of green power in consumption is limited 

to the intersection of these profiles. When 

the sun is not shining or the wind is not 

blowing, the consumer needs to resort to 

"grey" power from the market. Depending 

on the load profile, this typically limits 

green power to roughly 40 % - 60 % of 

consumption 5.

Batteries or other storage technologies 

 provide the opportunity to maximize the 

share of green power in consumption. 

The power supply for a whole country, 

(here roughly 80 %) costs rapidly increase. 

In this example, a rapidly growing battery 

capacity is needed to bridge the gap when 

wind is not blowing. Depending on the 

region, the optimal share of onshore or 

offshore wind, PV and battery capacity is 

essential to minimize costs.

3.2 PPAs and structured "green supply" 

contracts

Let us introduce the idea of "green supply" 

contracts that are currently discussed in the 

power industry. Their main features are the 

following:

•  A full supply contract for the client’s 

load, which is typically given as per 

15 min or hourly time interval.

•  A minimum share of green power is 

guaranteed in the supply contract, e.g. 

over the course of the year.

•  Green supply realized via specific green 

assets (contracted via green PPAs and / or 

own assets), directly matching load and 

supply for each point in time.

•  When the load and green generation are 

not balanced, the supplier may trade at 

the spot market.

 guaranteeing 100 % green power, while 

 ensuring security of supply at the same 

time, requires an optimal interplay of 

 various technologies (see [1] for an 

 economic perspective).

Looking at solutions for single customers, 

the problem is simpler: the customer or its 

power supplier can build a portfolio from 

renewable energy assets and storage to 

reach the desired share of green power 

– depending on the cost sensitivity of the 

client. In times of peak load and limited 

renewable generation, the client can resort 

to the spot market and security of supply is 

no issue.

The illustration in figure 4 shows results for 

an illustrative, yet realistic setup. We chose 

hourly load and renewable generation 

data for Denmark 6 in combination with 

cost estimates for renewable sources and 

battery storage from [11]. We assume a 

given load of 100 GWh with a given target 

of generable share in supply over a full 

year. Further, we assume that the client 

would build assets or buy production from 

PV and wind assets and potentially apply 

a battery to maximize green share. The 

EAO framework was then used to find 

an  optimal mix of wind, PV and battery 

capacity to meet the minimum green share 

of supply at lowest costs.

The main purpose of the illustration is to 

introduce the use case of the  optimization 

scheme in green sourcing. It will be 

 elaborated in more detail in the following. 

The simple case of figure 4 already shows, 

that beyond a certain share of green power 

3 From pv­tech, ’Microsoft announces firm’s 

 single largest green energy PPA’, July 22, 2020

4 From sustainability.google

5 The fraction is highly dependent on the load 

profile. In this illustration we assumed that 

green PPAs match the total load per year.

6 Load profiles from Denmark taken from 

 energidataservice.dk (2020), pricing zone DK1

4 Costs of power supply at 

 different shares of green power
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•  A storage may be used in the portfolio, 

as long as the supplier can guarantee 

that it does not mix green and grey 

power.

In our optimization scheme we implement 

the contractual setup as shown in figure 5. 

The portfolio consists of assets and nodes, 

the main building blocks of the EAO 

package. Nodes are connected by specific 

"transport" assets as illustrated in the 

network graph: green power sources as 

well as the battery are placed in a specific 

node ("green sources"). Via a unidirectional 

link ("green link") the latter is connected to 

the node, where the load is placed ("node 

load"). This guarantees that in the course 

of the optimization no grey power enters 

the battery, which could be later mixed 

up with green power. On the green link 

we impose the restriction that, over the 

course of the year, consumed green power 

must exceed the contractual minimum 

share of green electricity. In addition we 

allow for the sale of production from 

the assets ("green sales") in times where 

there is excess production. The load is also 

connected to the spot market to be able to 

fill gaps in times when there is not enough 

green supply.

The model can be used for various 

use cases. We can have the algorithm 

automatically determine an optimal size of 

the battery and green generation assets to 

obtain minimal overall costs while meeting 

the agreed share of green energy. At the 

same time, overall costs associated with 

green supply are determined. Once all 

contracts and short-term forecasts are in 

figure 7 for a view on associated costs.

In the volume matched example, capacity 

of wind and PV was given. However, since 

the hourly profiles of our load, wind and 

PV are different, an optimized  combination 

may minimize the need for battery  capacity, 

or, respectively, ensure it is used more 

effectively. In our illustrative example we 

are using the overall wind and PV profile in 

Denmark.

place, the model can be used to perform 

the daily optimization required to schedule 

battery usage.

