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Vorwort des Institutsleiters

Die Simulation der Eigenschaften von Materialien und der Dynamik von Systemen spielt
fir die Industrie bei der Entwicklung neuer Prozesse und Produkte bereits heute eine ent-
scheidende und nach wie vor wachsende Rolle. Dies zeigt sich etwa in so unterschiedlichen
Bereichen wie der Mikrochip-Produktion, d@tférderung oder dem Flugzeugbau. Durch Si-
mulationen lassen sich zwar teure Experimente und Prototypen in der Regel nicliinebigjst
ersetzen, jedoch eiiglichen sie, prinzipielle Designentscheidungen schneller und sicherer
zu fallen und so Entwicklungszeit und -kosten zu reduzieren. Dies kann zu entscheidenden
Wettbewerbsvorteileritren.

Oftmals liegen stark gekoppelte Systeme patrtieller Differentialgleichungen (Systeme von
PDGiIn.) den Simulationen zu Grunde. Die bei ihrer numerisclisuhg auftretenden grof3en
dinnbesetzten Gleichungssysteme verbrauchafigiden gb3ten Teil der Gesamtrechenzeit
einer Simulation. Daher ist die Entwicklung schnelldgysker fir diese Gleichungssysteme
meist von gof3ter praktischer Bedeutung. Standaselr sind aber nicht effizient genuiy f
sehr groRe Matrizen. Ihr Rechenaufwand skaliértiele wichtige Anwendungen nicht mit
der Anzahl der Variablen des Gleichungssystems.

Fur viele in der Praxis relevante Problemklassen stellen algebraische Mehrgitterverfahren
(AMG) robuste und effizientskalierbarel 6ser (oder Vorkonditionierer) dar. Allerdings kann
AMG ohne umfassende Erweiterungen stark gekoppelte Systeme von PDGIn. nicht effizient
l6sen. fr viele wichtige Systeme von PDGIn. wurden bisher noch keine geeigneten AMG-
Verfahren entwickeltUberdies fehlte bisher eindser-Softwarepaket, welches industriellen
Anspiiichen geiigt.

Diese Dissertation liefert hierzu wichtige Béige. Sie entstand am Fraunhofer-Institut
fur Algorithmen und Wissenschaftliches Rechnen (SCAI) in der Abteilung “Numerische
Software” sowie am Mathematischen Institut der Univétsiti KbIn. Das Fraunhofer-Institut
SCAI zeichnet sich durch eirigher zwanzighhrige Expertise auf dem Gebiet der geometri-
schen und algebraischen Mehrgitterverfahren aus. Insbesondere wurde hier diffemste
lich verfugbare algebraische Mehrgitter-Software (AMG1R5) entwickelt, welche weltweit
verbreitet und - obwohHEngst veraltet und nichiif sehr grof3e Gleichungssysteme entwickelt
- auch heute noch tausendfach im Einsatz ist. Das Instituiterdies in den letzten Jahren
eine neue AMG-Software, diedserbibliothek “SAMG” entwickelt, welche ganz auf die An-
spiuche der Industrie ausgerichtet ist.

Ein Hauptbeitrag der vorliegenden Dissertation ist die Erweiterung von SAMG zur hoch-
effizienten numerischendsung praktisch relevanter, diskreter Systeme von PDGIn. Insbe-
sondere {ir drei wichtige Anwendungsklassen aus der industriellen Halbleitersimulation,
die groRe numerische Herausforderungen darstellen, werden effiziente AMG-Verfahren ent-
wickelt. Zwei der drei Klassen wurden bisher noch nicht erfolgreich mit AMG-Verfahren
behandelt. Dank der im Rahmen der Dissertation realisierten Erweiterungen ist SAMG be-
reits heute ifir viele Systeme von PDGIn. den industriellen Anforderungen gewachsen und
bei Kunden im Einsatz.

Ulrich Trottenberg






Abstract

The numerical solution of strongly coupled systems of partial differential equations (PDE
systems) is commonplace in many simulation codes. Typically, large sparse matrix equations
arise in the corresponding simulation runs. A serious bottleneck in performing realistic, large-
scale simulations is the speed by which these matrix equations can be solved. If they exceed a
certain size, they can no longer be solved efficiently with standard numerical solvers, simply
because these solvers are not scalable.

Classical algebraic multigrid (AMG) approaches are known to provide robust and ef-
ficient, scalablesolvers or preconditioners for large classes of matrices as those typically
arising fromscalar PDE systems. However, because classical AMG is based on a so-called
variable-based approach which does not distinguish between physical unknowns, extensions
of classical AMG are required to efficiently solsgstemsf PDEs. In general, many impor-
tant types of PDE systems have not been tackled by any AMG approach yet. Moreover, an
“AMG software” suitable for many industrially relevant problems has been missing so far.
This PhD thesis makes the following important contributions.

We develop a general AMG methodology which is suitable for important classes of indus-
trially relevant PDE systems. Our AMG methodology extends classical AMG by a straight-
forward unknown- and a particularly powerful point-based strategy. In particular, a general
concept for point-based approaches is introduced, which employs a primary matrix to con-
struct a point-based coarsening. Several possibilities for selecting a primary matrix and for
constructing the interpolation are discussed from a theoretical and, with special emphasis, a
practical point of view.

We realize our AMG methodology within the product-quality solver library SAMG. In
particular, we demonstrate that, in practice, all (accelerated) AMG approaches being part
of SAMG are scalable if applied to proper classes of applications. Memory requirements
are reasonable compared to the requirements of standard one-level preconditioners such as
ILU(0). SAMG can easily be plugged into existing simulation codes and provides a rich
environment allowing for many different AMG approaches.

We demonstrate the generality and flexibility of the proposed AMG methodology as well
as the efficiency of concrete SAMG approaches for a variety of PDE systems. In particu-
lar, three important classes of applications arising in industrial semiconductor process and
device simulation are discussed, namely stress analysis (linear elasticity problems), reaction-
diffusion and drift-diffusion simulation. Reaction-diffusion and, in particular, drift-diffusion
systems are numerically very challenging applications which have not been solved before by
any AMG approach. For each application, it is shown by means of both heuristical justifica-
tions as well as numerical results that SAMG allows to construct robust and efficient AMG
approaches even for cases, where state-of-the-art one-level solvers employed in standard sim-
ulation codes exhibit bad convergence or even fail.

Key words: algebraic multigrid (AMG), systems of partial differential equations (PDE
systems), unknown-based approach, framework of point-based approaches, semiconductor
process and device simulation, linear elasticity, stress analysis, reaction-diffusion systems,
drift-diffusion systems.
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Zusammenfassung

Die numerische bisung stark gekoppelter Systeme partieller Differentialgleichungen (Syste-
me von PDGiIn.) ist allgegerawtig in vielen Simulationscodeblblicherweise riissen sehr
grofRe dinnbesetzte Matrixgleichungen in den entsprechenden Simulétideslgedst wer-

den. Die Geschwindigkeit, mit der diese Gleichungetbgielerden knnen, entscheidet we-
sentlichiiber die GoRe und damit Wirklichkeitsihe der Simulationen. Da Standarstr
nicht skalieren, sind sie aber nicht effizieiit 6ehr grof3e Matrizen.

