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Abstract. In this paper, strategies for solving systems of partial differential equa-
tions by algebraic multigrid are discussed. In particular, a general framework for
so-called point-based approaches is outlined. Several applications from industrial
semiconductor process and device simulation have been investigated, and detailed
results for two industrially relevant devices are presented. It is shown that this
framework allows to construct robust and fast algebraic multigrid approaches even
for cases, where iterative one-level solvers of the type commonly used in such ap-
plications exhibit bad convergence or even fail.

1 Introduction

Classical algebraic multigrid (AMG) [1,2] is known to provide very efficient
and robust solvers or preconditioners for large classes of matrix problems,

Au = f ,

an important one being the class of (sparse) linear systems with matrices A
which are “close” to being M-matrices. Problems like this widely occur in con-
nection with discretized scalar elliptic partial differential equations (PDEs).
In such cases, classical AMG is very mature and can handle millions of vari-
ables much more efficiently than any one-level method. Since explicit infor-
mation on the geometry (such as grid data) is not needed, AMG is especially
suited for unstructured grids both in 2D and 3D. In fact, the coarsening pro-
cess is directly based on the connectivity pattern reflected by the matrix A,
and interpolation is constructed based on the matrix entries.

However, extensions of classical AMG are required to efficiently solve
systems of PDEs involving two or more scalar functions (called unknowns
in the following). This is because classical AMG realizes a variable-based
approach which does not distinguish between different unknowns. Unless the
coupling between different unknowns is very week, such an approach cannot
work efficiently for systems of PDEs where, in general, the corresponding
matrix A is far from being an M-matrix.

In the past, several ways to generalize AMG have been investigated, and
there is still an ongoing rapid development of new AMG and AMG-like ap-
proaches. For a review, we refer to [3]. However, there is no unique and best
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approach yet. In fact, many problems cannot be tackled at all yet. All ap-
proaches seem to have their range of applicability but all of them may fail to
be efficient in certain other applications. In this paper, the focus is on exten-
sions of AMG which are direct generalizations of the classical approach.

We first want to recall a rather popular AMG approach to solve systems
of PDEs, the so-called unknown-based approach, which is very similar to the
variable-based approach except that all unknowns are treated separately. To
be more specific, let us assume the variables to be ordered by unknowns, that
is, Au = f has the form



A[1,1] · · · A[1,nu]

...
. . .

...
A[nu,1] · · · A[nu,nu]






u[1]

...
u[nu]


 =



f[1]
...

f[nu]


 (1)

where nu > 1 denotes the number of unknowns of the given system of PDEs,
u[n] denotes the vector of variables corresponding to the n-th unknown, and
the matrices A[n,m] reflect the couplings between the n-th and the m-th un-
known. Using this notation, coarsening the set of variables which correspond
to the n-th unknown is strictly based on the connectivity structure reflected
by the submatrix A[n,n], and interpolation is based on the corresponding
matrix entries. In particular, interpolation to any variable i involves only
coarse-level variables corresponding to the same unknown as i. The Galerkin
matrices, however, are usually computed w.r.t. all unknowns.

This unknown-based approach has been proposed already in the very early
papers on AMG (see [1]). It is certainly the simplest approach for solving
PDE systems. By now a lot of experience has been gained with this approach
which, in practice, works quite efficiently for many applications. Compared
to the variable-based approach, the only additional information required is
information about the correspondence between variables and unknowns. The
unknown-based approach is mainly used for applications where the diagonal
matrix blocks A[n,n] are close to being M-matrices. The essential additional
condition for the approach to work is that smoothing the individual equations
is sufficient to cause the resulting error to be smooth separately for each
unknown. One advantage of this approach is that it can easily cope with
anisotropies which are different between the different unknowns. Another
advantage is that unknowns can virtually be distributed arbitrarily across
mesh points. However, this approach will become inefficient, for instance, if
the coupling between different unknowns is too strong.

In this paper, we focus on applications for which classical (variable-based)
AMG [1,2] and also the unknown-based approach do not work. In particular,
in Section 2, we outline a flexible framework for constructing new, “point-
based” AMG approaches to solve various types of PDE systems. In contrast to
the unknown-based approach, a point-based approach operates (i.e. coarsens
and interpolates) on the level of points rather than variables. Recent results
for industrial applications in semiconductor device simulation are presented in
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Section 3, showing that suitable point-based AMG approaches yield efficient
solution processes. These results are obtained by our code SAMG [4] which is
a generalization - based on the framework mentioned before - of the (scalar)
code RAMG described in detail in [2].