3.3 Illustration: An optimized green 

supply portfolio

In figure 5 we provide an example of a 

structured supply contract that guarantees 

a certain share of green electricity directly 

from wind and PV in combination with 

a battery. In this section we explore the 

example in more detail and show that 

an optimal mix of wind, PV and battery 

capacity can significantly reduce costs (or 

maximize the share of green energy 7):

Simple case of volume matching: 

In a first approach we do a very limited 

optimization. We match the overall yearly 

demand with 50% wind and 50% PV 

generation. The battery is then sized as to 

achieve the given minimum green power 

share (here 75 %). Figure 6 illustrates the 

hourly dispatch for a certain day. On this 

sunny day battery usage is straight forward. 

It stores electricity when sun is shining for 

usage in the early morning and evening. 

The spot market is used to provide backup 

electricity. As the portfolio is optimized in 

one go, battery usage is directly optimized 

against load, PV and wind profiles while 

exploiting low spot prices.

Optimized portfolio: 

An essential cost lever in the portfolio is the 

battery. Particularly due to longer periods 

with limited renewable sources, it must be 

sized to bridge the gap so the minimum 

share of green power can be met, see 

5 Network graph of a green 

supply contract with green PPAs as 

supply. In order to separate green 

and grey power we introduce two 

separate nodes for each as well as 

the load. Using a yearly minimum 

transport volume in the green link 

from assets to load, we ensure a 

certain minimum share of green 

power. 

6  Illustration of asset dispatch on 

a sunny day. In the early morning 

and evening, solar production 

is low and the battery is used to 

 provide green power stored during 

the day. At night the spot market 

is needed to supply demand, while 

surplus electricity is sold to the 

market during the day. Note that 

at the same time, spot purchases 

vs. battery usage are optimized 

against the spot price.

7 Example based on historic hourly load data and 

investment costs for renewables and  batteries 

for Denmark (pricing zone DK1) for 2020.
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However, the effect will be much more 

profound as the profiles of  several different 

assets (or even  technologies) are combined. 

In the EAO package this is simply done 

by adding the assets to the portfolio 

(figure 5).

In comparison to the simple volume 

 matched case, we generate a portfolio 

where the capacities of wind, PV and 

 battery can be optimized under the 

 restriction that overall production from 

wind and PV must not exceed load by 

more than 5 % (to roughly preserve volume 

matching in total), see figure 7. Costs are 

reduced by roughly 15 % as a smarter 

 combination of wind and PV reduces 

battery needs  significantly.  Looking at the 

setup from the other direction, the same 

battery can be used to achieve a higher 

share of green power.

3.4 Importance of portfolio 

 optimization in green supply

Portfolio optimization is not new, as we 

discussed in the introduction. In electricity, 

for example, it has long been used to 

 coordinate power plant dispatch in a 

market. Take the example of Independent 

System Operators (ISOs) that are in place 

in various countries such as Colombia 

and some regions in the USA. The ISO 

has  access to the technical data of all 

 generation assets and uses an  optimization 

framework  comparable to the one 

described here (while of course much more 

elaborate in detail) to optimally dispatch 

every single asset to meet the load in the 

region.

aggregation is essential. The marginal 

generation costs of the portfolio for 

each point in time are the most relevant 

characteristics when optimizing against the 

spot market (day-ahead or intraday). At 

prices below the marginal generation costs, 

power will be bought and production from 

own assets reduced – and vice versa.

In the framework we describe here, this 

aggregation comes along naturally.

Figure 8 provides an illustration using a very 

simple sample portfolio of a few generation 

assets with different production costs. In 

the example they are dispatched optimally 

to cover a given load. The higher the load 

the more expensive assets are needed and 

therefore marginal generation costs are 

higher. As we are using an LP to solve the 

problem, the dual of the nodal restriction 

provides the marginal cost of the whole 

portfolio.

In liberalized markets such as Europe, an 

ISO does not exist. Coordination is achieved 

via a spot market (day-ahead and intraday), 

where assets are optimized against price 

signals. In a liquid market, the result is the 

same as in the planned ISO case. However, 

from the optimization point of view, the 

starting point is completely different: in 

the market setup, each asset is and can 

be  optimized standalone against the 

market price and no portfolio optimization 

is required. The market as such creates 

the link via a repeated iteration between 

 re-optimization of all assets in the market 

and its effect on the market price.

Green supply that directly connects green 

sources and demand changes this picture. 

