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Abstrakt� Algebraisches Mehrgitter �AMG� bietet Ans�atze zur Entwicklung rein alge�
braischer Verfahren zur e�zienten L�osung gro�er Gleichungssysteme� die auf unstrukturi�
erten� zwei� oder dreidimensionalen Gittern basieren
 W�ahrend sequentielles AMG zur
L�osung von Problemen mit mehreren Millionen Unbekannten benutzt werden kann� setzt
eine weitere Erh�ohung der Problemgr�o�e eine e�ziente Parallelisierung voraus
 Weil sich�
im Gegensatz zu geometrischen Mehrgitterverfahren� die Vergr�oberungshierarchie und die
zugeh�origen Grobgitteroperatoren in einer Aufsatzphase von AMG dynamisch entwickeln�
ist eine direkte Parallelisierung sehr kompliziert
 Dar�uberhinaus w�urde eine �naive� Paral�
lelisierung unvorhersehbare und �uberaus komplexe Kommunikationsmuster erfordern� mit
der Konsequenz einer ernsten Beschr�ankung der erreichbaren Skalierbarkeit� insbesondere
der ohnehin vergleichsweise teuren Aufsatzphase
 In diesem Papier betrachten wir eine
klassische AMG�Variante� die sich als sehr robust und e�zient bei der L�osung gro�er Glei�
chungssysteme erwiesen hat� die bei der Diskretisierung elliptischer Di�erentialgleichungen
mit �niten Di�erenzen oder �niten Volumen entstehen
 Basierend auf einer einfachen Par�
titionierung der Variablen �durch eines der vielen algebraischen Partitionierungstools wie
z
b
 Metis�� schlagen wir einen Parallelisierungsansatz vor� bei dem die Kommunikation
minimiert wird ohne in komplexen Anwendungen das Konvergenzverhalten nachhaltig zu
verschlechtern
 Wir pr�asentieren Ergebnisse f�ur verschiedene industrielle Anwendungen
aus den Bereichen CFD und �Olreservoir�Simulation


Schlagw�orter� AMG� parallel� Algebraisches Mehrgitter� unstrukturierte Gitter� un�
strukturierte Matrizen� hierarchische L�oser


Abstract� The algebraic multigrid �AMG� approach provides a purely algebraic means
to tackle the e�cient solution of systems of equations posed on large unstructured grids�
in �D and �D
 While sequential AMG has been used for increasingly large problems �with
several million unknowns�� its application to even larger applications requires a parallel
version
 Since� in contrast to geometric multigrid� the hierarchy of coarser levels and
the related operators develop dynamically during the setup phase of AMG� a direct par�
allelization is very complicated
 Moreover� a �naive� parallelisation would� in general�
require unpredictable and highly complex communication patterns which seriously limit
the achievable scalability� in particular of the costly setup phase
 In this paper� we consider
a classical AMG variant which has turned out be highly robust and e�cient in solving
large systems of equations corresponding to elliptic PDEs� discretized by �nite di�erences
or �nite volumes
 Based on a straightforward partitioning of variables �using one of the
available algebraic partitioning tools such as Metis�� a parallelisation approach is proposed
which minimizes the communication without sacri�cing convergence in complex situations

Results will be presented for industrial CFD and oil�reservoir simulation applications on
distributed memory machines� including PC�clusters


Keywords� AMG� parallel� algebraic multigrid� unstructured grids� unstructured matri�
ces� hierarchical solvers
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� Introduction

Algebraic multigrid �AMG� provides an approach to developing hierarchical and purely al�
gebraic multi�level methods for solving certain classes of �sparse� matrix equations
 Based
on the ideas in �
� �� ��� the �rst public domain AMG program� AMG
R�� was described
and investigated in ��� �� ��
 Although it was already clear at that time that there was
much potential for generalizations� this program essentially aimed at the algebraic solution
of systems of equations involving M�matrices


Since the early nineties� and even more since the mid nineties� there was a strong
increase of interest in algebraically oriented multi�level methods
 One reason for this was
the increasing geometrical complexity of applications �see Figure 
 for an example� which�
technically� limited the immediate use of geometric multigrid
 Another reason was the
steadily increasing demand for hierarchical �plug�in� solvers
 In particular in commercial
codes� this demand was driven by increasing problem sizes which made clear the limits of
classical one�level solvers used in most packages


Figure 
� Mesh for computing the underhood �ow of a Mercedes�Benz E�Class

As a consequence� the investigation of algebraic multi�level approachs was strongly
pushed forward� partly aiming at extending the range of applicability
 Several new ap�
proaches have been investigated such as� for instance� smoothed aggregation�based AMG�
variants based on energy minimization principles to de�ne interpolation� and AMGe

Moreover� a variety of hierarchical algebraic approaches has been �and is still being� de�
veloped which are signi�cantly di�erent from AMG in the sense that these approaches are
not based on the fundamental multigrid principles� smoothing and coarse�level correction

For a review of the AMG development� see �
��


This paper refers to the �distributed memory� parallelization of the variant of �classi�

	



cal� AMG introduced in ���
 For important classes of problems posed on large unstructured
grids� this approach has proved to combine the asymptotic optimality features of geometric
multigrid �h�independent convergence� with the advantages of easy�to�use plug�in solvers
in a way which made it highly interesting for an industrial use�
 Typical target applica�
tions are symmetric positive de�nite �s
p
d
� systems of equations corresponding to scalar
second order elliptic PDEs� discretized by means of �nite di�erences or �nite volumes

In the industrial context� the major strengths of AMG are its robustness �for instance�
w
r
t
 anisotropies and jumping coe�cients� and its immediate applicability to unstruc�
tured grids� both in �D and �D
 Although the approach is being extended to cover also the
solution of certain systems of PDEs �e
g
 from elasticity�� major research is still ongoing
and much remains to be done to obtain an e�ciency and robustness comparable to the
case of scalar applications
 Therefore� this paper considers only the scalar case