2 A General Framework for Point-Based Approaches

We talk about a point-based approach if, geometrically speaking, coarsening
takes place on the level of grid points (rather than variables as before). The
resulting hierarchy of grid points is then used for all unknowns, that is, each
unknown is associated with the same hierarchy. (Note that this is different
from the unknown-based approach where each unknown is associated with its
own hierarchy.) Clearly, for any point-based approach, AMG needs additional
information on the variable-to-point mapping. We assume corresponding in-
formation to be available to AMG.

Remark: Since we have the solution of PDEs in mind, we think of points
as being real physical (grid) points in space. However, we want to point
out that, from AMG’s point of view, it is not important whether “points”
really correspond to physical points. Instead, one may think of the nodes of a
graph representing the connectivity structure of A. Regarding a point-based
approach, it is only relevant for AMG to know whether there are “blocks”
of variables (corresponding to different unknowns) which may be treated
(coarsened and interpolated) simultaneously.

2.1 Primary Matrix

The framework which we propose allows for many different types of point-
based approaches, and it depends on the concrete class of applications which
of these possible approaches is meaningful. The idea which is common to
all these approaches is that the (point) coarsening (i.e. splitting) process is
performed based on some auxiliary (sparse) (np×np)-matrix P = (pkl), called
the primary matrix, with np denoting the number of points. The resulting
hierarchy of points is then assigned to all unknowns. For this process to make
sense, the primary matrix employed should reflect the physical connectivity
(the general structure as well as the strength of connections) of neighboring
variables reasonably well, simultaneously for all unknowns.

A special point-based approach, sometimes called “block approach”, has
already been introduced in the very early paper [1] and has been further
investigated, for instance, in [6]. To be more specific, we assume the variables
to be ordered pointwise, that is, Au = f has the form



A(1,1) · · · A(1,np)

...
. . .

...
A(np,1) · · · A(np,np)






u(1)

...
u(np)


 =



f(1)
...

f(np)


 , (2)
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where u(k) denotes the “block” of variables located at point k and the A(k,l)

represents the “block coupling” between u(k) and u(l). If all unknowns are
defined at all points, the A(k,l) are (nu × nu)-matrices. Generally, however,
they can be smaller and are not necessarily square.

Block coarsening corresponds to defining the primary matrix P by

pkl = −||A(k,l)|| (k �= l) and pkk = −
∑
l �=k

pkl (3)

with ||.|| denoting a suitable norm. Various different norms have been con-
sidered in practice, including the maximum, Schur and row sum norm. For
the applications considered in Section 3.2, the performance of the employed
point-based approach was not sensitively influenced by the concrete choice of
the norm. However, in general, it depends on the application (whether block
coarsening is meaningful and) which norm is most suitable.

Remark: In (3), pkk has been selected to enforce P to become weakly
diagonally dominant. Although this is very natural, it is not really necessary,
and there are other choices of pkk which may be advantageous. For instance,
the setting pkk = ||A(k,k)|| takes also the “size” of the diagonal blocks A(k,k)

into account. Sometimes this setting has advantages, for instance, if the ma-
trix P is not only used for the coarsening but also for constructing the inter-
polation (see next section). However, as far as we have seen for applications
of the type discussed in Section 3.2, the performance of the resulting AMG
approach does not sensitively depend on the concrete choice of pkk.

Depending on the type of application, there are many other possibilities
for defining a primary matrix. Often, this can be done automatically as part
of AMG’s setup phase. In other cases, it may be better to let the user of AMG
provide a reasonable matrix himself, based on his knowledge of the underlying
physics of the given problem. In all cases, a primary matrix can usually
be interpreted as describing the connectivity structure of some (auxiliary)
scalar primary unknown. Clearly, the primary unknown should represent the
connectivity structure of all “real” unknowns in the given system of PDEs
reasonably well.

For instance, in simple cases, one may select P = A[n,n] with n being one
of the unknowns of the given system of PDEs. Whether or not this makes
sense, depends on the application, in particular, whether the connectivity
structure of the n-th unknown is also representative for the other unknowns.
Another situation arises if the given problem is isotropic by nature, and
anisotropies of the corresponding discretized problem are only due to non-
uniform mesh spacings. In such cases, a simple primary matrix might be
given by a discretization of the Laplace operator. One can also imagine cases
where it makes sense to provide a primary matrix based on some natural
physical quantity for which there is no reasonable equation contained in the
original system of PDEs, an example being the pressure in the context of the
Navier-Stokes equations.