A supplier that guarantees a certain 

share of electricity from certain assets to 

its  customer (or a customer that owns 

green assets to cover his load), is in the 

need to do an optimization within the 

portfolio and will resort to the spot market 

only for  backup supply. In this setup an 

 optimization scheme such as the one 

described here is needed.

3.5 Nodal prices, optimization against 

the market and auto trading

As long as operators steer a few large 

assets against the market, they will be able 

to have in mind their relevant  technical 

 restrictions such as marginal costs, 

 gradients, etc. However, at any relevant size 

of the portfolio, tools are required that help 

the operator to summarize the behavior of 

the portfolio in few parameters. Particularly 

for portfolios of hundreds of decentralized 

assets with different characteristics, this 
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7 Optimized green supply 

 portfolio: We compare a portfolio 

of wind, PV and battery assets 

to supply a given load with 75 % 

green power. In the "volume 

 matched" case PV and wind are 

sized to provide 50 % of sales 

production each. The  battery 

sized to be able to provide a 

share of 75 % green power. In the 

 "optimized" case all assets are 

sized  automatically. Observe how 

optimized sizing alone can already 

reduce costs by roughly 15 % in this 

setup.
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1 2

The framework applies to any portfolio and 

any type of asset that can be described as 

an LP, including more complex contracts 

or storages. Using the duals for nodal 

 restrictions, the algorithm provides the 

 value of the commodity at each node (or 

location). The interpretation is as follows: 

The dual of the nodal constraint for any 

point in time quantifies how the overall 

portfolio value changes if an infinitesimal 

amount of the commodity is made 

available.

If the operators need to assess the value of 

a specific deal for their portfolio, they can 

use an additional run of the optimization to 

explore the change in the overall portfolio 

value. The same applies to auto-trading 

schemes, where an algorithm takes the 

role of the operator. For such strategies in 

particular, a generic framework such as the 

above is required to generate rules that 

abstract from specific assets.
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8 The figure to the left shows 

how illustrative generation assets 

are dispatched optimally to cover 

a given load. They are  dispatched 

according to their marginal 

 generation costs. The right figure 

shows the marginal  generation 

costs of the whole portfolio 

 computed via the duals of the 

 nodal constraint.
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A Mathematical framework

In the following sections, we introduce the mathematics behind our framework
for energy asset optimization. The appendix’ target is to explain the main ideas
to the technical user. It is focused on the mathematical framework rather than
the code of the Python implementation, which is explained in the corresponding
documentation8.

We believe, that our framework helps in providing a guidance and a starting
point for solving many problems based on this code basis. It can easily be
integrated into an existing machinery for trading and asset dispatch. Where
needed, it can be easily extended with one’s own building blocks such as complex
structured assets.

A.1 Starting point: A portfolio of assets

A portfolio is a collection of assets that are analyzed in a group. Typically,
grouping follows ownership and as the asset owner you would typically collec-
tively optimize your assets to maximize the overall cash flow of your portfolio.

Assets: Assets may be of very different types. In energy or commodity trad-
ing, they may be physical assets or contracts. What they have in common is
that they may produce or source a commodity as well as store, consume or sell
it. They are a source or sink of the respective commodity in each point in time.
When the commodity is sourced or consumed, a corresponding cash flow may
be created.

A simple example: Assume you own a battery storage and you optimize it
against the intraday power market. In this case you would add two assets to
your portfolio the storage and the market.

The storage asset implements physical properties of your battery such as
capacity, size, efficiency, own power consumption, etc. The market allows you
to buy and sell power as you charge or discharge your battery. The terminology
of calling the market ‘your asset’ is, of course, misleading. However, let us look
at it from another perspective: As your trade in the market, you enter contracts
with third parties. In that sense, the market is an asset that allows you to
close specific contracts with third parties. Choosing the right asset class, you
can implement anything from a simple approximation with given price curve
(assuming you may be able to buy or sell at a forecasted price) and bid-ask
spread to a more complex asset with a given order book (e.g. when optimizing
in the intraday market).

In the portfolio, the storage is optimized against the market, following the
restriction that any power that enters or leaves the battery, needs to come from
or go to the market. When adding more assets such as wind or PV, the portfolio

8The documentation is available along with some samples at
https://energyassetoptimization.github.io/EAO/
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becomes more complex, but the mechanism remains the same. You simply add
those assets to your portfolio.

Interaction only via dispatch. The starting point for the optimization
framework is that single assets in a portfolio only interact via their dispatch,
as the sum of all assets’ dispatch at a given point in time must be zero for
every location. A commodity is preserved and can only be changed by inflow
(production or sourcing) or outflow (consumption or sale) of an asset.