Klassische algebraische Mehrgitterverfahren sind bekanntermafen robuste und effiziente
skalierbareLoser oder Vorkonditioniereiif grof3e Matrizenklassen, wie sie typischerweise
von skalarenPDGIn. heriihren. Da klassisches AMG auf einem sogenannten variablenba-
sierten Ansatz beruht, welcher nicht zwischen physikalischen Unbekannten unterscheidet,
sind Erweiterungendtig, um auchSystemeon PDGIn. effizientdsen zu Bnnen. Generell
sind AMG-Ansatze fir viele wichtige Systeme von PDGIn. noch nicht erfolgreich gewesen.
Uberdies fehlte bisher eine “AMG-Software”, die sich ¥iele industriell relevante Probleme
eignet. Diese Dissertation liefert folgende wichtige Bejt.

Wir entwickeln eine generelle AMG-Methodologie, die sich auf viele relevante Syste-
me von PDGIn. anwende@dst. Unsere Methodologie erweitert klassisches AMG durch ei-
ne naheliegende unbekannten- sowie eine besonders wirkungsvolle punktbasierte Strategie.
Insbesondere wird ein generelles Konzaptgunktbasierte Arédze eingedihrt, welches ei-
ne primare Matrix zur Konstruktion einer punktbasierten Vétgerung verwendet. Mehrere
Maoglichkeiten fir die Auswahl der priraren Matrix und der Interpolation werden sowohl
von einem theoretischen als auch - schwerpun&fim- einem praktischen Standpunkt dis-
kutiert.

Wir realisieren unsere AMG-Methodologie in der marktreifedserbibliothek SAMG.
Insbesondere demonstrieren wir, dass in der Praxis alle (beschleunigten) AMG-Verfahren f
geeignete Problemklassen skalieren. Der Speicherverbrauch ist dabei sehr moderat im Ver-
gleich zu Standard-Einlevel-Vorkonditionierern wie etwa ILU(0). SAMiE4t sich einfach
in existierende Simulationsprogramme einbauen und bietet eine sehr variantenreiche AMG-
Umgebung.

Wir demonstrieren die Allgemeinheit und Flexibéiitder vorgeschlagenen AMG-Metho-
dologie sowie die Effizienz konkreter SAMG-Verfahrém £ine Vielzahl von Systemen von
PDGiIn. Insbesondere werden drei wichtige Anwendungen aus der industriellen Halbleitersi-
mulation diskutiert, amlich Stress-Analyse (lineare Elasti)t Reaktions-Diffusions- und
Drift-Diffusions-Systeme. Die letzten zwei und hierbei insbesondere die letzte Anwendung
stellen grofl3e numerische Herausforderungen dar und wurden bisher noch nicht erfolgreich
mit AMG-Verfahren gebst. Rir jede Anwendung zeigen wir anhand von Heuristika und nu-
merischen Resultaten, dass SAMG die Konstruktion robuster und effizienter AMG-Verfahren
erlaubt, und das sogaiirf Falle, wo die typischerweise in Standard-Simulationsprogrammen
eingesetzten Einleveldser schlecht konvergieren oder sogar fehlschlagen.

Schlagworter:  algebraisches Mehrgitter (AMG), Systeme partieller Differentialgleichun-
gen, unbekanntenbasierter Ansatz, Umgebiingd@inktbasierte Arégze, Halbleiter-Prozess-
und Device-Simulation, lineare Elastiit Reaktions-Diffusions-Systeme, Drift-Diffusions-
Systeme.



Contents

1 Introduction 1
2 Fundamentals, Approaches, Notation 7
21 Fundamentals . . . . . . . .. . ... 8
2.1.1 Robust Geometric Multigrid . . . . ... ... ... ......... 8
2.1.2 A General Characterization of Algebraic Multigrid . . . . . ... .. 10
2.2 Specific Approaches . . . . . . . . .. 14
2.2.1 AMG for Scalar Applications . . . . ... ... 14
2.2.2 Available AMG Approaches for PDE Systems . . . . ... ... .. 18
2.3 Formal Algebraic Multigrid Components . . . . . . .. ... ... 19
2.3.1 The SmoothingProcess . . .. .. ... ... ... .. ....... 20
2.3.2 The Coarse-Level Correction Process . . . . . . . . .. ... .... 21
2.3.3 TheTwo-LevelProcess . . . . . . . ... ... .. . ... 22
2.4 More Basic Definitionsand Notation . . . . . ... .. ... ... ...... 23
2.4.1 UnknownsandPoints . . ... ... ... ... .......... 23
2.4.2 Couplings, Patternsand Graphs . . . . ... ... ... ....... 24
2.4.3 More Specific AMG Notation . . . . ... ... ... ........ 25
2.4.4 Basic Matrix Types, Eigenvalues . . . . . ... ... .. ....... 25
2.45 InnerProductsandNorms . . . . .. ... ... ... ... ... 28
2.4.6 FurtherNotation . .. ... ... .. ... . ... . . .. ... ... 31
3 A General AMG Methodology for PDE Systems 33
3.1 Overview of Strategies and Model Problems . . . . . . ... .. ... .... 33
3.1.1 \Variational Principle . . . . . .. ... .. ... ... .. ... ... 34
3.1.2 Three Principal Strategies . . . . . . .. ... ... ... L. 35
3.1.3 ModelProblems . . . . .. .. .. ... 38
3.2 Variable-Based AMG . . . . . . . . .. 41
3.2.1 Algebraic Smoothness . . . . ... ... ... ... .. ... ... 42
3.2.2 Post-smoothing and Two-Level Convergence . . . .. ... ... .. 47
3.2.3 Interpolation Schemes . . . . ... ... .. ... L. 49
3.2.4 Pre-smoothing and Two-Level Convergence . . . . . .. ... .. .. 56
3.25 DISCUSSION . . . . .. 59
3.2.6 Complement;
Towards Even More Robuand Efficient Multilevel Preconditioners . 61
3.3 Unknown-Based AMG . . . . . . . . . ... ... 65
3.3.1 Components . . .. ... 65
3.3.2 Two-Level Convergence . . . . ... .. .. ... 66
3.3.3 DISCUSSION . . . ... 69
3.4 A General Framework for Point-Based AMG . . . . . ... ... ...... 74



viii Contents
3.4.1 Smoothing . . . . . . . . e 76
3.4.2 Primary Matrices and Point-Coarsening . . . . . .. ... ...... 84
3.4.3 Interpolation Strategies for Point-Based Approaches . . .. ... .. 97
3.4.4 Two-Level Convergence Analysis . . . . . . ... ... ....... 105
4 Software Issues - The SAMG Library 121
41 OVEIVIEW . . . . oo e e e 122
411 KeyFeatures . . .. .. . . . . . ... 122
412 SAMG'sTwoPhases . ... ... .. .. ... . ... ... 124
4.1.3 Additional Notation . . . . . . ... .. ... ... ... ... ... 126
4.2 Coarsening . . . . . e 127
4.2.1 \Variable-BasedCoarsening . . . . . . . ... .. ... .. ...... 128
4.2.2 Unknown-Based Coarsening . . . . . . . . ... . ... ... .... 135
4.2.3 Point-Based Coarsening . . . . . . ... 135
4.3 Interpolation. . . . . . . ... e 139
4.3.1 \Variable-Based Interpolation . . . . ... ... ... ... ... 139
4.3.2 Point-Based Interpolations . . . . .. ... oo oL 143
4.4 Smoothing, Acceleration, One-Level Solvers . . . . ... ... ....... 146
45 Computational Cost . . . . . . . . .. 148
4.6 Numerical Results for the Model Problems . . . . . .. ... ... ... ... 149
5 Industrial Applications 153
5.1 Semiconductor Simulation . . . . . ... ... o 154
5.2 ProcessSimulation . . .. .. ... ... 157
5.2.1 StressSimulation . . . . ... L Lo L 158
5.2.2 Reaction-Diffusion Processes . . ... ... ... ... .. ..... 165
5.3 DeviceSimulation. . . . . . .. .. 177
5.3.1 The Standard Drift-Diffusion Model . . . . . . . ... ... ... .. 178
5.3.2 Efficient Solution of the Linear Systems . . . . . ... ... ... .. 188
6 Conclusions and Outlook 203
A Auxiliary Results and Additional Proofs 205
A.1 Nonpositive Diagonal Entries . . . . . . . .. ... .. ... L 205
A.1.1 Problem Formulation . . . . . ... ... .. L oo 205
A.1.2 DifferentWorkarounds . . . . . ... ... Lo 206
A2 ProofofLemma3.9. ... ... .. .. .. ... 209
Bibliography 211
List of Figures 218