Algebraic Multigrid for Industrial Semiconductor Device Simulation 5

The original AMG did not exploit any geometric information on the given
problem. In many PDE applications, this unnecessarily limits the possibilities
for an efficient coarsening and interpolation. As a matter of fact, geometric
information such as the coordinates of grid points, is usually available and
can be exploited in AMG’s setup phase. Note that this does not restrict the
generality of the grid shape in any respect. If we assume coordinates to be
known, P can easily (and automatically) be defined based on distances of
points, leading to coarsening processes which are closely related to geometric
coarsening. The most simple definition would be

pkl = −1/δ2kl (k �= l) and pkk = −
∑
l �=k

pkl (4)

where δkl denotes the distance between points k and l.
Remark: Since P has to be sparse, only points in small neighborhoods -

corresponding to the non-zero pattern of A - are taken into account in (4).
Clearly, since (4) merely relies on distances, settings of this type are only

meaningful if anisotropies of the discrete problem are due to non-uniform
mesh spacings but not due to anisotropic properties of the continuous problem
itself. A coordinates-based P “mimics” a discrete Laplacian here (see above).

Reaction-diffusion systems occurring in semiconductor process simulation
have been investigated in [5] as an exemplary class of applications for which
the previous, geometrically oriented coarsening process leads to very efficient
point-based approaches. Such applications essentially correspond to a super-
position of a diffusion system and strong chemical reaction terms. It turns out
that the reaction terms are treated efficiently by the smoothing process, so
that AMG’s coarsening process should essentially be driven by the diffusion
part. Since the given matrix A involves both reaction and diffusion terms,
and since their influences cannot be separated on the matrix level any more,
a coarsening process based on (4) can be regarded as a way to “filter out”
the influence of the chemical reactions.

2.2 Interpolation

The main purpose of a primary matrix is the definition of an AMG hierarchy
in terms of a nested sequence of points. In addition to the (recursive) coars-
ening process, also interpolation operators have to be constructed recursively.
In practice, there are various possibilities to generalize the interpolation ap-
proaches used in classical AMG.

First, the use of block interpolation seems most natural, in particular, if
P is defined according to (3). That is, formulas to interpolate the error e(k)

at a point k are constructed by approximating the block equations

e(k) = −A−1
(k,k)

∑
l �=k

A(k,l)e(l) (5)
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in a way which is analogous to the classical, variable-wise approaches to define
the interpolation. This idea has already been outlined in [1]. In [6,7], direct
analoga of the classical direct and standard interpolation formulas (see [2])
are discussed.

Generally, direct analoga of the classical interpolation formulas (described
in [1,2]) are obtained by replacing scalar matrix entries by block-coupling
matrices A(k,l). All resulting formulas involve in particular inverses of (sums
of) block-coupling matrices. Since, in general, it cannot be assumed that
these inverses exist, such block interpolation formulas are not robust enough
without modification. One possibility to overcome this disadvantage is the
replacement of “critical inverses” by inverses of suitable regular diagonal
matrices.

In any case, however, the construction of a block interpolation is com-
putationally very expensive. In practice, much simpler types of interpolation
often lead to more efficient AMG processes. Thus, besides block interpola-
tions (with modification), we consider (variable-wise defined) interpolation
formulas which are either

– separate for each unknown (“u-interpolation”) or
– the same for each unknown (“s-interpolation”).

Typical ways to define the interpolation weights are based on entries in
the original matrix A, based on distances and/or positions of points, or based
on entries in the primary matrix P . We cannot go into further details here but
just want to mention that classical interpolation schemes, as described in [2],
such as direct, standard or multi-pass interpolation, can be generalized to this
setting in a straightforward way. Also the concept of aggressive coarsening
carries over. For more details, see [4].

Remark: To derive cheaper formulas, another possibility would be the re-
placement of all matrices A(k,l) by their diagonalsD(k,l) in block interpolation
schemes, as done in [6,7]. The emerging interpolations resemble variable-wise
defined formulas again.

3 Industrial Semiconductor Device Simulation

The general framework outlined in Section 2 formally allows the definition of
various concrete algorithms. It seems clear that there exists no unique AMG
procedure which will work satisfactorily for all systems of PDEs. Instead,
major work consists in developing concrete algorithms separately for certain
classes of industrial applications. In this section, we consider the application
of point-based AMG to semiconductor device simulation.