In order to achieve best parallel performance� we stay as close as possible to the
sequential algorithm
 Unfortunately� a �direct� parallelization of AMG is� technically�
fairly complicated
 This is because the hierarchy of coarser levels and the corresponding
operators� constructed in a special setup phase� develop dynamically from one level to
the next
 Moreover� a �naive� parallelisation would� in general� require unpredictable and
highly complex communication patterns which seriously limit the achievable scalability�
in particular of the costly setup phase
 Algorithmical modi�cations are required to limit
the communication cost without sacri�cing convergence signi�cantly
 Finally� AMG�s
coarsening strategy is inherently sequential and has to be replaced by a reasonable parallel
analog �in the context of the original AMG� this has been discussed in �	��


For completeness� we want to point out that some AMG approaches allow a simpler
parallelization
 Such simpli�cations� however� are either at the expense of a sub�optimal
performance of the respective sequential algorithm �e
g
 non�smoothed aggregation�based
AMG ���� or at the expense of a restricted generality �e
g
 by introducing geometry in
order to limit the complexity of the coarser AMG levels�


In Section �� we �rst give a summary of the sequential AMG to an extent necessary
for the remainder of this paper
 Section � contains general remarks on the parallelisation
�which is analogous to that of geometric multigrid� and points out some critical aspects

In Section 	 we propose a relatively simple way of parallelization� aiming at a minimization
of communication� in particular in AMG�s setup phase
 Although the proposed modi��
cations involve the risk of in�uencing the behavior of the parallel code compared to its
sequential analog �e
g
 in terms of convergence speed�� for relevant applications of signif�
icant size� this in�uence turned out to be very low
 This is demonstrated in Section ��
where some characteristic results for complex �D industrial test cases are presented �from
CFD and oil�reservoir simulation�
 It is seen that the parallel approach scales reasonably
well on distributed memory computers as long as the number of variables per processor is
su�ciently large �some ������ to ������ variables� say�


Throughout this paper� we assume the reader to have some basic understanding of
AMG as well as of the parallelization of standard geometric multigrid
 For details on the
particular AMG approach considered in this paper� we refer to ��� 
��


�This development has partly been funded by Computational Dynamics Ltd�� London� which also
provided most CFD test cases considered in this paper� The largest test case �full Mercedes�Benz E�Class
model� has been provided by Daimler�Chrysler�
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� Summary of sequential AMG

Structurally� an AMG cycle to solve a �sparse� s
p
d
 system of equations�

A���u��� � f ��� or
X
j���

a
���
ij u

���
j � f

���
i �i � �� � f
� �� ���� ng� � �
�

is completely analogous to a Galerkin�based geometric multigrid cycle
 The only formal
di�erence is that� in the context of AMG� we are not �necessarily� dealing with grids and
subgrids but rather with sets of variables and subsets of variables �represented by their
respective indices�
 That is� given some nested sequence

�� � �� � � � � � �� � � � � � �L

and related �full rank� interpolation operators I���� �� � 
� �� ����� L� 
�� we de�ne the
coarse�level correction operators by

A����� � I���
�

A���I���� where I���
�

� �I�����
T �

In contrast to geometric multigrid� AMG�s coarsening process �i
e
 the recursive construc�
tion of ���� and I����� is fully automatic� in the simplest case based merely on algebraic

information contained in A��� such as size and sign of its entries
 Once these components
have been constructed in a separate setup phase� normal multigrid cycling can be per�
formed to iteratively solve �
�
 If all components are chosen properly� smoothing by plain
Gauss�Seidel relaxation is su�cient� even if the given problem exhibits strong anisotropies
or jumping coe�cients


In the following section� we summarize the main aspects of AMG�s setup to an extent
which is necessary in the context of this paper
 For more details� we refer to ��� 
��


��� The setup phase

Assuming �� and A��� to be known� we �rst construct a C�F�splitting� �� � C� � F ��
with C� representing those variables which are to be contained in the next coarser level
�C�variables� and F � being the complementary set �F�variables�
 Setting ���� � C�� we
then de�ne interpolation e��� � I����e

����� of the form

e
���
i �

�
I����e

�����
�
i

�

��
�

e
�����
i if i � C�

P
k�P �

i

w
���
ik e

�����
k if i � F � �

���

Here P �
i � C� is called the set of interpolatory variables of level �
 �For simplicity� we

identify the index i � �� with the i�th variable on level �
�
Interpolation ��� can only be reasonable under two conditions
 First� P �

i should cor�
respond to a small subset of C�variables �near� i �to ensure sparsity of A������
 Second�
P �
i should represent �a su�cient number of� those variables on which i strongly depends

�or� is strongly connected to�
 This� in turn� imposes conditions on the C�F�splitting
 In
particular� it has to be such that there is a su�ciently strong F�to�C connectivity


Hence� a reasonable �problem�dependent� de�nition of strength of connectivity is the
basis of AMG�s coarsening strategy
 In practice� several ways of de�nition are considered
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For the purpose of this paper� we consider only the simplest one which is based directly
on the matrix entries of A���� a variable i � �� is called strongly connected to a variable

j � �� if a
���
ij is negative and if its absolute value exceeds a pre�scribed threshold
 Setting

S�
i � fj � �� � i strongly connected to jg �

we then have S�
i � N �

i where N �
i � fj � �� � j �� i� a

���
ij �� �g denotes the direct neighbor�

hood of i � ��

The following three properties then characterize the C�F�splitting �� � C� � F � used

by AMG �called standard coarsening��

Property �� The variables in C� are not strongly connected to each other
 That is�
for each pair i� j � C�� we have i �� S�

j and j �� S�
i 
 �We note that� generally� the

relation of being strongly connected is not symmetric
�

Property �� For each i � F � we have i � S�
j for �at least� one j � C�


Property �� C� is a maximal set with the previous two properties


Remark ��� For obvious reasons� we here exclude certain degenerated situations such as
the occurrence of isolated equations �e
g
 due to Dirichlet boundary conditions�
 Clearly�
variables corresponding to isolated equations should always become F�variables
 �

While Properties 
�� allow rapid coarsening� Property � limits this coarsening some�
what� aiming at C�F�distributions which are most suitable for constructing interpolation

Geometrically speaking� F�variables tend to be �surrounded� by strongly connected C�
variables �for an example� see Remark �
� below�
 However� while Property � is de�nitely
required to be satis�ed� it is neither necessary nor easily possible in general to exactly
satisfy Properties 
 and �
 Fast greedy�like algorithms can be used to provide practically
su�cient splittings
 For instance� the splitting algorithm proposed in ��� �� aims at locally
maximizing the number of strong F�to�C connections in each greedy step �rather than the
number of C�variables�


Once the splitting has been computed� interpolation ��� is de�ned based on the fact
that an algebraically smooth error �i
e
 an error which is slow to converge w
r
t
 the
smoothing process and� hence� has to be interpolated particularly well in order to ensure
good AMG convergence� approximately satis�es

e
���
i � �

� X
j�N �

i

a
���
ij e

���
j

�
�a

���
ii �i � ��� � ���

For any i � F �� the simplest interpolation is obtained by just replacing N �
i in ��� by

P �
i � S�

i � C� and using some rescaling to preserve row sums
 �Note that Property �
implies P �

i �� 	
� Since this interpolation is only via �direct� couplings� it is called direct
interpolation
 Generally� more robust AMG convergence is obtained by employing what is
called standard interpolation in ���
 This is de�ned similarly as the direct one� except that it
is not only based on ���� but also on the corresponding relations in the direct neighborhood
of i
 Another possibility of enhancing robustness is to apply Jacobi F�relaxation to the

�



direct interpolation
 In either case� compared to the direct interpolation� the �radius� of
interpolation increases
 We recall that� in order to be practical� such interpolation should
be truncated �before computing the Galerkin operator�� by ignoring small entries and
re�scaling the remaining weights so that their total sum remains unchanged


Remark ��� The importance of Property � is illustrated in Figure � which displays the
coarsening obtained for the Laplace ��point stencil




�h�

�
�
�
 �
 �

�
 � �

�
 �
 �


	


h

�	�

on a regular square grid
 Figure �a depicts the result obtained by standard coarsening
 In
particular� the resulting �direct� interpolation corresponds to linear interpolation �which
is known to be very e�cient in this model case�
 If� in contrast to Property �� we minimise
the number of C�variables� we obtain the coarsening as indicated in Figure �b
 The result�
ing interpolation is piecewise constant which is known to cause very slow �and problem
dependent� convergence
 �
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Figure �� a� Standard coarsening for the ��point stencil �	�
 b� Coarsening if the set of
C�variables is minimized rather than maximized
 The circles mark the C�variables
 The
arrows indicate from which C�variables an F�variable interpolates from


Remark ��� If memory is an issue �as it is often in commercial environments�� one may
wish to employ a more rapid coarsening at the expense of a reduced convergence speed
 A
simple way to achieve this is by applying the above splitting strategy a second time� now
restricted to the set of C�variables which resulted from the original splitting
 This just
requires strong connectivity between these C�variables to be reasonably de�ned� which
is most naturally done by considering connections via �paths of length two�
 Using such
aggressive coarsening� interpolation can most easily be performed in �at most three� passes�
for instance� in each pass either a direct interpolation is used or interpolation formulas
from previous passes are exploited� whatever is possible
 This type of interpolation is
called multi�pass interpolation
 �

�



��� Sequential performance

As an example� we consider the application of AMG to solve the pressure�correction equa�
tion which occurs as the most time�consuming part of the segregated solution approach
to solve the Navier�Stokes equations
 The discretization is based on �nite�volumes
 The
concrete application is the industrial computation of the exterior �ow over a complete
Mercedes�Benz E�Class model �see Figure ��
 The underlying mesh consists of 
� million
cells and is highly complex� in particular� it includes all the modelling details shown in
Figure 

 �Due to memory restrictions� our test runs refer to a reduced mesh consisting
of �
�� million cells
�

Figure �� Model of a Mercedes�Benz E�Class

For such large applications� low�memory AMG variants are of primary industrial inter�
est� even if the reduction of memory requirement is at the expense of a �limited� increase
of the computational time
 Compared to standard one�level solvers� a memory overhead
of some tens of percents is acceptable
 In any case� however� the operator complexity�

cA �
LX
���

jA���j�jA���j � ���

must not be larger than �
�� say
 �Here� jA���j denotes the number of non�zero entries
contained in A���
 Note that cA re�ects the �ll�in produced on the coarser levels and is
directly related to the overall memory requirement
� Consequently� we employ a coarsening
strategy which has turned out to be industrially most relevant for all our applications�
Standard coarsening and interpolation are used on all levels but the �rst one
 On the
�rst level� aggressive coarsening �combined with multi�pass interpolation� cf
 Remark �
��
is employed
 AMG�s coarsening is terminated when the coarsest level contains some 	�
variables
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Remark ��� Originally� classical AMG has been designed to be used stand�alone
 How�
ever� in practice� AMG�s e�ciency and robustness can substantially be further enhanced
by using it as a pre�conditioner rather than stand�alone
 This is true� in particular� in
connection with aggressive coarsening
 In this paper� we therefore always use AMG as a
pre�conditioner for conjugate gradient
 �For various comparisons of AMG used with and
without conjugate gradient� see ���
� �

AMG should not be regarded as a competitor of geometric multigrid but rather
as an e�cient alternative to popular one�level methods
 Therefore� Figure 	 compares
AMG�s V�cycle convergence history with that of ILU��� pre�conditioned conjugate gradi�
ent �ILU�cg�
 One step of plain Gauss�Seidel CF�relaxation �i
e
� C�variables are relaxed
�rst�� is used for pre� and post�smoothing on each AMG level
 The coarsest�level equations
are solved directly
 The results in the �gure refer to the solution of the pressure�correction
equation at one particular time step taken from a normal production run
 In order to
reduce the residual by nine orders of magnitude� AMG and ILU�cg require �� and 

�

iterations� respectively
 In terms of total computational time� AMG is about 
� times
faster
 �This corresponds to the fact that� roughly� one AMG iteration costs about the
same as two ILU�cg iterations and AMG�s setup cost amounts to the cost of about � AMG
iterations
� The operator complexity ��� is very satisfactory too� namely� cA � 
�	�
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Figure 	� Convergence histories of AMG and ILU�cg in terms of a� the residual� b� the
error �both measured in the ���norm�

The above results re�ect the typical performance of AMG in geometrically complex
applications of the type and size considered here
 Since AMG�s convergence is virtually
independent of the problem size� compared to standard one�level methods� the gain by
employing AMG signi�cantly grows with increasing problem size
 This is con�rmed by
extensive comparisons as found� for example� in ��� 
��
 These comparisons include also ap�
plications which exhibit strong anisotropies and jumping coe�cients such as those arizing
in oil reservoir simulation or in electromagnetics
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Remark ��� Particularly in steady�state computations� the pressure�correction equation
usually needs to be solved only with a low accuracy of only one digit� say
 One might
expect that then the use of AMG is an �overkill� �in particular� because of the high setup
cost involved� and simple one�level methods would become more e�cient
 Indeed� this
seems to be true if one looks at the convergence histories depicted in Figure 	a� Only very
few ILU�cg iterations are required to reduce the residual by one digit


Generally� however� one has to be very careful in drawing conclusions from small
residual reductions to corresponding reductions in the error
 Indeed� if one compares
AMG with ILU�cg on the basis of error rather than residual reductions� the picture looks
completely di�erent� see Figure 	b
 In fact� while AMG needs only � iterations to reduce
the error by one digit� ILU�cg requires about 	�� iterations
 Consequently� according to
the above mentioned rough estimate of the computational cost of AMG versus ILU�cg�
AMG is approximately �� times faster than ILU�cg in reducing the error by one digit

That is� the bene�t of using AMG is even higher than before This advantageous behavior
of AMG in terms of error reduction is related to its property to globally reduce errors much
more e�ectively than any one�level method does


Nevertheless� in computing low�accuracy approximations� AMG�s setup cost becomes
quite substantial in the sense that most of AMG�s total computing time may be spent
during setup
 Incidentally� however� in situations requiring only low accuray computations�
typically chains of �often many hundreds or thousands of� problems have to be solved for
which the underlying matrices usually change only slowly from one step to the next

Consequently� for many steps� the complete setup can be �frozen� �or updated by just
re�computing the Galerkin operators� which enhances the e�ciency of AMG further
 �

� General parallelization approach

Analogous to geometric multigrid� our parallelization approach is based on a partitioning
of variables
 That is� given P processors� we will �disjointly� distribute the variables ��

on each of the recursively constructed AMG levels across these processors �except for the
very coarse levels� see Section �
���

�� �
P�
p��

��
p �

where ��
p denotes the subset of variables assigned to processor p
 Accordingly� all �com�

plete� rows of A��� and I���� belonging to i � ��
p are assigned to processor p
 We denote

the corresponding sets of matrix rows by A����p� and I�����p�� respectively
 For � � 
� we
assume a reasonable load�balanced partitioning to be provided by the user �e
g
 based on
one of the available partitioning tool such as Metis�
 For � � 
� we assign all variables to
the same processor to which their �nest�level analog had been assigned�

��
p � ��

p � �� � ���

During AMG�s setup phase� we assume that the C�F�splittings �� � C� � F � are
recursively performed in parallel� that is� each processor p constructs

��
p � C�

p � F �
p ���







independently of the other processors �see Section �

�
 All rows of I�����p� and A������p� are
then exclusively assembled �and stored� by processor p
 During AMG�s solution phase� we
proceed as in standard geometric multigrid assuming that processor p needs access only to
such data of a neighboring processor q which corresponds to variables inside the standard
overlap area �cf
 shaded area in Figure ��

���
q�p � fj � ��

q � a
���
ij �� � for some i � ��

pg � ���

Note that ���
q�p is the algebraic analog of a geometric overlap of �width 
�
 Below� we

also refer to overlap areas of width � or more
 The meaning of these terms is obvious


Remark ��� Clearly� the �static� coarse�level partitioning ��� is a source of potential
load imbalance
 First� AMG�s coarsening strategy does not ensure that ��

p contains ap�
proximately the same number of variables for each p
 Second� the total arithmetic load on
level �� roughly given by jA����p�j� can vary among the di�erent processors� The Galerkin
matrices� though sparse on the average� generally have sparsity patterns which may change
substantially between variables
 A load balance optimization on level � would require a
re�mapping of data
 However� for all industrially relevant applications considered so far�
very satisfactory parallel e�ciencies were obtained even without any particular optimiza�
tion
 In fact� the substantial communication overhead involved in a re�mapping would
�most probably� o�set the resulting gain
 �

An e�cient parallelization based on the above general approach requires certain mod�
i�cations to the sequential AMG
 Critical issues are brie�y discussed in the following


��� Critical issues regarding the setup phase

For the purpose of the following discussion� let us assume that each processor p in parallel
constructs its local splitting ��� based on Properties 
�� of Section �

� applied to ��

p rather

than ��
 Since this essentially means that all strong connections across processor interfaces
are ignored� the resulting global splitting will be di�erent from the one constructed by
sequential AMG
 Most importantly� due to the lack of �synchronization�� coarsening near
processor interfaces will be somewhat coincidental


However� standard interpolation is fairly insensitive to such modi�cations of the split�
ting since� in interpolating to a particular F�variable i� the neighborhood of i is also taken
into account
 In contrast to this� the simple direct interpolation may� in an unpredictable
manner� become one�sided near interfaces� resulting in a higher risk of a locally reduced
�accuracy� of interpolation
 For very regular model problems ! for which the sequential
AMG often tends to produce a �geometrically� optimal coarsening and interpolation !
this may indeed cause a reduced convergence speed
 In general� however� for geometri�
cally complex applications as we have in mind here �where interpolation is not optimal
anyway�� the dependence of convergence on the splitting near interfaces has been seen to
be fairly low� in particular� if AMG is used as a pre�conditioner �cf
 Remark �
	�


After having �nished its splitting� processor p can� in principle� assemble I�����p� and

A������p� completely in parallel
 However� quite some communication is required �for an
illustration of the situation� see Figure ��
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Figure �� Illustration of �direct� interpolation and coarse�level couplings near processor
interfaces
 C� and F�variables are marked by circles and asterisks� respectivly
 The shaded
areas denote the standard overlaps of processor p and q


The assembling of I�����p� is easy if only direct interpolation is to be used since processor
p then just needs to additionally know the C�F�distribution inside all of its overlap areas
���

q�p
 However� standard interpolation would require the additional knowledge of all rows

of A����q� belonging to variables in the overlap areas ���
q�p and of the C�F�distribution

of variables inside corresponding overlap areas of width �
 The situation gets consider�
ably more involved if multi�pass interpolation or F�relaxation of interpolation are to be
used
 The �nal interpolation is then de�ned in stages and� after each stage� intermediate
interpolation rows� belonging to variables near the processor interfaces� have to be ex�
changed between neighboring processors
 The �nal interpolation formulas near interfaces
may deeply penetrate into the area of neighboring processors


Once I�����p� has been assembled� the computation of A������p� requires further addi�
tional information from the neighboring processors q
 The required amount of information
may become substantial� even if interpolation is based only on direct connections
 In the
latter case� one easily con�rms that� �rst� processor p needs to know all rows of A����q�
which belong to variables in the overlap areas ���

q�p
 Second� interpolation rows of I�����q�

need to be known for all i � F �
q in an overlap area of width �
 Finally� the C�F�distribution

has to be known even within an overlap area of width �
 The computation of A������p�
gets even much more complicated if the interpolation is based on one of the more robust
approaches� rows of A����q� and I�����q� have to be communicated to processor p within
several layers of overlaps


Even without going into more detail� it becomes clear that the communication involved
in computing I�����p� and A������p�� in general� may become unacceptably high� causing
a fairly limited scalability of the setup phase
 A reasonable scalability of this phase�
however� is highly important since its share of the total solution cost is signi�cant� on serial
computers� the setup cost typically amounts to the cost of several AMG cycles
 The goal
of the modi�cations introduced in Section 	 is to drastically reduce this communication
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��� Critical issues regarding the solution phase

As mentioned before� smoothing is done by Gauss�Seidel CF�relaxation
 In the parallel
context� each processor performs CF�relaxation independently of the other processors�
using frozen values in the overlap areas ���
 By an exchange of data� the overlap areas are
refreshed after each partial step of relaxation
 In practice� this change of the smoothing
process has no essential e�ect on the overall convergence


The remaing parts of an AMG cycle can be performed in parallel just like in geometric
multigrid
 However� apart from the fact that ���

q�p typically represents fairly complicated
irregular sets of variables� interpolation and restriction generally need their own overlap
areas
 For instance� in order to perform interpolation� processor p needs to know all
corrections inside the overlap areas �C�

q�p � C�
q � de�ned as

�C�
q�p � fk � C�

q � w���
ik

�� � for some i � F �
pg �

Similarly� the �ne�to�coarse residual transfer requires the residuals to be known in a third
kind of overlap�

�F �
q�p � fi � F �

q � w
���
ik

�� � for some k � C�
pg �

Finally� all non�zero weights w
���
ik �i � �F �

q�p� k � C�
p� have to be known to processor p


The most simple way to restrict communications in a cycle to data exchanges via the
standard overlaps ���

q�p only �as requested at the beginning of this Section ��� is by not
interpolating across processor interfaces �see Section 	�


��� Agglomeration on the coarsest levels

A reasonable treatment of the coarsest AMG levels is of particular importance
 In parallel
geometric multigrid� applied to relatively simple grids� one usually either stops coarsen�
ing whenever the number of variables per processor becomes too small �and uses some
iterative method to approximately solve the corresponding correction equations� or one
continues coarsening� allowing an increasing number of processors to become idle
 Al�
though� in principle� we can proceed similarly in parallel AMG� this is not necessarily the
best strategy


Generally� towards coarser levels� the parallel splitting causes a slower reduction of the
number of variables than its sequential analog
 This is particularly true for the modi��
cations proposed in our �nal parallel splitting algorithm �see Section 	� which enforces a
slower reduction of variables near processor interfaces
 Consequently� at a certain coarse
level ��� it usually becomes ine�cient to continue parallel coarsening involving all pro�
cessors
 Instead� it is generally more e�cient to perform some agglomeration process for
� 
 ��
 That is� coarsening continues� but more and more �neighboring� subdomains are
joined and treated by fewer and fewer processors
 If only one processor is left� we solve
the respective equations by either a direct solver or by sequential AMG
 Note that the
selection of �� is crucial
 If agglomeration starts too early� the resulting coarse�level load
imbalance may substantially in�uence the overall load balance� if it starts too late� the
work on the coarsest levels may become unnecessarily high
 A reasonable switching crite�
rion has to be based on a comparison of the interior work load of the processors with that
near their interfaces