List of Tables



Chapter 1

Introduction

For the development of novel technologies, industry is increasingly relying on computer-
aided engineering. This is true, for example, for such different areas as the design of mi-
crochips, efficient oil production or the construction of aircrafts. However, the complex
process of designing, testing and optimizing new processes and products usually has to be
carried out in an iterative and more experimental fashion by means of time-consuming trial-
and-error steps with expensive prototypes. In order to reduce design time and production
costs, computer simulation thus gains a growing importance. Today, simulation is not able
to replace the experimental process but is able to assist it in such a way that principal design
decisions can be made faster and less prototypes are needed.

In various application fields, simulation is used to analyze the structure and dynamics of
material systems. The underlying models involve physical quantities, also calkedwns
in the following, such as material displacements, concentrations, potentials or pressures, and
usually consist of one or more partial differential equations (PDEs) which have to be solved
numerically. This is done by discretizing and linearizing the PDEs and solving the arising
sparse matrix equations by direct or iterative linear solvers.

With the growing complexity of fabrication technologies and resulting products, a larger
effort has to be invested in the simulations to meet the requirements of increasing accuracy
and to gain an ever deeper insight into the governing forces. On one hand, the demand
for higher accuracy has led to the use of more accurate discretization schemes and more
complex and finer discretization grids. Today, truly three-dimensional locally refined un-
structured finite element or finite volume meshes with up to some millions of grid nodes are
commonplace for many applications. Their grid resolution will significantly grow as soon as
computer memory resources will allow this. Unfortunately, with an increasing grid resolution
increasingly large matrix equations have to be solved. On the other hand, the higher accuracy
requirements are more and more leading to physically complex models involving strongly
coupled PDE systems, reflecting the fact that typically several physical unknowns strongly
depend on each other and cannot be considered separately. As a consequence, such a PDE
system has usually to be solved simultaneously for all unknowns involved which, together
with fine grids, results in matrix equations with up to several millions of variables. To be
more specific, if the PDE system is nonlinear and/or time-dependent, a whole series of such
huge matrix equations has to be solved. This is frequently the case.

The solution of huge sparse matrix equations usually belongs to the computationally very
expensive parts of a simulation. Often, it is even the by far most expensive part. Therefore,
any reduction in the linear system solution time will result in a significant saving in the total
simulation time. This is a strong motivation for the intensive research activities in the field of
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linear solvers. However, due to the trends described above, the arising matrices are not only
increasingly large. The more complex the physical models and corresponding PDE systems,
the more difficult to solve them efficiently. It seems clear that for a linear solver to be efficient

it has to address the physics of the underlying problem as well as the numerical properties
of the PDE system appropriately. Each particular type of PDE system can have its own set
of particular difficulties. This aggravates the demand for efficient linear solvers for a broad
spectrum of applications even further.

A scalablesolver is characterized by a complexiyf O(NV) regarding both memory re-
qguirementsand computational work. Though scalability is the most important property an
efficient matrix solver should have, ipgactical relevanceis a user-defined measure weigh-
ing applicability to and robustness for one or more large matrix classes and optimal numerical
complexity among each other. The “wish list” of practitioners is even longer. In particular, an
optimally efficient and robust linear matrix solver would fulfill all of the following properties:
it would

- exhibit a complexity ofO(N) in terms of both memory requirements and computa-

tional work with small ‘O(NN)’s constants”;

be able to handle industrially relevant matrix equations with up to millions of variables,
independent of dimension and type of the underlying grid etc.;

- be able to solve large classes of such applications robustly;

- be simple to use, most preferably as a “black box”;

- be simple to plug into existing simulation codes.

Clearly, not all of the points can be fulfilled simultaneously. For example, the more generally
applicable, the less efficient a solution approach has to be expected to be. This is especially
the case for the standard linear solvers used today, of both direct and one-level iterative type,
which can be applied to a wide range of problems but cannot keep up with the increasing
size and/or numerical difficulties of the problems. On one hand, direct solvers (sparse Gaus-
sian elimination) can be applied very generally but generally exhibit a complexity of up to
O(N3) w.r.t. their computational work and a complexity of up@0N?) w.r.t. their memory
requirements, which makes their use prohibitive for large matrices. On the other hand, one-
level iterative solvers are less generally applicable. They usually exhibit a linear complexity
w.r.t. memory requirements, but strongly suffer from large condition numbers of the matri-
ces. Typically, they exhibit a complexity 6¥(N®) (o > 1) w.r.t. computational work and

are likely to fail for very ill-conditioned problems.

Since problem sizes are substantially growing, optimal comple&ityy), in particular
regarding computational work, will be even more of a concern in the future. For the appli-
cations sketched above, this optimality can be reached by approaches employing numerical
information resulting from a hierarchy of grids (levels, scales). Various optimal hierarchical
approaches exist, called multigrid, multilevel or multiscale approaches, each of them suitable
for a certain range of problems.

Classical algebraic multigrid (AMG) [71, 87] is known to provide very efficient and ro-
bust solvers or preconditioners for large classes of matrix probldms; b, an important

1A linear solver is said to exhibit@umerical) complexity of O(N<) w.r.t. computational work (w.r.t. memory
requirements), if for a fixed relative residual reductionts computational work (its memory requirements) scale(s)
proportionally withN® whereN is the number of variables of the linear system of equations.



one being the class of sparse linear systems with matrdoskich are “close” to being M-
matrices. Problems like this widely occur in connection with discretioadarelliptic partial
differential equations (PDESs). In such cases, classical AMG is very mature and can handle
millions of variables much more efficiently than any one-level method, a main reason being
its optimal complexity ofO(V). Since explicit information on the geometry (such as grid
data) is not needed, AMG is especially suited for unstructured grids both in 2D and 3D. In
fact, only the matrix4 and its right-hand sidé have to be passed to an AMG solver since
the construction of a reasonable multilevel hierarchy is part of the AMG algorithm, automat-
ically performed by exploiting easily accessible algebraic properties such as the size and sign
of matrix entries. Consequently, such an AMG solver is as easy to plug into an existing simu-
lation code as any standard one-level solver, it has (nearly) black-box quality, and - altogether
- already fulfills many of the “wishes” mentioned above.

