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ABSTRACT

In this paper we introduce a mapping procedure which facilitates the

simulation of flow-induced vibrations in turbomachinery. The transient

steady state pressure fluctuations in the flow field (which excite vibrations)

are computed in the frequency domain by what are generally referred to as

“harmonic CFD” methods where the pressure oscillations are expressed by

complex amplitudes. They are mapped using the Fraunhofer software

FSIMapper to a structural vibration analysis. A main focus lies in the

provision of mapping methods for cyclic symmetric models. The process

provides a fast numerical assessment of flow-induced vibrations where the

resulting vibration amplitudes can be used for realistic fatigue estimations of

flow-excited turbine components. The procedure is applied to a ceramic

impeller of a micro gas turbine.
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excitations; Nonlinear Harmonic method; mapping; nodal diameter; cyclic

symmetry; ceramic rotor

1. INTRODUCTION
Turbomachinery is deployed in a variety of industrial systems. Flow-induced vibrations can
lead to a high noise emission and to blade fatigue which can endanger the integrity of the
whole system. The excitation is caused by pressure fluctuations in the flow field generated
by interactions between rotating and stationary blade rows [1]. Design optimisation for the
reduction of product size and weight leads inter alia to a reduction of the distance between
rotor blades and stationary guide vanes. This increases the unsteady interactions and thereby
the excitation of the already highly loaded blading in the whole flow channel.

Numerical simulations of those excitation forces and vibration responses lead to time- and
cost-savings in the prototyping and testing of products since the design process is moved to
earlier development phases. However, a classical transient simulation of the steady state flow
conditions can be computationally very expensive. A faster simulation approach – the Nonlinear
Harmonic method – and its application in a new mapping process are the topic of this paper.

2. NONLINEAR HARMONIC METHOD
A possibility of approximating the transient steady state behaviour of the flow field is a finite
Fourier decomposition into periodic oscillations as developed by He [2], [3]. This approach
is used in the Nonlinear Harmonic (NLH) method implemented in Numeca’s turbine
simulation software FINE/Turbo [4]. It decomposes the state variable u(r, t) at position r and
time t into the time-averaged variable u−(r) and periodic fluctuations around this mean value.
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The periodic oscillations are split into K frequency terms which correspond to multiples of
the blade passing frequency ω, also called harmonics (see eqn (1)).

                                                                                              

(1)

The factor u~k (r) ∈  denotes the complex amplitude of the k-th harmonic corresponding
to frequency ωk = k ⋅ ω. The complex amplitude can be reformulated as magnitude and phase
lag of the oscillation (using Euler’s formula). Since the time dependent state variables u are
real numbers, u~k is complex conjugated to u~- k. So the number of free variables is K + 1.

In the NLH method this decomposition is used for time-averaging the unsteady Navier-
Stokes equations in order to compute an approximation of the steady state transient solution of
the turbomachinery problem. This is analogous to Reynolds averaging, except that the periodic
fluctuations are assumed to predominate over the turbulent fluctuations [4]. As in the concept
of turbulence modelling, the periodic fluctuations contribute additional terms to the time-
averaged Navier-Stokes equation, referred to as deterministic stresses. For the model closure,
a transport equation for the unsteady perturbations is obtained by retaining the first-order terms
in the basic unsteady flow equations. Casting this first order linearised equation into the
frequency domain gives the remaining equations (besides the turbulence model) to close the
problem [4]. The reader is referred Vilmin [4] for detailed explanation of the NLH method.

As shown by Membera [5] this approach is much faster than the classical transient
simulation since the computationally expensive calculation of the initial transient response is
avoided. Also, computer storage is minimized since the transient information is represented
by a small amount of complex flow data, which needs not to be saved for each time-step.

3. MAPPING OF COMPLEX PRESSURES
For the computation of flow-induced vibrations the pressure excitations are transferred
(mapped) to the structural mesh using the Fraunhofer SCAI tool FSIMapper. The excitations
are provided by the NLH method in terms of the time-averaged pressure p– and a certain
number of harmonic pressures p~k ∈ , k = 1... K. The basic procedure for simulating the
flow-induced vibrations is shown schematically in Figure 1.