	



To simply stop coarsening at level �� �rather than explicitly performing agglomeration�
is no real alternative� although the number of variables per processor will typically be
relatively small �some ������ say�� the total number of variables will still be fairly large
 In
complex applications� the convergence properties of parallel versions of standard iterative
methods �e
g
 based on relaxation or ILU�cg� to approximately solve the level �� correction
equations� are hardly predictable
 It well happens that the e�ort invested on level �� �with
a particularly bad computation�communication ratio� becomes a substantial fraction of
the total work per cycle� substantially reducing the parallel e�ciency


� Parallelization by subdomain blocking

In order to reduce communication� we have to prevent the recursively de�ned interpola�
tion operators ! and through this the Galerkin operators ! from penetrating deeply into
neighboring processor areas
 Formally� this can easily be achieved by suitably modifying
the way of coarsening and interpolation near processor interfaces and leaving the rest of
AMG essentially unchanged
 Clearly� for a modi�cation to be practical� it should not
seriously a�ect convergence
 Equally important� the operator complexity ��� should be
comparable in the sequential and the parallel algorithm


��� Full subdomain blocking

In the most radical approach� we recursively force all variables near processor interfaces
to become C�variables ��full subdomain blocking��
 To be more speci�c� we de�ne the
boundary layer and the interior of processor p on level � by

���
p � fi � ��

p � a
���
ij �� � for some j � ��

q� q �� pg �
�
q ��p

���
p�q and

�

��
p � ��

p n ���
p �

respectively
 Using this notation� processor p de�nes its local splitting ��� independently
of the other processors in two steps �cf
 Figure �a��

Step �� All boundary layer variables i � ���
p are forced to become C�variables


Step �� A C�F�splitting process� based on properties analogous to Properties 
�� in

Section �

� is applied to
�

��
p
 More precisely� the �nal splitting ��� should satisfy

Property �� The variables in
�

��
p � C�

p are not strongly connected to each other


Moreover� variables i �
�

��
p � C�

p and j � ���
p � C�

p are not strongly connected to
each other


Property �� Each i �
�

��
p � F �

p is strongly connected to �at least� one j � C�
p


Property ��
�

��
p � C�

p is a maximal set with the previous two properties


Remark ��� According to Property 
� adjacent to the boundary layer of each processor�
there will be a strip consisting only of F�variables �cf
 dashed line in Figure �a�
 �


�



Remark ��� If requested� the resulting set of interior C�variables�
�

��
p � C�

p� can a poste�
riori be reduced by means of aggressive coarsening
 This is completely analogous to the
sequential AMG �see Remark �
��
 �

Using full subdomain blocking� all interpolation approaches mentioned in Section �


become local to each processor and� trivially� the assembling of I�����p� requires no commu�
nication
 Obviously� the Galerkin operators do not penetrate into the area of neighboring
processors and the assembling of A������p� does not require any communication either
 In
fact� all boundary layers stay the same on each level� �����

p � ���
p� and all cross�processor

couplings remain unchanged� a
�����
ij � a

���
ij for all i � ���

p and j � ���
q if p �� q


The main advantage of the full blocking approach is its simplicity
 First� as pointed
out above� essentially no communication is required in the setup phase �except� of course�
for the agglomeration process� see Section �
��
 Second� data exchanges during AMG�s
solution phase need to be performed only via the standard overlap areas ���

q�p as requested
at the beginning of Section �
 Moreover� for applications as considered in this paper� the
parallel code typically converges faster than its sequential analog
 Heuristically� this is
because the number of C�variables used is much larger in the parallel code
 Nevertheless�
there are serious drawbacks which� generally� make the full blocking approach impractical


First� since the overlap areas are the same on all levels� the amount of data which has to
be communicated during the solution phase� does not decrease for increasing �
 However�
since the total number of levels depends only logarithmically on the number of �ne�level
variables� this by itself might still be acceptable in practice
 Second� and much more
importantly� the operator complexity ��� strongly increases compared to the sequential
AMG
 This is for two reasons� On the one hand� due to the slower coarsening near
processor interfaces� the coarse�level Galerkin matrices contain substantially more rows

On the other hand� the number of non�vanishing entries in matrix rows corresponding to
variables inside the boundary layers grows dramatically with increasing �


What the latter really means in terms of an increase of the average �ll�in� to some
extent depends on the concrete geometrical situation� in particular the shape and size
of the processor interfaces
 To illustrate this� Figure � depicts the size of jA���j as a
function of � for the sequential AMG and its parallel analog on � processors� based on full
subdomain blocking
 The top �gure refers to the cooling jacket of a four�cylinder engine

Compared to the sequential code� jA���j is reduced much slower for increasing �� for � 
 	
the matrix size does hardly decrease further
 However� this geometry still represents a
relatively good case since the use of a standard mesh partitioning tool �such as Metis�
here typically results in relatively simple and small processor interfaces
 A much more
complex case is shown in the bottom part of Figure �
 Here� for � 
 � the matrix size is
even slightly increasing 

Remark ��� Figure � refers to the case that no agglomeration is assumed to be per�
formed
 In practice� however� we perform successive agglomeration as soon as the interior
work load becomes comparable to the work load in the boundary layer �see Section �
��

This substantially reduces the negative e�ects of full domain blocking� After an agglom�
eration of the area of neighboring processors to a smaller number of processors� many
variables which have been boundary layer variables before� are now interior variables and
further coarsening becomes e�ective
 In cases such as the cooling jacket� we indeed obtain