Contents and Contributions of this Thesis However, extensions of classical AMG are re-
quired to efficiently solvesystem®f PDEs involving two or more scalar physical unknowns.

This is because it is based on a so-called variable-based approach which does not distinguish
between different unknowns. Unless the coupling between these unknowns is very weak,
such an approach cannot work efficiently for PDE systems where, in general, the correspond-
ing matrix A is far from being an M-matrix.

In the past, several ways to generalize classical AMG or other AMG approaches have
been investigated, and there is still an ongoing rapid development of new AMG and AMG-
like approaches. Regarding PDE systems, development has predominantly focused on spe-
cialized solvers for narrow classes of applications as, for instance, certain CFD (compu-
tational fluid dynamics) and linear elasticity problems where promising progress has been
made. However, there is no unique and best approach yet, and besides the developments
mentioned, AMG approaches have not been investigated for PDE systems. Some of the ex-
isting approaches rely on incisive conditions and cannot be generalized to larger application
classes, at least not in an obvious way. Others have the potential to be more generally appli-
cable if generalized or extended appropriately. However, this has not been done so far. As
a consequence, none of the existing approaches is really satisfactory in dealing with larger
classes of practically relevant problems, and many industrially relevant problems have not
been tackled at all yet. Moreover, a software (library) which realizes more generally ap-
plicable, efficient AMG approaches, which can easily be plugged into existing simulation
codes, and which is easy to use would highly be appreciated by the industry but has not been
available so far.

This thesis adresses these gaps and makes the following important contributions for filling
them at least for many important applications:

o the development of a general AMG methodology which is suitable for important classes
of industrially relevant PDE systems

We generalize the efficient classical “scalar” AMG methodology by employing “natu-
ral” structural information on a discrete PDE system to be solved, namely relationships
between so-called variables, unknowns and points. Rather than a single method this
will give us aflexible, general methodologgpable of providing very efficient precon-
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ditionersnot for all but large classesf practically relevant PDE systems. Among them
will be systems which have not been successfully solved by any other AMG approach.

Our methodology systematically extends classical scalar AMG, representing what we
call thevariable-based strategy the following, by a straightforwardnknown-and a
particularly powerfupoint-based strategy

Unknown-based AMG (UAMGH is very similar to variable-based AMG (VAMG) ex-
cept that for each physical unknown its own hierarchy is created. UAMG can handle
anisotropies which are different from unknown to unknown. The unknowns are al-
lowed to live on a different grid each (staggered grids, for instance). Among the basic
conditions for this strategy to work is that the coupling between the different unknowns
is not “too strong”. In this thesis, we will introduce a measure for the strength of un-
known cross-couplings.

For many important PDE systems, the unknown cross-couplings are indeed too strong
for UAMG. Since for many such systems the different unknowns are discretized on
essentially the same “grid”, it appears to be quite natural to create the same hierar-
chy for all unknowns. A strategy which allows for strong unknown cross-couplings
and produces the same level hierarchy, is point-based AMG (PAM®@Je develop

a general framework for PAMG approaches, which is the most important part of our
methodology. One key concept for PAMG is that point-coarsening is performed by
means of an auxiliary so-callgaimary matrix A necessary condition for the PAMG
framework to be applicable is that a primary matrix can be defined wich reflects the
point couplings in a reasonable sense. We introduce and discuss various ways to define
concrete primary matrices as well as three general types of interpolation approaches.
Our focus is on the development of practical variants, that is variants which are com-
putationally cheap (O(N) with a small constant”), efficient and applicable to relevant
and sufficiently large classes of PDE systems.

Convergence of our AMG approaches is proved under the assumptioA thatym-
metric positive definite. We want to emphasize here that, in practice, this is not a
necessary condition. For instance, the application of PAMG to very asymmetric drift-
diffusion systems impressively demonstrates that AMG can efficiently work for con-
siderable deviations from the “ideal” case.

e arealization of this methodolgy within the product-quality solver library SAMG

We realize our general AMG methodology within the solver library SAMG. The re-
sult is a rich AMG environment with various concrete components. SAMG provides
highest flexibility for adaptations to very different situations arising in practice and, if
necessary, can easily be extended by the user even further.

We will demonstrate that SAMG can solve matrices arising from many different in-
dustrially relevant classes of PDEs and PDE systems efficiently and robustly. We will

2Unknown-based AMG has already been introduced in the early paper [71].
3The basic idea, that is a “simultaneous” coarsening (and interpolation) of the unknowns, has already been
outlined in the early papers [71, 8].



also demonstrate that, for these problem classes, SAMG meets industrial needs of scal-
ability, robustness, (nearly-)black-box usage and plug-in-type integration into existing
codes, as indicated in the “wish list” above. Moreover, SAMG provides a far more effi-
cient and robust behavior for many problem classes than the standard one-level solvers
usually employed in industrial simulation codes.

e a demonstration of SAMG's efficiency and robustness for challenging industrial appli-
cations

By means of real-life applications, we will show the generality and flexibility of the
proposed overall AMG methodology as well as the efficiency of concrete SAMG ap-
proaches for a variety of PDE systems. To be more specific, as a demonstration of
UAMG’s and especially PAMG's “practical relevance”, three important applications in
industrial semiconductor process and device simulation are discussed, namely stress
analysis (linear elasticity problems), reaction-diffusion and drift-diffusion simulation.
For each application, it will be shown by means of both heuristical justifications as
well as numerical results for relevant test cases that the usage of SAMG leads to a so-
lution process which, compared to state-of-the-art one-level solvers employed in stan-
dard simulation codes, is very promising both in terms of robustness and efficiency.
Reaction-diffusion and, in particular, drift-diffusion systems are numerically very chal-
lenging applications which have not been tackled before by any AMG approach suc-
cessfully.

e forging links between applied mathematics and industrial application

This thesis covers the whole process from the development of a general AMG method-
ology over its product-quality software realization to its application to industrially rele-
vant problems. Our flexible, general methodology considerably extends AMG's appli-
cability to practically relevant PDE systems, and its realization SAMG meets industrial
needs. Especially SAMG is an important contribution to forging links between applied
mathematics and industrial application.

The thesis is organized as follows. Ghapter 2 we make a general characterization of
AMG and give an overview of specific approaches, in particular with respect to a stocktaking
of what has been achieved so far for solving PDE systems. In addition, basic notations and
definitions which are frequently used throughout this thesis are summarized. In the following
two chapters, our AMG methodology and its three general strategies, namely the variable-
based, the unknown-based and the point-based one, are explained in detail. Vilivereas

ter 3 introduces this methodology and its three strategies from a more theoretical point of
view, including a discussion of the range of applicability and limitatid@isapter 4 gives

an overview of the concrete realization of our AMG methodology within the Fortran90 li-
brary SAMG. In these two chapters, we discuss, in particular, the choice of suitable AMG
components and the performance of resulting approaches for three different classes of model
problems. To be more specific, we consider anisotropic vector Laplacians, reaction-diffusion-
like models and drift-diffusion-like models. They represent, in particular, some important
properties of the discrete PDE systems discussed in Chapter 5 in a simplified, “concentrated”
way. In Chapter 5, SAMG's efficiency and robustness is demonstrated for stress analy-
sis, reaction-diffusion systems and drift-diffusion systems arising in industrial semiconductor
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process and device simulation. We conclude this theshipter 6 and give an outlook on
future research. Finallppendix A contains some additional aspects, outsourced for better
readability.