When setting up the optimization problem as an LP, we can exploit this
property and only need to translate an asset’s characteristics into its own LP.
The assets may then be combined into a portfolio by combining the single LPs.
The restriction, that the sum of all assets’ dispatches must be zero at each
location (called node hence forward) is added.

Structured assets: Where complex assets, such as staged hydro reservoirs
with several water reservoirs and water inflows, appear to be interlinked, they
can be implemented as one asset with inner-asset restrictions. Alternatively,
they can be implemented via several simple assets located in one or more nodes
with directed connections. In our framework, we allow for this by packaging
portfolios in one ‘structured asset’. Such a structured asset may have a complex
inner logic, but may be used just as other assets. An example is a green supply
contract as described in section 3.

Multi-commodity problems. In the following we formulate the problem
as a one-commodity problem. The extension to the multi commodity case is
straightforward. Preservation of volumes is formulated per commodity and as-
sets are defined to have inflow and outflow for one or several commodities. Only
where an asset links one commodity to the other (e.g. by converting gas to power
or power to heat), commodities are actually interlinked and we obtain what is
often called sector coupling.

A.2 Formulation as an LP

A.2.1 LP for single assets

As above, the formulation of the single assets’ LP is the starting point of the
optimization. As described in section 2.2, we added several prototype assets to
the EAO package, such as simple or complex contracts, storages and transport.
Power plants are easily handled in LPs as long as their cost structure is convex.
Start-up costs may require the usage of binary variables, which also fits into the
described framework, but turning the LP into an MIP.

Notation: Let us denote the LP for an asset a as follows:
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� The dispatch xa ∈ RT (inflow or outflow of a commodity of the asset) is
given as

xa = (xa
1 , x

a
2 . . . x

a
T ) for time steps i = 1 . . . T. (1a)

In some cases, formulating the objective function of the LP is simpler if
we distinguish positive and negative dispatch at each point in time, i.e.
we split xa

i into two new new variables xa+
i and xa−

i , where xa+
i , xa−

i ∈ R,
xa+
i ≥ 0 and xa−

i ≤ 0 doubling the dimension of the original dispatch
vector. For notational simplicity, we omit this fact and write xa as a vector
from RT . In the multi-commodity case, the dispatch may be defined per
commodity.

� The asset internal variables are denoted by

ya = (ya1 , y
a
2 . . . y

a
ia), (1b)

i.e. ya ∈ Ria . Such variables describe the internal state of an asset where
necessary. For example, to model start-up processes, binary variables in
addition to the dispatch may be required. The number of internal variables
is denoted by ia and will differ by asset type.

� Using the above definitions, the LP (or MIP) is formulated as

max caT ·
[
xa

ya

]T
(1c)

s.t.

Aa ·
[
xa

ya

]
≤ ba with Aa ∈ R(T+ia)×r and ba ∈ Rr (1d)

where Aa encodes the asset’s structure and r denotes the number of asset
restrictions. The vector c ∈ RT+ia typically reflects costs from sourcing
or revenues from selling the commodity as well as handling costs.

A.2.2 Combination into a portfolio

As outlined in section A.1, assets in energy or commodity trading only interact
via their dispatch. Therefore, the optimization problem can be set up in four
separate steps:

1. Build LPs for each single asset and combine them into one large LP

2. Assign each asset to one or several locations (nodes)

3. Add connections (transport) between nodes (implemented the same way
as other assets)

4. Enforce dispatches to sum up to zero in each node for all time steps
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Step 1: Build LP Specific LPs, describing different asset types, may differ
substantially. In the presented framework, it is important to consistently sep-
arate dispatch variables x from internal variables y, so dispatch variables may
be tracked and joined in restrictions across assets.

The joint LP for a portfolio consisting of assets 1 . . . n is given by combining
the LPs (1d) and (1c) for all assets. If written in matrix form, it reads:

max c · xT (2a)

s.t.

A · x ≤ b (2b)

where

A =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An


 (2c)

x =




x1

y1

...
xn

yn



, b =



b1

...
bn


 and c =



c1

...
cn


 (2d)

As you may note, the single assets’ LPs are completely disjoint at this stage.
The restriction matrix A only has (sub matrix) entries in its diagonal and the
solution of the overall LP is the solution of every single LP.

Step 2: Assigning assets to nodes. Each asset must be located in one or
several nodes. Power and gas are prominent examples, where those locations
or nodes may be virtual trading hubs. We treat transport such as pipelines or
connections as specific assets that are assigned to two nodes. Similar assets are
used for sector coupling, e.g. converting gas to power or power to heat.