In a first step the harmonic turbine flow simulation is performed. FINE/Turbo saves the
results in the CFD General Notation System (*.cgns) file, which FSIMapper is able to read.

The harmonic data i.e. the time-averaged pressure p– and the complex amplitudes p~k, 
k = 1... K of the computed harmonics are read by FSIMapper and are mapped to the
structural target mesh. The two meshes do not necessarily need to coincide but represent
approximately the same geometric shape. The FSIMapper-algorithms are able to handle
different mesh densities or element formulations [6].

FSIMapper exports for each harmonic a loading file which contains the corresponding
complex excitation forces on the target mesh. Moreover, it exports a file with the time-
averaged load. The data contained in these files is used in the harmonic structural simulation
(stage three in Figure 1).

The first step of the structural vibration analysis is the computation of the static deformations
x− at the time-averaged pressure loading. This serves as the base state for the subsequent
frequency response steps. In each of those steps, the mapped real and imaginary load data are
included and the response (complex deformation x~k, k = 1 ... K) at the corresponding frequency
is calculated. Here also resulting stress, strain, etc. responses are available.
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The system loaded by the overall pressure fluctuation given by

                                                                                            

(2)

responds by the linear superposition (inverse Fourier decomposition) of the single
responses to the time-averaged pressure and the harmonic pressure fluctuations, as given
by eqn (3).

                                                                                              

(3)

This is possible due to the linearity of the equations of motion which are solved in the
frequency response analyses.
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Figure 1: Scheme of mapping procedure. The time-averaged pressure p− and the
complex amplitudes p~k, k = 1... K as result of the harmonic Computational Fluid
Dynamics (CFD) simulation are transferred via the software FSIMapper to the target
structural mesh. The resulting files contain the boundary conditions of the structure
in the target code format. They are used in the harmonic structural analysis in order
to compute the time-averaged displacement x− and the complex displacements x~k,
k = 1... K for each considered harmonic excitation

p(r) p̃1(r) p̃2(r) · · · p̃K(r)

p(r) p̃1(r) p̃2(r)
· · ·

p̃K(r)

∗

x(r) x̃1(r) x̃2(r) · · · x̃K(r)

ωk, k = 1 . . . K



3.1. PERIODIC MODELS AND NODAL DIAMETERS
In turbomachinery simulation, periodic models are often used in order to reduce computation
times. Usually, the mapping algorithms need a more-or-less coarse match between the source
and target meshes.

In order to offer flexible modelling of source and target mesh the mapping procedure
presented here provides the possibility of mapping between different periodic sections which
in fact represent the same full model.

Figure 2 shows schematically two different cyclic symmetric meshes (black lines) for the
use in a data mapping. The mapping algorithm uses the periodicity information to map the
data from the source mesh to the – at first glance non-matching – target mesh by “rotating”
the data to be present on the virtual full source model (grey lines).

Modal shapes, dynamic excitations, deformations, etc. of periodic systems such as bladed
disks usually are described using the concept of nodal diameters (also known as
circumferential wave number or cyclic symmetry mode) by Wildheim [7], [8], [9]. The nodal
diameter ND of a deformation or excitation shape is equal to the number of “inflexion lines”
across the disk. The maximum valid nodal diameter NDmax is given by eqn (4) where n
denotes the number of periodic sections.

                                                                                                

(4)

A shape of nodal diameter y ∈ [0, NDmax] is abbreviated by NDy.
Figure 3 shows a schematic example of a six bladed disk where NDmax = 3. In the ND0

shape all blades are excited exactly in phase (shown in Figure 3a). For an even number
of blades (as it is the case here) the shape with ND = NDmax is characterized by a phase
lag of p, i.e. each blade is excited in the opposite direction to its neighbours (Figure 3d).
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Figure 2: Mapping of data between different periodic sections (black lines) which
represent the same full model (grey lines). The data is mapped from the left source
model to the right target model by “rotating” the data to be present on the virtual
full source model



The ND1 resp. ND2 shape is characterized by two resp. four direction changes in the
blade row, see Figure 3b and Figure 3c.