�



1 2 3 4 5 6
level

102

103

104

105

106

#
m

at
ri

x
en

tr
ie

s Full Blocking

Minimum
Blocking

sequential

1 2 3 4 5 6
level

103

104

105

106

107

#
m

at
ri

x
en

tr
ie

s

Full Blocking

sequential

Minimum
Blocking

Figure �� Global matrix size jA���j as a function of levels �without agglomeration on �
processors�
 Top� Cooling jacket of a four�cylinder engine �
������ mesh cells�
 Bottom�

Coal furnace model �������� mesh cells�� only some particular part is shown here


a reasonably e�cient method this way
 Geometrically more complex cases� however� would
generally require agglomeration to start too early �in the coal furnace case already at level
� �� causing an unacceptably high load imbalance
 �

��� Minimum subdomain blocking

We can essentially maintain the simplicity of the previous parallelization approach even
without forcing all boundary layer variables to stay in the coarse levels
 In fact� we just
need to restrict interpolation at boundary layer variables to be performed strictly from
within that layer ��minimum subdomain blocking��
 More speci�cally� we use the same


�



parallel C�F�splitting process as before except that Step 
 is replaced by

Step ��� Split the boundary layer into C� and F�variables based on Properties 
�� in
Section �

� applied to ���

p �rather than ��� in a straightforward way


Remark ��� This splitting ensures that each boundary layer F�variable has �at least�
one strong connection to a boundary layer C�variable
 Consequently� boundary layer
variables which do not have any strong connections inside this layer� will become C�
variables
 In particular� if a boundary layer is in the direction of weak connectivity in a
strongly anisotropic problem� the boundary layer will �and should� not be coarsened
 �

Remark ��� As in the full blocking case� the set of interior C�variables�
�

��
p � C�

p� can a
posteriori be reduced by means of aggressive coarsening
 In principle� aggressive coarsening
might also be used inside each boundary layer
 In this paper� however� we only consider
standard coarsening of boundary layers
 �

Using minimum subdomain blocking� the parallelization of the remaining parts of AMG
becomes similarly straightforward as before if we restrict interpolation near processor
interfaces so that it has the following properties �for an illustration� see Figure �b��



 Each boundary layer F�variable i � ���
p � F �

p interpolates only from bounday layer

C�variables j � ���
p � C�

p �cf
 Remark 	
	�


�
 Each interior F�variable i �
�

��
p�F

�
p interpolates only from local C�variables� j � C�

p
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Figure �� Illustration of parallel coarsening by a� full b� minimum subdomain blocking

The notation is as in Figure �


By slightly modifying the general approaches of how to de�ne interpolation �summa�
rized in Section �

 and described in detail in ����� the above properties can easily be
satis�ed
 In the following� we assume this to be realised in the most straightforward way

For instance� in setting up the boundary layer interpolation� we simply take only strong
connections inside each boundary layer into account� all �cross�connections� �i
e
 all con�
nections to variables outside the boundary layer� are considered as weak
 Interpolation


�



I�����p� then is not only completely local to processor p but its assembling does also not
require any communication
 In Section �� we will see that� for geometrically complex
applications� these modi�cations of interpolation have only a low in�uence on AMG�s
convergence


The main practical consequence of the above two properties of interpolation is that
the Galerkin operator A����� does not penetrate into the interior area of neighboring
processors
 In fact� the boundary layers are nested� �����

p � ���
p
 However� unlike before�

the explicit assembling of A������p� now requires some communication� namely� processor
p needs to know the interpolation formulas of all neighboring processors q belonging to
variables in ��

q�p�F
�
q 
 Apart from this� no communication is required in the parallel setup

phase
 As in the case of full blocking� AMG�s solution phase only requires the typical
multigrid communication via the standard overlaps ���

q�p

Summarizing� the parallelization by minimum blocking is still fairly simple
 Compared

to the full blocking approach� some limited communication is required in the setup phase

On the other hand� the amount of data to be communicated in the solution phase is
substantially lower
 Most importantly� however� the �global� operator complexity cA is
dramatically reduced
 A comparison between the full and the minimum blocking approach�
as typically observed in our applications� is depicted in Figure �
 We recall that the �gure
refers to the case that no agglomeration is done on coarser levels �see Remark 	
��
 In
practice� however� we always do perform agglomeration which reduces cA even further


� Results

In this section we apply parallel AMG� based on minimum subdomain blocking� to some
industrial test cases �using partitionings based on Metis�
 Comparisons are made with
the most relevant sequential AMG strategy as described in Section �
�
 The parallel
strategy is analogous� except that no aggressive coarsening is performed inside boundary
layers
 Agglomeration is performed by joining areas of pairs of neighboring processors
 For
interpreting the below results� we brie�y summarize the potential reasons for a limitation of
the parallel e�ciency
 �We here do not mention well�known limitations which are common
to all multi�level approaches� for instance� caused by bad computation�communication
ratios on coarser levels
�

� Reduced convergence� Due to the simpli�ed boundary layer interpolation� the
number of parallel iterations may depend on the number of processors as well as the
concrete partitioning
 However� for all test cases and within the processor ranges
used �up to �	�� the number of iterations increased �at most� by 
����" only


� Increased computational work� For a �xed problem and increasing P � the
�global� operator complexity ��� moderately increases
 This is mainly because we
do not perform aggressive coarsening in the boundary layers �see above� and the
Galerkin matrix rows corresponding to variables near processor interfaces have a
tendency to be less sparse than the average
 This increase has turned out to be not
signi�cant as long as the given application is reasonably large �see below�


� Load imbalance� A �rst source of load imbalance is the simple partitioning we
use on the coarser levels �see Remark �

�
 Second� on the coarsest levels� a sub�
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stantial load imbalance is introduced by the agglomeration process �see Section
�
��
 Whether or not this will cause a signi�cant overall load imbalance� essentially
depends on the level where agglomeration actually starts in a given application