Semiconductor process and device simulation aim at the approximative
computation of the final shape and doping profile of a semiconductor device
and its electrodynamic behavior, respectively. Due to the complexity of the
models and grids used, industrial semiconductor simulation is increasingly
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recognized as an important and challenging area. Occurring PDE systems
include stress governing and reaction-diffusion equations in process simula-
tion and drift-diffusion equations in device simulation, all of which exhibit
different numerical difficulties. That straightforward unknown-based AMG is
suitable to speed up stress simulations has already been shown in [8]. For
reaction-diffusion and drift-diffusion equations, the situation is considerably
more complicated. For occurring matrices, classical iterative one-level solvers
converge only slowly or even break down, classical (variable-based) AMG usu-
ally diverges, and also straightforward unknown-based AMG is not sufficient
any more. In contrast to this, suitable point-based AMG approaches, accel-
erated by BiCGstab or GMRes, can cause remarkable speedups. For exem-
plary matrices arising from reaction-diffusion systems, this has already been
discussed in [5]. Also some promising preliminary results for drift-diffusion
systems have been presented there. In the following, we want to discuss the
application of point-based AMG approaches to drift-diffusion systems in more
detail.

3.1 Drift-Diffusion Systems

The most important results of a device simulation, at least from an engi-
neer’s point of view, are current-voltage characteristics (IV-characteristics)
of the device considered. IV-characteristics reflect the dependence of (global)
currents on voltages applied to contacts of the device. Currents can be com-
puted from the electrostatic potential ψ and the electron and hole carrier
concentrations n and p (which can be regarded as “intermediate” results of
a device simulation).

There exists an extended hierarchy of semiconductor models (see [9]),
ranging from quasi-hydrodynamic to kinetic and classical to quantum mod-
els. The simplest quasi-hydrodynamic model is the standard drift-diffusion
system. Compared to more involved models, this simple model might provide
less accurate local potentials and concentrations, but often predicts (cur-
rent densities and) global quantities sufficiently accurately with much less
computational effort. Because of this, the standard drift-diffusion system is
of highest relevance for industrial simulation and will be considered in the
following.

The Stationary Drift-Diffusion System. In an industrial environ-
ment, possible steady states of the devices sufficiently long after switching
processes are typically investigated. For this purpose, a stationary drift-
diffusion system consisting of so-called basic semiconductor equations has to
be solved for the electrostatic potential ψ and the electron and hole carrier
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concentrations n and p:

−∇ · (εΣ∇ψ) + q(n− p− C) = 0 Poisson(-type) equation, (6)
−∇ · Jn + qR(ψ, n, p) = 0 electron continuity equation, (7)
∇ · Jp + qR(ψ, n, p) = 0 hole continuity equation, (8)

where Jn and Jp are the electron and hole current densities, respectively,

Jn = −q(µnn∇ψ −Dn∇n) electron current relation, (9)
Jp = −q(µpp∇ψ +Dp∇p) hole current relation. (10)

εΣ denotes the permittivity, q the elementary charge, C = C(x) the net im-
purity concentration (i.e. the doping profile), R = Rp(ψ, n, p, ...) the recombi-
nation-generation term, µn = µn(x,∇ψ, ...) > 0 and µp = µp(x,∇ψ, ...) > 0
the electron and hole mobilities, respectively, Dn > 0 and Dp > 0 the
electron and hole diffusivities, respectively (for which Einstein’s relations
Dn = kBT

q µn and Dp = kBT
q µp are usually assumed to hold), kB the Boltz-

mann constant and T the device temperature. All of these quantities are
assumed to be given, in general as functions.

By inserting (9) and (10) into equations (7) and (8), respectively, and
multiplying the resulting equations by 1/q, we obtain the following second-
order (elliptic) partial differential equations for ψ, n and p:

−∇ · (εΣ∇ψ) + q(n− p− C) = 0 , (11)
−∇ · (Dn∇n− µnn∇ψ) +R = 0 , (12)
−∇ · (Dp∇p+ µpp∇ψ) +R = 0 . (13)

Generally, the complete simulation domain Λ ⊂ IR (d = 2 or 3) consists of
two parts, Λ = Σ ∪Ω. The first part, Σ, represents the union of all material
regions where the above described coupled system of stationary semiconduc-
tor equations holds. This is typically the case in the semiconductor regions
(often doped silicon, the wafer). The second part, Ω, is defined to be the
union of regions for which it is assumed that (nearly) no charge carrier cur-
rents can occur as, for instance, in insulating regions. In Ω, the above PDE
system (11)-(13) degenerates to the Laplace equation,

−∇ · (εΩ∇ψ) = 0 in Ω , (14)

where εΩ represents the permittivity of the corresponding material layers.
For example in case of a MOSFET (a metal oxide semiconductor field effect
transistor), Ω represents the gate oxide. Here, the interface between Σ and
Ω is the semiconductor/oxide-interface. Ω may also be empty, as in case of
a diode.