Remark: Parts of this thesis, namely a short introduction into the point-based framework
and some results for semiconductor process and device simulation, have been published in
[27, 24, 25, 26, 19, 18].
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Chapter 2

Fundamentals, Approaches,
Notation

The demand for optimally scaling, more robust and more generally applicable iterative linear
solvers has been driving the development of multigrid approaches for more than 30 years now.
Two general types of multigrid exist, geometric multigrid (GMG) and algebraic multigrid
(AMG). Today, both represent large classes of approaches, and additionally there are many
“hybrid” approaches which exhibit some characteristica of GMG or AMG or both.

Classical articles or books about geometric multigrid methods include [7, 91, 34]. For
a comprehensive survey of modern geometric multigrid, the reader is referred to the mono-
graph [94], also containing [87] in which an in-depth introduction to algebraic multigrid is
given. [14] reviews “robust” multigrid and [88, 103] review AMG, including references to
many important related multi-level approaches. A survey of iterative methods with a special
emphasis on accelerators can be found in [76]. The very recent [3] gives a survey on precon-
ditioners including (multi-level) ILU-type methods as well as sparse approximate inverses.
We will briefly review important approaches and relationships to AMG in Section 3.2.6.

The purpose of this chapter is threefold. Firstly, Section 2.1 summarizes fundamental
principles which form the basis of concrete AMG approaches and characterizes the current
status of AMG on the general point of view of someone comparing iterative matrix solvers.

Secondly, Section 2.2 gives a survey of the two different AMG methodologies that can be
found today, namely classical and aggregation-based AMG, as well as extensions, new de-
velopments and current research activities. In particular, we survey which AMG approaches
- besides our general AMG methodology - are already available for discrete PDE systems.

In the third part of this chapter, Sections 2.3 and 2.4, we introduce important general
notation and definitions used in the subsequent chapters. In particular, we define the notation
of the formal components of each approach belonging to our AMG methodology.

Remark 2.1 The reader is assumed to be familiar with the basics of multigrid, in particular
with the two fundamental principles, namelgnoothingandcoarse-grid correctionand with
the general multigrid cycling (see [94], for instance). A

Remark 2.2 Note that, unless explicitly stated otherwise, the term “AMG” stands for “clas-
sical AMG” throughout this thesis. A general exception from this rule is Section 2.2.a

Remark 2.3 We only investigate PDE systems in real space and, accordingly, only real ma-
trices. Itis assumed that the given matfixs nonsingular and all diagonal entries are positive
unless explicitly stated otherwise. A
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2.1 Fundamentals

Roughly speaking, two basic observations motivated the development of geometric multigrid.
One the one hand, when applied to a discrete elliptic problem, classical iterative methods like
Gauss-Seidel relaxation converge very slowly but smbtitk error quickly. On the other
hand, a smooth error can be well represented on a coarser grid where a reduction of its
low-frequency components, causing the slow convergence, can be performed with less com-
putational effort. These two observations constitute the fundamental multigrid principles,
smoothingandcoarse-grid correctionwhich - translated or generalized appropriately - lay
the foundation for all multigrid approaches, geometric as well as algebraic ones. The inter-
play of both principles as realized within a concrete approach determines the efficiency of
this approach.

Each GMG and AMG is not a single method but a methodology, representing a whole
class of different concrete approaches. Moreover, there are two general AMG cataept,
sical AMG and aggregation-based AMGeach constituting even a whole methodology on
its own. Particularly these two methodologies are briefly explained and reviewed in Section
2.2.1. The aim of this section is to survey important principal aspeattasical AMGas
are revealed to someone comparing GMG, AMG and one-level iterative solvers from a very
general point of view. It should be noted that these aspects can principally be translated to
the aggregation-based AMG methodology.

We start with a characterization of robust multigrid (Section 2.1.1) mainly in order to
motivate why we develop AMG approaches. We explain why GMG cannot fulfill our goals
formulated in Chapter 1, in particular the goal of developing plug-in matrix solvers. In the
general characterization of AMG (Section 2.1.2), we point out similarities and differences to
GMG, explain why AMG development is a reasonable way for fulfilling at least important
parts of our goals, indicate open questions and perform a rough classification of AMG in
the circle of iterative matrix solvers. The aspects briefly mentioned in Section 2.1.2 will be
explained in more detail in the following chapters.

2.1.1 Robust Geometric Multigrid

Geometric multigrid interpretes the two principles, smoothing and coarse-grid correction, in
their original, geometric sense. It aims at solving grid-based equations,

Lpv, =bp, oON Qh, (2.1)

whereL;, denotes a (finite-difference) operator andandb;, functions defined on a grid or,
synonymously, megH2;,. Typically, (2.1) represents an elliptic partial differential equation
(with boundary conditions) discretized én,. Most typically,(2;, is a structured grid.

The main property of all GMG approaches is that they operate on a predefined hierarchy
of grids, in standard cases (rectangular meshes) obtained by a simple codrpeotess

1The term “smooth” is meant relatively to the underlying discretization grid here.

2}, refers to a “grid parameter”, related to a mesh size.

3We define “coarsening” as the process of constructing the next coarser grid (or level). The construction of the
intergrid transfer operators is regarded as a separate process.



2.1 Fundamentals 9

as, for example, by doubling the mesh size in each directibn* 2h”). Other classical
components are Gauss-Seidel relaxation for smoothing, straightforward geometric intergrid
transfer operators (bi-/tri-linear interpolation and restriction by injection or full weighting)
and coarse-grid operators which are analogs of the finest-grid difference operatdfith
these components, multigrid cycles (typically V-, F- or W-cycles) are performed through this
hierarchy in an iterative manner to obtain an approximation of the solution

Straightforward multigrid components of the above type make GMG most suitable for
isotropic problems on structured grids, the classical and simplest model problem being Pois-
son’s equation, discretized by the standard five-point stencil on the unit square. However,
for more complex applications, these simple and purely geometry-based components have
to be improved or replaced. Difficulties are caused by, for example, non-uniform smoothing
(as for anisotropic equations on standard-coarsened grids) and insufficient correction of error
components on coarser grids (as for diffusion equations with strongly varying coefficients).

Since smoothing and coarse-grid correction are required to interact efficiently, fixing the
grid hierarchy means tuning the components listed above. Among the major steps towards
increasing the robustness of geometric multigrid and extending the range of applicability
were the development of

¢ operator-dependent interpolation in combination with a Galerkin-Yasearse-grid
correction process, originally developed to treat diffusion equations with discontinous
coefficients,

e more complex smoothers if simple coarsening strategies shall be employed, examples
being ILU-type smoothers or alternating line relaxation for two-dimensional anisotropic
equations, alternating plane relaxation for three-dimensional ones,

e sophisticated coarsening techniques if simple smoothers shall be employed, for in-
stance semi-coarsening in multiple directions for anisotropic equations.

The applicability of such more sophisticated techniques is relatively straightforward in regular-
grid applications. However, with the exception of the first point and the ILU smoothing, these
techniques can hardly be realized on less structured meshes, in particular in 3D. This is also
true for each multigrid component which is geometrically constructed, even if the PDE to be
solved is “simple”. In particular, the more complex a grid the more difficult is the definition

of suitable coarser grids just by exploiting geometric considerations, and in case of unstruc-
tured finite element (FE) or finite volume (FV) meshes this is hardly ever feasible. Thus,
predefining the grid hierarchy is one of the crucial points in applying GMG to “real-life”
applications.