Clearly� for a �xed mesh� agglomeration will start the earlier� the more processors
are employed
 In any case� agglomeration will �rst a�ect the parallel e�ciency of
the setup phase
 This is because the setup phase requires a re�distribution of com�
plete �relatively dense� matrices on the respective levels
 In contrast to this� cycling
requires only a re�distribution of vectors �solution and right hand sides�


In practice� load imbalance turns out to be the most crucial aspect in terms of limiting
the parallel performance
 But even without optimizing load balancing in any way� very
satisfactory parallel e�ciencies are obtained if the problem size per processor is su�ciently
large
 Depending on the geometrical complexity and size of the processor interfaces� the
number of variables per processor should be about ������ to ������ in order to achieve
parallel e�ciencies of approximately ��" or more
 In an industrial context� this is a very
reasonable requirement


Figures � and � display typical speedup curves obtained for three complex �D meshes of
�xed size used in industrial CFD simulation �cf
 Section �
��
 Results are given separately
for the setup phase� single cycles and total run time �the latter includes a potential increase
of the number of iterations compared to the sequential AMG�
 In all cases� a residual
reduction by � orders of magnitude is required
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Figure �� Speedups obtained on PC cluster� a� Coal Furnace� b� Underhood

Figure � refers to a PC cluster� consisting of Pentium II processors �	�� MHz�� inter�
connected via Myrinet
 Results are shown for a Coal Furnace and an Underhood model
�the geometries are displayed in Figures � and 
� respectively�� using up to �� processors

For the relatively small Coal Furnace case �������� cells�� the speedup per cycle is nearly


 on 
� processors
 The fact that the total speedup is somewhat lower �approximately
�� indicates that the total number of iterations has slightly increased compared to the

�We thank M� Griebel and his group for giving access to the PC cluster at the University of Bonn�

��



sequential AMG
 Relative to the cycle speedup� the setup phase also scales satisfactorily

The larger Underhood case ��
����� cells� behaves very similar except that there is a kink
in all speedup curves if P is increased from 
� to ��
 This is obviously caused by some
kind of change in the behavior of the interconnection network� This kink does not occur
on the NEC Cenju	� see Figure �a
 We point out that this test case has extremely complex
processor interfaces� much more complicated than the Coal Furnace case


In Section �
� we have discussed the performance of sequential AMG in case of a fairly
large and very complex test case� a complete E�Class Mercedes�Benz model ����� million
cells� see Figure ��
 The corresponding parallel results are shown in Figure �b
 We see
that for this large problem the parallel e�ciency still exceeds ��" on �	 processors
 �Note
that the speedup depicted here is relative to the 	�processor run
� For eight processors the
total speedup is even higher than the individual speedups� indicating that a lower number
of iterations is required on � than on 	 processors
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Figure �� Speedups obtained on NEC Cenju	� a� Underhood� b� E�Class

Practically more interesting than speedups are wall times
 Figure 
� shows correspond�
ing times for both the Underhood and the E�Class test cases
 In both cases� the PC cluster
performs best and is roughly twice as fast as the NEC Cenju	 �using standard compiler
options for optimization�
 Figure 
�b shows that the performance of the IBM SP� �thin
nodes� is somewhere in between
 Although a single SP� node is faster than a single node
of the Cenju	� there is a cross�over point of the total performance for �� processors
 This
indicates that the interconnection network of the Cenju	 is more advantageous for AMG


As a last test case� we consider a problem of the type typically solved in a commercial
oil reservoir simulation code
 Compared to CFD� geometries in oil reservoir simulation
are typically much simpler
 However� the underlying problems have strongly anisotropic
and discontinuous coe�cients
 Figure 
�a refers to a model with 


� million cells �the
coe�cients discontinuously change by 	 orders of magnitude in a fashion as outlined in
Figure 

��� using the same AMG approach as before
 We �rst observe that the cycle
speedup is very good� namely� approximately �� on �� processors
 The parallel e�ciency

�This test case has been provided by StreamSim Technologies� Inc�

�
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Figure 
�� Wall times for a� Underhood� b� E�Class test case

of the setup� however� drops if we increase P from 
� to ��
 This is essentially caused by the
agglomeration �more precisely� the related communication involved in the re�distribution
of data� which� as mentioned above� a�ects the parallel e�ciency of the setup earlier than
that of the cycle
 The total parallel e�ciency� however� is still ��
�"


One might expect that AMG without agglomeration �using an iterative solver on the
coarsest level instead� is more e�cient
 However� as already pointed out in Section �
��
this is not necessarily the case
 This is demonstrated in Figure 
�b where we iteratively
solve the coarsest�level equations by conjugate gradient� pre�conditioned by local sequential
AMG
 As expected� the parallel performance of the setup phase substantially increases

On the other hand� however� the performance of the cycle substantially decreases due to
the high computational and communication time spent on the coarsest level
 Altogether�
the total parallel e�ciency decreases


   

Figure 

� Distribution of permeability �coe�cients� as a function of space

��
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Figure 
�� Reservoir test case� a� with agglomeration� b� without agglomeration

� Conclusions

We have presented a relatively simple parallelization approach for the classical AMG
variant described in detail in ���
 One major goal of this approach was to minimize the
communication overhead involved in both the setup and the solution phase
 This has been
achieved by a modi�cation of AMG�s coarsening and interpolation strategies near processor
interfaces
 However� these modi�cations are at the expense of a potential dependence of
AMG�s convergence speed and the arithmetical work on the number of processors as well
as on the complexity of the processor interfaces


Practical experience has shown that these dependencies are fairly low if the problem
size per processor is reasonably large
 In fact� very satisfactory parallel e�ciencies have
been obtained for various complex industrial applications of relevant size
 This is in spite
of the fact that the current implementation does not take any optimization of the load
balance into account
 Indeed� two sources of load imbalance have been discussed which�
for a �xed problem size and a relatively large number of processors� limit the parallel
e�ciency
 This will be investigated further
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