An n-domain (or n-doped region) is defined to be a subdomain of Σ in
which C(x) > 0 holds. Analogously, a p-domain (or p-doped region) is defined
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to be a subdomain in which C(x) < 0 holds. The interface between an n-
and an adjacent p-domain is called pn-junction. Such adjacent pn-domains,
forming local diodes, determine the modes of operation of a device to a large
extent.

The boundary of Λ can be split into two disjoint parts, ∂Λ = ∂Λp∪̇∂Λa.
∂Λp represents those parts of ∂Λ which correspond to real “physical” bound-
ary segments, i.e. interfaces to insulating material and contacts. ∂Λa consists
of artificial boundary segments, which are introduced, for example, to re-
duce the simulation domain and to obtain a “self-contained” device, i.e. to
separate it from adjacent devices, if it is embedded in an integrated circuit.
Different types of boundary and interface conditions are prescribed on dif-
ferent parts of ∂Λ and the interfaces between Σ and Ω, depending on the
physical properties of the neighboring material and the type of contacts (see
[10], for instance).

The simplified sketch in Fig. 1 illustrates the simulation domain Λ in case
of an n-MOSFET. In particular, Σ, Ω, the n-domains (source and drain),
the p-domain, the physical boundaries (i.e. the contacts to source and drain
and the gate contact) and interfaces to isolating material (other than Ω), the
artificial boundaries and the interface between Σ and Ω are shown.

Fig. 1. Simplified sketch of the simulation domain Λ in case of an n-MOSFET.
Depicted are Σ, Ω, the p-domain, the two n-domains (source and drain), isolating
material (grey) (other than the gate oxide Ω), the contacts (red) and the artificial
boundaries (green).



10 Tanja Clees, Klaus Stüben

Layer Behavior and Conditioning. A detailed description of the basic
semiconductor equations and their mathematical analysis can be found in [9–
11], for instance. We just want to summarize some critical aspects.

It is well-known that ψ, n and p are very different in magnitude and
show layer behavior. In order to analyze this behavior, one usually scales the
system (11) - (13) by so-called “singular perturbation scaling” factors (see
[11]). If we denote the scaled quantities by the same symbols as the original
ones, equations (12) and (13) keep their form but (11) transforms into

λ2∆ψ − (n− p− C) = 0 (15)

with λ2 being a very small constant. As a consequence, this formulation
reveals the singular perturbation character of the system. By a singular per-
turbation analysis, it can be shown that layers occur at pn-junctions, semi-
conductor/oxide interfaces and so-called Schottky contacts (in reconciliation
with physics and numerical results). Outside of these regions, ψ, n and p are
moderately varying functions.

A further analysis of (11) - (13) yields statements on the conditioning of
these three equations. At least for moderate applied bias (e.g. a moderately
large voltage applied to one of the contacts), the Poisson equation (11) is
well-conditioned with respect to ψ. The electron continuity equation (12)
(the hole continuity equation (13)) is well-conditioned with respect to n (p)
only if every n- and p-domain has a contact. However, if an n- or p-domain
has no contact (a so-called floating region), the continuity equation for the
majority carrier concentration of this region is ill-conditioned. The errors
might be amplified by a factor of O(λ−4) and, therefore, floating regions
can produce great numerical difficulties in computing carrier concentrations.
An industrially very important example for a floating region is the channel
domain in a device (e.g. a FinFET) fabricated by silicon-on-insulator (SOI)
technology. Since SOI is one of the standard technologies nowadays, such
problematic floating regions occur quite often in device simulation.

Discretization and Linearization. While the discretization of the
Poisson(-type) equation (11) is straightforward, the discretization of the con-
tinuity equations, which can be characterized as special diffusion-convection-
reaction equations, is crucial for an efficient solution of the drift-diffusion
system. In practice, the system is discretized by a box method (BM) on
(nearly perfect) Delaunay meshes. To gain stability, a special purpose dis-
cretization approach, the so-called Scharfetter-Gummel (SG) approach (see
also [11]), is used to discretize the continuity equations.

The SG-BM scheme can be outlined as follows. We start with the as-
sumption that, along mesh edges, the mobilities µn and µp are constant, and
the electrostatic potential ψ behaves as a linear function. Approximations
of Jn and Jp can then be obtained by solving a one-dimensional boundary
value problem. This leads to an exponentially fitted scheme for the current
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relations. The emerging approximations of the edge current densities are em-
ployed to obtain the final discretization of the continuity equations (for more
details on the SG-BM, see [12], for instance).