In summary, GMG approaches can be highly efficient iterative solvers for a variety of con-
crete cases. However, a GMG approach is not a plug-in solver. It has usually to be tailored
to the specific simulation code and the class of problems to be solved and is not generally
applicable to large problem classes in the sense of a robust “black-box” solver. Moreover,
for practical applications on complex three-dimensional meshes, it can be extremely cumber-
some - if possible at all - to construct an efficient geometric multigrid method. These are the

4For a definition, see Section 2.3.2.
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limiting factors which have prevented GMG approaches from being widely integrated into
industrial simulation codes.

2.1.2 A General Characterization of Algebraic Multigrid

Operator-dependent interpolation and Galerkin-based coarse-grid correction have an interest-
ing property: both can - in principle - be constructed purely algebraically, based on the under-
lying matrix and without referring to a grid. Hence, their invention did not only lead to more
robust geometric multigrid approaches but was also the first step towards algebraic multigrid.
Although these ideas have already been incorporated to some extent in the first “black-box”
multigrid solver [21], this was still a geometric multigrid approach with a geometry-oriented
coarsening. A breakthrough in overcoming the limitations imposed by geometric principles
as discussed above, was achieved by the observation that, for certain matrix classes, even
reasonable coarse levels themselves could be computed solely based on the entries of the
matrix describing the problem. This observation has initialized the development of algebraic
multigrid methods in the early eighties

Algebraic Analogy AMG extends the two fundamental multigrid principles - smoothing
and coarse-grid correction - to a fully algebraic setting. All GMG components such as
smoothing, coarsening, interpolation, restriction and the grid operators, have an algebraic
analog and play a similar rdleas in geometric multigrid. This begins with the fact that,
instead of a grid-based formulation (2.1), AMG operates on linear algebraic equations,

Av =b or, equivalently, Za,;jvj =b (i=1,...,ny) (2.2)

j=1

with A = (a;;) € R™™ being a real (sparse) matrii,v € IR"* the right-hand side and
the solution vector, respectively, ang € IN the size ofA. The components of the vector
v are calledvariables, denoted by, . ..,v,,. The corresponding index s€t, ..., n,} is
denoted by.

If we replace the termgrid point, grid, coarser gridandhierarchy of gridsy their “alge-
braic analogs”yariable, set of variablegconstituting a particuldeve)), subset of variables
and hierarchy of levelsrespectively, we can describe algebraic multigiid formally the
same way as a geometric multigrid method. In particular, the séwvariables formally plays
the same role as the @}, of grid points, and coarse-grid discretizations used in geometric
multigrid to reduce low-frequency error components now correspond to properly constructed
matrix equations of reduced dimension, the Galerkin coarse-level matrix equations.

A Conceptual Difference between GMG and AMG In both GMG and AMG, error com-
ponents which cannot be diminished by the coarse-level correction process must efficiently
be reduced by the smoothing process and vice versa. However, the way in which an efficient

SReferences will be given in Section 2.2.

SNote again that we considelassicalAMG here.

"We should actually use the term migiiel instead of muligrid. However, due to historical reasons and to
emphasize the analogy to geometric multigrid, we stick to the latter.
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interplay between both processes is achieved, constitutes the conceptual difference between
geometric and algebraic multigrid. In (classical) GMG, a hierarchy of grids is predefined,;
the coarsening process and the interpolation operators are fixed and kept as simple as possi-
ble. Consequently, for an efficient interplay between smoothing and coarse-grid correction,
the smoothing process has to be adjusted to the pre-defined grid hierarchy to achieve good
convergence. AMG, on the other hand, only knows (2.2), at least in a purely algebraic set-
ting. In particular, a suitable multilevel hierarchy is not known a priori. In contrast to GMG,

a preferably simple smoothing process (typically Gauss-Seidel relaxation) is fixed in AMG,
and AMG’s main task is then to build up a suitable, problem-dependent hierarchy of lev-
els including all necessary transfer operators as well as coarse-level ogeaatoraatically

and “algebraically” by solely using information contained in the mattixOf course, this
coarse-level correction process has to be adjusted to the smoother to yield an efficient ap-
proach. It should be noted that, for AMG, smoothing has a somewhat different meaning than
for GMG. In Section 3.2.1, we will define and explain thlgebraic smoothness detail. For

the moment, we simply think of agigebraically smoottiunction (vector) being principally
unaffected by relaxation.

Constructing the Hierarchy AMG provides a methodology for solving certain matrix
equations hierarchically. A necessary condition for each hierarchical approach to be suc-
cessful is that for the concrete problem class a “physically” meaningful hierarchy exist. An
additional necessary condition for the AMG methodology to be successful is that this hierar-
chy can be constructed algebraically.

As will be explained in Section 2.3.2, the degrees of freedom in constructing a coarse-
level correction process are the definition of coarsening and interpolation. The crucial condi-
tion to obtain a robust and efficient AMG solver is then to define coarsening and interpolation
such that the overall coarse-level correction supports the smoothing process chosen - if this is
possible for the concrete matrix class under consideration. AMG attempts to coarsen only “in
directions” in which relaxation really smoothes the error for the given mairiXhe guiding
principle in constructing the operator-dependent interpolation is complementary to the above
principle of coarsening. That principle isforcethe range of interpolation to approximately
contain those “functions” which are unaffected by relaxation, that is the algebraically smooth
ones.

Flexibility  For certain important matrix classes, the relevant information for constructing
a suitable hierarchy is contained in the matrix itself, for instance, in terms of size and sign
of the coefficients. AMG can then create the necessary operators fully automatically, and the
resulting coarse-level correction procesksally adapted to the smoothing properties of the
given smoother. The automatic adaptation to the specific requirements of the matrix at hand
is the major reason that AMG's efficiency is not sensitively depending on the concrete matrix
equation to be solved, within the matrix class considerelspite using simple smoothers

This makes AMG very flexible, efficient and robust in solving certain large matrix classes of
high practical importance.

8The operators correspond to matrices here.
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The Setup Phase - A Price to be Paid The flexibility of AMG and its simplicity of use,

of course, have a price: Betup phasein which the given problem (2.2) is analyzed, the
coarse levels are recursively constructed and all operators are assembled, has to be concludec
before the actuadolution phasean start. This overhead is one reason for the fact that AMG

is usually less efficient than comparable GMG approaches - if applied to problems for which
GMG canbe applied efficiently. Another reason is that AMG’s components can, in general,
not be expected to be “optimdlthey will always be constructed on the basis of compromises
between computational work, memory requirements and overall efficiency. Nevertheless, if
applied to standard elliptic model problems, the computational cost of AMG’s solution phase,
ignoring the setup cost, is typically comparable with the solution costaiestGMG solver.

In addition, since AMG's flexibility makes it much wider applicable than GMG, the cost of
AMG’s setup phase, enabling this flexibility, easily pays off.

Available Theory AMG has been developed based on a variational concept (see Section
3.1.1), and convergence theory available so far assumes the maibe symmetric pos-

itive definite at least. AMG is guaranteed to converge then. However, in order to obtain
reasonable statements on problem-siz§ {(ndependent convergence rates, much stronger
conditions have to hold (see Chapter 3). We summarize already here that, similar to GMG,
AMG has been best-developed for large classes of discretized e#ligglar PDEs. To be
more specific, it is theoretically best-understood and very efficient for weakly diagonally
dominant symmetric M-matric&% as often arising for such PDEs. The theory also covers
certain deviations from this ideal case. In this thesis (Sections 3.3 and 3.4), the AMG the-
ory is generalized to our strategies for discrete PDE systems, principally following the way
theoretical results have been obtained for scalar applications.