To provide the complex data from the periodic model (s = 1) to the

remaining sectors s = 2 ... n, eqn (5) is applied.

                                               

(5)

Here σND is referred to as forward or backward inter blade phase angle which is defined
by the excitation shape (respective to the rotation sense). They are closely tied to the nodal
diameter ND by the following equations.

                                                                                                            

(6)

Eqn (5) corresponds to a rotation in the complex plane: the amplitude of the complex
number stays the same and its phase is augmented by σND ⋅ (s - 1).

If the excitation has ND0 shape the data can be simply copied from one section to another.
This is because the matrix from eqn (5) becomes the unit matrix. For an even number of
blades and nodal diameter equals NDmax the data on the full model can be created by copying
the data and applying a sign-change alternatingly.
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Figure 3: Mode shapes of a six bladed disk for all valid nodal diameters ND
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In both cases the matrix from eqn (5) is diagonal, so real and imaginary part are decoupled
and can be treated independently.

For vector quantities the derived values from eqn (5) have to be additionally rotated by
the angular pitch around the cyclic symmetry axis.

3.2. DERIVING EXCITATION AND RESPONDING SHAPE
The specific shape of an excitation, i.e. nodal diameter and forward or backward mode, can
be derived by the periodicity of the components in the turbomaehinery system [7], [8], [9].
A component of periodicity m leads to excitation frequencies which are multiples of the
blade passing frequency ω = m ⋅ Ω, Ω representing the relative rotation speed of the two
components towards each other. These multiples are called k-th harmonic frequencies 
ωk = k ⋅ ω, k = 1 ... ∞.

The k-th harmonic associated with an m-periodic part is called engine order E = k ⋅ m and
excites the nodal diameter ND in forward mode if there exists a positive integer a with

                                                                                                                      (7)

The forward inter blade phase angle is used in eqn (5). 
If there exists a positive integer b with

                                                                                                                  (8)

the excitation has a backward nodal diameter shape ND. So the backward inter blade phase
angle is used in eqn (5).

These two conditions correspond to the ZZENF (Zig Zag shaped Excitation line in the
Nodal diameter versus Frequency) diagram developed by Wildheim [8] which is shown in
Figure 4 as nodal diameter versus engine order diagram. It shows which engine order E
causes which excitation shape on an n-periodic part.

= − ⋅ND E a n

= − − ⋅ND E b n( )
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Figure 4: Derived Zig Zag shaped Excitation line in the Nodal diameter versus
Frequency (ZZENF) diagram for a six (left) and nine (right) bladed disk. Using the
diagram the excitation shape (nodal diameter in forward (black lines) or backward
(grey lines) mode) on a n-periodic component caused by a certain engine order
can be determined
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In the left example diagram shown in Figure 4 the engine orders 2, 4, 8, etc. will lead to
an excitation shape of nodal diameter 2 on a six bladed disk. The engine orders 2 and 8 excite
in forward mode, engine order 4 in backward mode.

In summary, with the described tools and formulas we are able to derive the excitation
shape (as forward or backward nodal diameter) from the turbomachinery configuration (eqns
(7) and (8)). This information is used to provide the complex data (e.g. exciting pressures)
from one periodic section to the corresponding full model (eqn (5)). Thus FSIMapper is
enabled to map data between cyclic symmetric meshes which in fact represent the same full
model. The resulting deformation shape is the same as the excitation shape.

4. RESULTS AND DISCUSSION
The presented mapping procedure has been applied during an internal Fraunhofer research
project called MAVO TurboKeramik. The goal of this project is to develop a fully ceramic
rotor of a micro gas turbine which withstands the operational static and dynamic loading.

The considered turbine configuration is shown in Figure 5. The hot exhaust gas from the
combustion chamber is directed radially through the stator which includes 13 blades. The 14-
bladed rotor is turned by the relaxing gas. The cooled off fluid leaves the turbine in the axial
direction in order to co-generate heat.

After the assessment of the static loading, which comprises pre-tension, thermal gradients
and centrifugal load, the dynamic excitation and response is considered. 