In commercial device simulators, the resulting highly nonlinear discrete
system is typically linearized by a (modified) Newton method yielding a “fully
coupled approach” regarding ψ, n, and p. As an alternative, the so-called
Gummel iteration decouples the treatment of the individual equations of
the full drift-diffusion system: one iteration step consists of solving Poisson’s
equation (11) for ψ, then solving the electron continuity equation (12) for n,
and finally the hole continuity equation (13) for p (see [10], for example).

Since the discretized and linearized systems inherit the layer behavior and
conditioning of the original equations, we have to expect layer behavior near
pn-junctions, Schottky contacts and semiconductor/oxide interfaces and ill-
conditioned continuity equations in floating regions. In spite of the fact that
the original system (11)-(13) is usually scaled by DeMari factors (see [10]),
ψ, n, p and their discrete analoga are still very different in magnitude.

Due to all these reasons, the arising drift-diffusion matrices are ill-condi-
tioned and often nearly singular even if the underlying problem is far away
from a possibly existing bifurcation point. As a consequence, this leads to
great difficulties in solving the sequence of matrix equations efficiently. Due
to this, the linear, iterative one-level solvers usually employed in industry
today, namely ILU- (or ILUT-)preconditioned CGS or BiCGstab, exhibit
an unsatisfactory performance in general. A promising possibility to obtain
more robust and more efficient methods is the investigation of hierarchical
approaches such as multigrid.

By now, linear multigrid methods have been developed only for solving
the three individual partial differential equations arising during a Gummel(-
type) iteration. The most difficult part there is the solution of discretized and
linearized continuity equations. For example, in [13], a geometric multigrid
method for this type of equation was investigated and successfully applied to
some examples on structured grids. In contrast to this, in this paper, we are
interested in the solution of the matrix equations occurring in the fully cou-
pled approach. This approach is typically used in modern (commercial) device
simulators because it is often more favorable than a Gummel(-type) iteration.
In summary, the matrices considered here arise from the fully coupled ap-
proach for drift-diffusion systems discretized by the SG-BM on unstructured
grids.

In the next section it is demonstrated that a robust and rapidly converging
point-based AMG method for the drift-diffusion matrices can be obtained
using the framework described in Section 2. It should be noted that, due
to our experience, classical (variable-based) [1,2] and unknown-based AMG
methods are not robust enough for this kind of matrices. They often diverge
and are therefore not discussed in the remainder of this paper.

Remark: In particular until the early nineties, the application of non-
linear geometric multigrid methods (full approximation schemes (FAS)) was
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investigated as a further approach to solve drift-diffusion systems (see the
references given in [13]). These approaches do not carry over in a straightfor-
ward way to the more sophisticated models and unstructured grids used in
modern commercial device simulators.

3.2 Numerical Results

According to the different modelling situations in the two parts Σ and Ω
of Λ, the finally resulting matrices, A, consist of two parts which are very
different by nature. On the one hand, the part AΩ of A which corresponds
to Laplace’s equation (on Ω) does not pose problems. Since the submatrix
describing the ψ-to-ψ couplings is an M-matrix, and there are only a few
couplings to n and p (namely across the interface to Σ), AΩ is especially
suited for AMG.

On the other hand, the system of PDEs given on Σ is tightly coupled. In
particular, the corresponding part AΣ of A is dominated by the couplings to
the potential ψ. To be more specific1, either the submatrix A[2,1] or A[3,1] (of
AΣ), depending on the majority carrier concentration, contains a significant
part of the largest couplings (measured by absolute value).

Because of this tight coupling between the different PDEs in Σ, unknown-
based AMG fails for such applications - although all diagonal block matrices
A[n,n] (n = 1, . . . , 3) are essentially M-matrices. Instead, it has turned out
that point-based AMG (used as a preconditioner for BiCGstab) leads to a
very robust approach if, for example, the following components are chosen:

– ILU(0) as the smoother,
– a primary matrix based on norms2 (3),
– an s-interpolation with weights being based on the entries of P .

Generally, to demonstrate the performance of AMG for a given device, it is
not sufficient to look at its performance in solving just a few selected linear
systems arising as part of a whole simulation. In fact, hundreds of linear sys-
tems have to be solved during a full simulation series, most of which have
different properties. Consequently, to obtain a clear picture of the perfor-
mance of AMG, one has to consider full simulation series.