Unfortunately, convergence theory of practically applicable AMG approaches for matri-
ces A considerably deviating from the strong conditions of this theory is not available so
far. However, it should be noted that, assumit@nly to be non-singular, smoothing and
coarse-level correction can always be defined - in an impractical way though - so that AMG
degenerates to a direct solver (see [87]). Although such approaches are much too expensive
in practice, they indicate that AMG can be applied to much more general matrix classes, and
they also served to motivate the development of certain, more realistic, practically applicable
algorithmical components, as has been discussed in [87] (cf. Section 3.2.6).

Practical Applicability Indeed, experience has shown that the conditions of weak diagonal
dominance, symmetry and M-matrix-property are sufficient but not necessary for AMG to be
applicable. In practice, AMG approaches can work efficiently even for certain matrix classes
which are considerably far away from this ideal case.

However, for other important matrix classes, appropriate smoothers and techniques for the
automatic construction of a reasonable coarsening and interpolation have not been developed
so far, and itis an open question how far we can go with AMG in practice. This is in particular
true for discrete PDE systems.

%n the sense that - though exhibiting an “optimal” complexity®fN) - the “magnitude ofD(NN)’s constant”
might be rather large.
10F0r a definition of these and other matrix types mentioned in the following, see Section 2.4.4.
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Concrete developments for scalar applications are reviewed in Section 2.2.1. The status-
qguo on developments for PDE systems is surveyed in Section 2.2.2. Chapters 3 to 5 are
concerned with theoretical and, in particular, practical aspects of our flexible, general AMG
methodology for PDE systems. Our methodology considerably broadens AMG’s range of
applicability to many important types of PDE systems. Among them are numerically chal-
lenging PDE systems arising in industrial semiconductor simulation.

AMG as a Preconditioner It is a general experience that, for most practical applications,
AMG works most efficiently when applied as a preconditioner for CG, BiCGstab or GMRes,
for instance, so-called accelerators (see Section 4.4). In fact, simplified AMG variants used
as preconditioners are often considerably more efficient than more complex AMG variants
applied as stand-alone solvers. Moreover, only due to acceleration AMG works successfully
for many practical applications. This is especially true for PDE systénmcceleration be-

longs to the most important means known today to increase AMG’s applicability, robustness
and efficiency.

SAMG - a System for Experts As indicated above, smoothing, coarsening, interpolation
and acceleration are the main components that have to be carefully chosen for each class of
applications in order to obtain an efficient AMG approach - which is possible not for all but
many important matrix classes. We will see in the course of this thesis that many different
variants for each of these four components are available. The goal in choosing concrete
variants is always to find a compromise between robustness within whole matrix classes and
highest efficiency for individual matrices.

Rather than one generally applicable approach, AMG thus represents a whole methodol-
ogy. Consequently, we say that the software realization of our AMG methodology, SAMG
(see Chapter 4), is a system for experts. This means, in particular, that SAMG in its current
form is not a black-box, but a library of different matrix solvers, and each individual solver
exhibits black-box character within the problem class(es) it can be applied to.

SAMG - A Plug-In Library of Matrix Solvers ~ AMG only needs a matrixd and right-

hand sideb to be given, and, in case of PDE systems, some additional informtidrich

is easily available in each simulation code. This implies two things. Firstly, as long as the
underlying matrices have suitable properties, AMG can be applied to problems on arbitrarily
complex meshes in 2D or 3D and even to pure matrix equations without a geometric back-
ground at all. This is a great practical advantage over GMG and also certain AMG(-type)
approaches (see Remark 2.7). Secondly, SAMG'’s interface can be and has been kept very
simple and comparable with that of classical one-level plug-in solvers as typically used in
industrial simulation codes. Therefore, the SAMG library itself can easily be plugged into
these codes.

A Rough General Classification The aspects mentioned above give a first glance at the
advantages and limits of the AMG methodology and our realization SAMG. If (S)AMG is

11see Sections 4.4 and 4.6, and Chapter 5 for numerical results.
2Details will be given in Section 4.1.1.2.
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applicable to a certain matrix class, its strenghts are its optimal compléx(fy ), its robust-

ness and black-box character, its plug-in character and applicability for complex geometric
problems and even problems with no geometric background at all. That is, (S)AMG provides
an attractive multilevel variant whenever GMG is either too difficult to apply - for instance,

on unstructured meshes - or cannot be used at all. Therefore, (S)AMG should not be regarded
as a competitor of GMG, but as an efficient alternative to standard one-level preconditioners,
such as ILU (see Section 4.4). If (S)AMG is applicable to a given matrix class, it fulfills
also the remaining goals listed in Chapter 1. The main task of this thesis is the extension of
(S)AMG'’s applicability to practically relevant PDE systems.

2.2 Specific Approaches

Algebraic multigrid is most mature in solving large classes of scalar elliptic PDEs. Only a
few AMG approaches have been developed for partiayatem®sf PDEs. In Section 2.2.1,

we will briefly characterize the general types of scalar AMG approaches that currently exist.
This section can be seen as an update to corresponding sections in [88, 87]. Afterwards,
in Section 2.2.2, we give a survey on AMG approaches that are applicable to certain PDE
systems. Since our general AMG methodology covers, in particular, most of the underlying
ideas, we will refer to the respective sections in Chapter 3 where those AMG approaches are
reviewed and relationships to approaches based on our methodology are explained.

2.2.1 AMG for Scalar Applications
2.2.1.1 Classical AMG

The development of AMG started at the beginning of the eighties for probléms- b

with weakly diagonally dominant Stieltifsmatrices with first steps and results given in
[10, 86, 11]. Atheoretical basis has been given in [70] and especially in [8]. The methodology
described in these papers has originally been developed as a close algebraic analog of robust
geometric multigrid. It only needs a matrix and right-hand side to be given. The setup phase
is performed fully automatically and produces coarse levels whiclsasets of the finest
level(-setV). The definition of interpolation formulas and coarsening strategies is based on
the principle ofalgebraic smoothnegsee Section 3.2.1) and the notiorstfong connectivity

(see Section 4.2.1.1) as reflected by the magnitude of the off-diagonal entries of the matrix.
The class of approaches based on this methodology constitutes what wlassital AMG

that is, even classical AMG is not a fixed method, but rather a methodology with different
concrete realizations.

In [70], the first realization of classical AMG was described. Its Fortran77 implementa-
tion, AMG1R5, was made publically available in the mid eighties and is widely being used
even today. The quite recent [17], for instance, gives a study of robustness and scalability of
(de facto) AMG1R5.

For several years then, the research activities on AMG have been sleeping. They were
revitalized at the beginning of the nineties when particularly industry has started to feel the

L3for a definition of this and other matrix types, see Section 2.4.4.
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need for more efficient matrix solvers due to problem sizes bursting the capabilities of direct
and iterative one-level methods. AMG has thus become a popular and fruitful area of research
with a rapid development still ongoing.