The NLH method in FINE/Turbo computes the average pressure and the first three
harmonics on the periodic model (see Figure 6) which together approximate the transient
pressure behaviour. The pressure amplitudes decrease with increasing frequency (or
harmonic index) whereas the complexity of the pressure distribution is increasing.

For a flow-induced structural vibration analysis these data have to be transferred to the
structural mesh. The periodic target model in Abaqus exhibits a different geometry, cf. Figure 7
(right). One section comprises parts of two neighbouring blades with planar cutting faces.

Figure 5: Turbomachinery configuration in the Fraunhofer project MAVO
TurboKeramik. The hot exhaust gas is directed radially through the 13-bladed
stator to the 14-bladed rotor. The outflow leaves the rotor in the axial direction
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Figure 6: Mean pressure amplitude and the first three harmonic pressure
amplitudes (colouring uses different ranges) as a result of the Nonlinear Harmonic
method in FINE/Turbo

ω1 = 20.8kHz ω2 = 41.6kHz ω3 = 62.4kHz

Figure 7: Cyclic symmetry mapping procedure demonstrated for the first harmonic
pressure with FSIMapper. The data on the periodic source model (left) is “rotated”
using the excitation shape information to build the full source mesh (middle). These
data are mapped to the periodic target model (right)



In order to provide the periodic data to the full model the excitation shapes of the pressure
need to be determined using the ZZENF diagram. The results are shown in Table 1.

Figure 7 visualizes the cyclic symmetric mapping using eqn (5) of the first harmonic
complex pressure from the source mesh to the target mesh. The data on the periodic source
model (Figure 7 left) exhibits a “ND1-periodicity” and is “rotated” continuously over the
periodic boundaries (Figure 7 middle). These data are mapped to the periodic target model
(Figure 7 right).

The mapping process uses simultaneously the real and imaginary parts of the data, since
the matrix of eqn (5) is dense and couples them. An independent mapping of real and
imaginary part is only possible for ND0 and ND7.

The complex data differ on the periodic source and target model since they correspond to
different blades. This difference is simply induced by the phase lag between the blades
resulting from the backward inter blade phase angle. The corresponding amplitude of the
pressure excitation is the same.

In the mapping process, include files in Abaqus input format are created to define the
complex loading for the frequency response analyses. For each considered harmonic a
frequency response step is defined which uses the complex loading files. Abaqus uses the
information about the excitation shape in order to build the periodic boundary conditions.

The time-averaged pressure at frequency 0Hz results in a deformation shown in Figure 8a.
The maximal deformation caused by the mean pressure is located in the blade tip at trailing
edge (near outlet).

In the frequency response simulations a damping has been assumed. Since the magnitude
of responses is closely tied to its value, the maximal amplitudes have been scaled to 1.

The deformation magnitudes for each harmonic are shown in Figure 8. Each colour range
is scaled to its maximal amplitude.

For the two blade tips at leading and trailing edge the displacement response frequency
spectrum is shown in Figure 9. Since the computed results belong to two neighbouring
blades, first, the simulation results of the trailing edge blade tip are turned by the angular
pitch and then the dedicated inter blade phase angle is added via eqn (5).

The time-averaged pressure is plotted at 0Hz and puts a constant contribution to the
oscillation. For each deformation direction the first harmonic has the biggest influence. The
responses to the higher harmonics converge to zero.

The inverse Fourier transformation of the spectra shown in Figure 9 leads to the transient
steady state behaviour of the blade tips, cf. Figure 10a. As already seen in the spectra,
frequency 20800Hz dominates the oscillation in all three degrees of freedom. A coordinate
transformation leads to the transient steady state behaviour in cylindrical coordinates, i.e. in
radial (r), circumferential (φ) and in axial (z) direction, see Figure 10b.