In device simulators such a TAURUS [14], a simulation series for a given
device consists of many individual simulations of drift-diffusion systems which
differ, for example, in their respective boundary conditions. More precisely,
each simulation run starts with the zero bias step, a step in which all voltages
are set to zero. Afterwards, several bias ramps are applied to the device.
For instance, Fig. 7 shows the sequence of bias ramps applied in case of a

1 assuming the unknowns ψ, n and p to be numbered 1,2 and 3, respectively.
2 For all drift-diffusion systems tested by now, the performance of the resulting

approach was neither sensitively influenced by the concrete choice of the norm
nor the concrete choice of pkk (see Section 2.1).
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particular FinFET device: In the first 21 simulation steps (the first ramp),
the gate voltage is gradually increased from 0 to 1V, keeping the drain voltage
fixed at 0.05V. During the next 10 bias steps (the second ramp), the gate
voltage is fixed at 1V, and the drain voltage is increased step by step to a value
of 1V. For each individual simulation step (i.e. for each applied bias) of such
a series, a Newton process is employed to solve the discretized problem, and,
within each Newton step, a few matrix solves are necessary. Therefore, during
a whole simulation run, several hundred linear systems have to be solved. In
(commercial) simulators such as TAURUS, sophisticated control mechanisms
are integrated to detect and “repair” possibly occurring difficulties during
the linear and nonlinear iterations. In the worst case, this means a bias step
rejection and step size reduction.

In order to demonstrate the performance of AMG, we have replaced the
iterative linear TAURUS solver (an ILU-CGS method) by SAMG. To demon-
strate the effects of coarse-level corrections, we also compare the performance
of AMG with that of the corresponding one-level method, i.e. the smoother
ILU (both accelerated by BiCGstab).

Up to now, we have tested examples from several classes of industrially rel-
evant semiconductor devices, including a diode, “conventional” MOSFETs3,
STIs4, an EEPROM5, several FinFETs6 and a power bipolar transistor (for
general information about these devices, see [15,16], for instance).

In all these cases, the outlined AMG approach was able to solve the arising
matrix equations efficiently (see also [5]). In the following, we will present
detailed results for two exemplary cases, an EEPROM and a FinFET. Table
1 shows details on the concrete test cases and dimensions of the arising matrix
problems. The layout and doping profile of the FinFET example is depicted in
Fig. 2. The bias ramps for the EEPROM are depicted in Fig. 3, the ramps for
the FinFET in Fig. 7. Each of the remaining graphs shows results (discussed
below) for a simulation series. Note that the matrices arising during a full
simulation series are always numbered consecutively in these graphs.

Table 1. Details on the device examples (dim: spatial dimension, nΣ : number of
regions in Σ, nΩ : number of regions in Ω, np: number of points, nv: number of
variables, nA: number of stored matrix elements (nA ≥ number of non-zeroes)).

Example dim nΣ nΩ np nv nA

EEPROM 3D 1 9 10,493 15,415 310,361
FinFET 3D 2 5 69,092 97,530 1,443,940

3 metal oxide semiconductor field effect transistors.
4 shallow trench isolated transistors.
5 electrically erasable programmable read-only memory cell.
6 double-gate MOSFET structures in which a thin, fin-shaped body is straddled

by the gate forming two self-aligned channels that run along the sides of the fin.
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Fig. 2. FinFET example: layout and grid (left), doping profile of the wafer (right).
Courtesy of Synopsys Inc.

The FinFET case represents the simulation of a modern device on a mod-
erately large grid. Since a FinFET is fabricated on an SOI wafer, numerical
difficulties arise due to the occurring floating region. The EEPROM example,
which is rather small in terms of variables, was chosen because it exhibits an
additional difficulty: for bias ramp (6), the system is extended by one equation
(an algebraic condition) leading to a row with a zero diagonal. Such excep-
tional rows have to be treated separately during the AMG setup phase. Here,
the corresponding row was simply excluded from the coarsening process.