In the implementation, assignment to nodes consists in careful mapping, but
is mathematically trivial. In order to be able to perform the next step, we need
to be able to track type (dispatch or internal), point in time and node for each
asset.

Step 3: Add nodal restrictions to LP Let there be nodes N1 . . . Nm. The
index collections I1 . . . Im contain the indices of assets assigned to nodes 1 . . .m.
The portfolio LP is then extended by the following restrictions:

∑
a∈Ii

xa
t = 0 ∀ times t = 1 . . . T and nodes i = 1 . . .m (2e)
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Scaled assets: Up to now we assumed assets were given. In addition to the
prototype assets introduced in section 2.2, we found that scaling assets may be
very useful for many optimization tasks. In the example of a green portfolio we
made heavy use of them.

Assume we can invest in or rent a flexible size or share of a given asset type.
Investment or rent for a given time results in fix costs that are independent of
the actual dispatch. The ’scaled asset’ extends prototype assets by scaling them
with an additional size variable.

Let S be the normalization of the base asset, s be the size variable and
f be the fix costs, M (m) be the maximum (minimum) size. We define the
constraints of the scaled asset, using the base asset’s constraints by:

Ax− b
s

S
≤ 0 (3a)

x− u

S
s ≤ 0 dispatch variables only (3b)

x− l

S
s ≥ 0 dispatch variables only (3c)

m ≤ s ≤ M (3d)

In this formulation we added u and l as upper and lower bounds for the base
asset’s dispatch variables, since they are often given. The cost vector needs
to be appended with fix costs for the size variable. Scaling applies only to
dispatch variables. How scaling applies to internal variables may differ from
asset to asset, but for the implemented prototype assets we can simply scale the
restrictions (here storage size and minimum or maximum offtake).

A.2.3 Optimizing and retrieving results

The portfolio’s LP is defined by equations (2). The main contributions are
coming from the specific LPs of each asset, which are glued together with the
restriction that quantities at nodes must be preserved. This enables us to use a
modular approach, where the definition of single assets can be separated from
the setup of the overall structure of the portfolio including its locational char-
acteristics.

As it turned out in many practical use cases, few asset classes (storage,
contracts, production & demand) in combination with a specific nodal structure
and transport are sufficient to cover a large variety of real life problems – from
applications as different as decentral renewable power, sector coupling and global
fuel sourcing. Once the generic framework is set up, portfolios can be changed
flexibly without the need to touch code.

Once the solution of the overall LP is available, the resulting optimal values
for asset variables [xa,ya] may be passed back to assets to create a detailed
view on their optimal dispatch or other behavior within the portfolio.
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B Dealing with uncertainty using Stochastic Lin-
ear Programming

B.1 Theoretical background

The structure of the optimization problem in (2) is highly specific and uncer-
tainty will enter the problem via costs or revenues (e.g. via market prices) or
restrictions (e.g. reflecting demand or supply capacity).

Besides an efficient approach to manage, create and solve the LP itself, taking
into account such uncertainties is a major challenge. The problem is naturally
described as a stochastic linear program (SLP). We loosely follow the notation
from [12]. We start by reformulating the energy asset optimization problem as
a two stage SLP at time d. All steps up to time d need to be fixed now without
uncertainty, beyond which they are uncertain. We write

xd = x1, x2, . . . xd (4)

x̂d = xd+1, xd+2, . . . xT (5)

referring to the full set of variables of the portfolio LP. The original LP
(without uncertainty) reads

max
[
cTx

]
(6)

with Ax ≤ b (7)

Let us further assume we approximate the uncertainty using a set of samples
for ĉds, Âds and b̂ds with s = 1 . . . D. Note that samples only differ in future
values beyond time d. The we obtain

max

[
cdTxd +

1

S

∑
s

ĉdsT x̂ds

]
(8)

s.t. Âs

(
xd

x̂ds

)
≤

(
bd

b̂ds

)
∀s = 1 . . . S (9)

On the basis of sampling, the problem is exact. However, we observe the
following:

� If we have a smart way of building the LP, we can easily build up the full
SLP recursively from the two stage formulation

� For other than toy models, the problem quickly explodes in size. One
way would be to use only a small number of decision steps that is not
necessarily equal to the number of time steps in the discretization

� Samples need to come from a random process, where uncertainty in the
future part of each step in the recursion has one sample of the present
part in common. This is no restriction in our case
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