The resulting amplitudes of stress or strain cycles can be used for a fatigue analysis [10],
[11]. Figure 11 shows hot spots of high stress oscillation magnitudes at frequency 
ω1 = 20.8 kHz (i.e. at first harmonic) where failure-probability is highest. The final durability

Table 1: Excitation shapes of the first three harmonics derived by the ZZENF
diagram

Harmonic k       Corresp. Frequency ωk [Hz]         Engine Order E       Excitation shape
1                                             20800                                       13                     ND1 backward
2                                             41600                                       26                     ND2 backward
3                                             62400                                       39                     ND3 backward
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Figure 8: Magnitude of resulting displacements for the time-averaged pressure and
the first three pressure harmonics. Colour range scaled to the particular maximum.
Simulation result of frequency response analysis in Abaqus

ω1 = 20.8kHz ω2 = 41.6kHz ω3 = 62.4kHz

Figure 9: Frequency spectrum of the blade tips’ displacements, maximal value
scaled to 1. Result of frequency response simulation in Abaqus
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assessment uses fatigue principles and material properties in order to estimate the lifetime of
the dynamically loaded part.

5. CONCLUSION
This paper presents a mapping procedure for the analysis of flow-induced vibrations in
turbomachinery applications. Pressure excitations calculated by harmonic CFD
(Computational Fluid Dynamics) methods are mapped to the structural model where a

Figure 10: Transient steady state deformation as linear superposition of the time-
averaged and harmonic responses
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Figure 11: Stress cycle hot spots at 20.8kHz. Colouring by the magnitude of max.
principal stress cycles. Result of Abaqus frequency response simulation
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frequency response analysis is performed. In this way the influence of pressure fluctuations
in the turbine flow to vibrations of the structure are estimated. The approach is much faster
than the classical transient computational procedure, where the deflection is calculated time
stepwise until steady state conditions are reached. In a post-processing step a life-time
assessment can be performed which takes flow-induced vibrations into account.

The results do not encounter aerodynamic damping since the influence of the structural
vibration to the flow is not considered. Here a complete coupling of the complex quantities
is planned as future work using the vendor-neutral coupling interface MpCCI developed at
Fraunhofer SCAI.

The mapping method is designed for the use of periodic models which are often applied
in turbomachinery simulations. The algorithm is able to map data between periodic models
while not matching geometrically but represent the same equivalent full models. This feature
reduces modelling and simulation effort by using the periodicity information of the data.
Also, it allows the mapping between periodic and full models.

The procedure was applied to the ceramic impeller of a micro gas turbine. Blade vibration
responses to the pressure fluctuations are calculated and hot spots with high fatigue
probability are located.

The presented procedure can be easily transferred to other application areas such as
electromagnetic induced vibrations in motors or generators. A result of the frequency
response analyses can also be the sound pressure level for acoustic assessments.

For source (resp. to the mapping) simulation codes which do not provide harmonic but
transient analyses the presented procedure is also applicable. After a transient simulation on
the source model, the data of time-steps which build the steady state behaviour are converted
using a Fourier transformation to frequency dependent complex amplitudes. They
correspond to the harmonic amplitudes used in the mapping method, where the procedure
can be continued. This approach has already been implemented in FSIMapper for
electromagnetic and CFD applications.

ABBREVIATIONS

CFD                      Computational Fluid Dynamics
NLH                     Nonlinear Harmonic

NOTATION

u                           scalar variable
v                            vector variable
uRE, uIM                 real and imaginary part of u
u–, v–                       time-averaged variable
ũk, ṽk                     k-th harmonic complex amplitude
X, Y, Z                  cartesian coordinates
r, Φ, z                   cylindrical coordinates

LIST OF SYMBOLS

a, b                                        positive integers

                 
complex scalar data on periodic section s+ ⋅d d i d= s

RE
s

IM
s( ) ( ) ( )
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E                                            engine order
i                                             imaginary unit, i2 = -1
K                                            number of considered harmonics for the approximation 

of the transient data
m, n                                       number of blades/periodicities
ND                                         nodal diameter
NDmax                                    maximal nodal diameter
ω                                            blade passing frequency
ωk = k ⋅ ω                              k-th harmonic of the blade passing frequency
Ω                                           relative rotation speed
p                                            pressure
r                                             position vector

         
forward and backward inter blade phase angle for 
nodal diameter ND

t                                             time
u                                            general state variable
x                                            deformation vector
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