For the examples considered, it can be observed that the linear TAURUS
solver (ILU-CGS) does often not fulfill the prescribed convergence criterion
(i.e. a residual reduction of at least 10−3 within a maximum number of itera-
tions). This is depicted in Figs. 4 and 8 (a value above the yellow line means
a violation of the criterion, a value above the red line means divergence of
the linear solver for the current matrix). Especially in the EEPROM case,
the L2-norm of the last residual, denoted by ||re||2, is often more than 105

times larger than the first residual, ||r0||2.
In contrast to this, the AMG approach shows a stable and fast convergence

behavior for both examples. The convergence criterion is fulfilled in all cases,
and hence, instead of ||re||2/||r0||2, average residual reduction factors, ρ, are
depicted in Figs. 6 and 10. The average residual reduction factors are usually
lower than 0.5 and often much better, and less matrix solves were necessary
during the Newton steps (see Tables 2 and 3), especially in case of the larger
example, i.e. the FinFET.
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A comparison of AMG-BiCGstab with the corresponding one-level solver,
ILU-BiCGstab, demonstrates that this drastic improvement of robustness
and convergence speed is caused to a large extent by employing a hierar-
chy: In contrast to AMG-BiCGstab, ILU-BiCGstab exhibits average residual
reduction factors which are close to or sometimes even larger than 1 (diver-
gence). Additionally, ILU-BiCGstab needs (much) more matrix solves, even
more than ILU-CGS (see Tables 2 and 3).

Tables 2 and 3 also show timings for full simulation runs, including mesh-
ing and assembling of the matrices (the test character of the TAURUS in-
terface to SAMG leads to extra overhead for transfer of the matrix data to
SAMG). Whereas for the smaller EEPROM example the TAURUS solver is
considerably faster than AMG-BiCGstab, the efforts for employing the more
robust but a bit more expensive AMG approach are paid off for the larger
FinFET example.

One should point out that both test cases are still rather small - and
too small to demonstrate “real” advantages of AMG over one-level solvers
in terms of computational speed. However, since AMG clearly shows a very
robust behavior and fast convergence, it can be expected that for increasingly
larger problem sizes AMG will be increasingly more efficient than one-level
solvers.

Table 2. EEPROM example. Timings and number of necessary matrix solves.
“total” is the total wall-clock time in hours needed for the whole simulation run.
“SAMG” is the part of “total” which SAMG needed to solve the matrices.

approach � matrices total SAMG

TAURUS solver 538 2.38
AMG-BiCGstab 520 3.81 2.19
ILU-BiCGstab 560 4.31 2.56

Table 3. FinFET example. Timings and number of necessary matrix solves. De-
scription as for Table 2.

approach � matrices total SAMG

TAURUS solver 157 4.46
AMG-BiCGstab 100 4.27 3.25
ILU-BiCGstab 216 11.49 9.15



16 Tanja Clees, Klaus Stüben

4 Conclusions

AMG approaches for solving systems of PDEs were presented and discussed.
Especially a general framework for point-based approaches was described,
which employs a primary matrix to construct a point-based coarsening. Sev-
eral possibilities for selecting a primary matrix and for the computation of
the final interpolation weights were outlined. Recent results for applications
in semiconductor device simulation were presented, which demonstrate that
robust and rapidly converging point-based AMG methods can be obtained
using this framework. The tested point-based methods have the potential
to replace one-level preconditioners of the type commonly used in industrial
device simulators today.

Acknowledgement. The authors would like to thank Synopsys Inc. for
providing a test license of TAURUS with an interface to SAMG and the
examples mentioned.
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Fig. 3. EEPROM example. Bias steps.

Fig. 4. EEPROM example. Convergence results for TAURUS solver: Last residual,
||re||2 = ||Aue − f ||2, divided by first residual, ||r0||2 = ||Au0 − f ||2.
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Fig. 5. EEPROM example. Results for ILU-BiCGstab: Average residual reduction
factors, ρ.

Fig. 6. EEPROM example. Results for AMG-BiCGstab: Average residual reduction
factors, ρ.
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Fig. 7. FinFET example. Bias steps.

Fig. 8. FinFET example. Convergence results for TAURUS solver: Last residual,
||re||2 = ||Aue − f ||2, divided by first residual, ||r0||2 = ||Au0 − f ||2.
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Fig. 9. FinFET example. Results for ILU-BiCGstab: Average residual reduction
factors, ρ.

Fig. 10. FinFET example. Results for AMG-BiCGstab: Average residual reduction
factors, ρ.
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13. Fuhrmann, J., Gärtner, K.: Incomplete factorization and linear multigrid al-
gorithms for the semiconductor device equations. In: Beauwens, R., de Groen,
P. (eds.): Proceedings of the IMACS International Symposium on Iterative
Methods in Linear Algebra. Elsevier, Amsterdam (1992) 493–503

14. Taurus, Release 2001.4. Synopsys Inc., Mountainview, CA (2002)
15. Sze, S.M. (ed.): Modern Semiconductor Device Physics. Wiley, New York

Chichester (1998)
16. Huang, X., et al.: Sub-50 nm p-channel FinFET. IEEE Transactions on Elec-

tron Devices 48 (2001) 880–886