During this time, classical AMG approaches have substantially been enhanced. Most
of the new developments were initiated by the fact that both the AMG1R5 algorithm and its
technical realization reached their limits when applied to ever larger and more complex indus-
trial problems. In particular, industry enquired for less memory-consuming and more robust
approaches. Driven by these and other industrial needs, more robust interpolation formu-
las, namelystandard interpolatiorand multi-pass interpolationandaggressive coarsening
strategies, reducing memory requirements considerably, have been developed (see [48, 87]
and Sections 4.2.1.3 and 4.3). Incorporating these new techniques, a completely new AMG
code, called RAMG [87], was developed. RAMG is a very flexible, robust and efficient ap-
proach for large classes of discretizezhlar elliptic PDEs and similar matrices. It is based
on the same methodology than AMG1RS5 but provides different algorithmical components,
and several variants for coarsening and interpolation as the ones mentioned above.

The classical AMG methodology [87], reviewed in detail in Section 3.2, constitutes the
basis for the general AMG methodology that will be investigated in this thesis. Our library
SAMG (see Chapter 4) is a corresponding generalization of the library RAMG. Further point-
ers to the literature investigating classical AMG approaches are given in [87, 88], for instance.

2.2.1.2 Aggregation-Based AMG

In parallel to the improvement of classical AMG, a second type of AMG approaches was
developed aggregation-based AM®, see [4, 98, 5, 97, 52], for instariée Correspond-

ing methods define coarser levels consisting of so-caligptegatesf variables (omacro-
variables supernodes each of which a new coarse-level variable is associated with. Ag-
gregates are disjoint subsets of variables. In the simplest case, interpolation from the new
coarse-level variables to the associated aggregatgiedewise constantall variables be-
longing to an aggregate receive the same interpolation formula. Due to their simplicity, in
particular with respect to their implementation, aggregative AMG methods have gained a
large attractivity.

Unfortunately, an immediate implementation of these simple components leads to rather
inefficient, not robust AMG approaches, even if used as a preconditioner. This is particu-
larly true for second order problems for which a mere piecewise constant interpolation is not
sufficient. Consequently, the basic idea of aggregative AMG needs certain improvements in
order to become practically applicable. One remedy - whose efficiency and robustness is
however limited to some rather simple situations exgrcorrection[4], rediscovered in [5]
as a rescaling of the Galerkin operator. Another remedy which accelerates aggregative AMG
also in more general situations is an a-posteriori improvement of interpolation by employing
a smoothing procesmoothed aggregatigrbefore the Galerkin operator is computed. In
[98, 99], onew-Jacobi relaxation stépwith piecewise constant interpolation serving as a
first guess is proposed for this purpose. The resulting interpolation is typically much better

Halso callechggregative AMG
15The idea of aggregation is much older, see [4] for references.
16applied to a “filtered matrix” derived from the original mattikby adding all weak connections to the diagonal.
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than the piecewise constant one. For some “ideal” problems and suitétdgpending on the
problem and the aggregates), linear interpolation is approached. Resulting solvers still tend to
be not robust when used stand-alone. Classical AMG approaches usually show a more stable
behavior because more effort is invested in creating coarsening and interpolation. When used
as preconditioners, however, efficiency is often substantially increased - for both aggregative
as well as classical AMG (cf. Sections 3.2.5 and 4.4).

At first sight, the two AMG types differ substantially in the way coarsening and interpo-
lation are constructed. However, to some extent, aggregation-based AMG (in its basic form
as outlined above) can be regarded as a particularly simple limiting case of classical AMG
with the aim to keep coarsening as fast and interpolation as simple as possible in order to
arrive at very cheap methods (cf. [87]). Both classical and (smoothed) aggregative AMG
thus try to find a good compromise regarding convergence, computational work and memory
requirements - but approach this compromise starting from somewhat opposite points.

Remark 2.4 For some theoretical analysis of convergence of smoothed aggregation, see
[97]. An extension of the concept of smoothed aggregation for convection-diffusion equa-
tions is studied in [31]. The authors’ method tackles the (assumed to be known!) “convec-
tive” and “diffusive” parts of the matrix separately and propose for the convective part the

use of non-symmetric “one-sided prolongator smoothers”. A

Remark 2.5 It should be noted that for both classical and aggregative AMG parallel variants
have been developed (see [49] and [68], for instance), and main research on this important
topic is ongoing. A

2.2.1.3 Towards More Accurate Interpolation

As has been indicated above and will be discussed in detail in the next chapter, one of the
most crucial points for the efficiency of an AMG algorithm is the accuracy of interpolation.
There are still open questions regarding the best way to define coarsening and interpolation,
for instance, if the matriXd is symmetric positive definite, contains relatively large positive
off-diagonal entries, and is far from being weakly diagonally dominant. In such cases, the
performance of both classical as well as aggregative AMG may be only suboptimal.

Motivated by the fact that classical AMG in its original form is mainly suitable for M-
matrices, but finite element discretizations, for instance, can produce also non-M-matrices,
several new ideas have been published in the last years. Among thetement precondi-
tioning, element interpolatiomndenergy minimization

The element preconditioning technique [33] assumMe® stem from a finite-element
discretization and its element-stiffness matrices to be accessible. Based on this information,
it constructs an M-matrixB which is spectrally equivalent td. The approach [71] (i.e.
AMG1R5) applied toB is then used as a preconditioner for the original problem. In some
situations, and if the element-stiffness matrices are “similar” to each other, this AMG-type
approach based on AMG1RS5 can yield a more efficient preconditioner than AMG1RS5 itself.

It is a well-known fact that error components which are slow-to-converge w.r.t. the re-
laxation process correspond to the eigenvectord bklonging to the smallest eigenvalues
(see also Section 3.2.1). A rather new direction of AMG research makes direct use of this
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fact and tries to define interpolation so that the smaller the associated eigenvalue is, the better
the eigenvectors are interpolated. To satisfy this by explicitly computing the eigenvectors of
A is, of course, too expensive. However, in case of finite-element methods - assuming the
elements and their element-stiffiness matrices to be accessible - two ways to detecaline
representations of slow-to-converge error components have been reported in the literature.

One way consists in deriving measures (related to measures used in classical multigrid
theory) the minimization of which allows the determination of these local representations.
This approach, the first in this field, is callédMG based on element interpolatiohMGe
[12, 16]. A derivative, AMGe based on element agglomerat{d0], exploits AMGe ideas
not only for interpolation, but also in order to produce coarse grids and coarse elements by
an agglomeratiorf approach.

The other wayspectral AMGEpAMGe) [16], is based on the spectral decomposition (i.e.
eigenvector computations) of small collections of element-stiffness matrices. This approach
is in its infancy, in particular because there are many open questions regarding a successful
extension to a robust algebraiwiltilevel algorithm.

That AMGe is more robust for certain model problems than a classical AMG approach
(comparable to AMG1R5) has been demonstrated in [12, 40]. Hence, it is an interesting
new approach which might have the potential of leading to more robust AMG-type methods.
Unfortunately, the increased robustness is at the price of a more expensive setup phase, a
limited applicability (FE discretizations) and the need for additional information (knowledge
of the element-stiffness matrices). In particular, AMGe is not a “pure” algebraic approach any
more and thus points in a somewhat different direction compared with the aims pursued in
this thesis. It should be noted thefement-free AMGEB5] tries to overcome the outlined
limitations by algebraically imitating the AMGe-construction of interpolation weights by
means of a so-called extension operator. However, this approach is still in its infancy.

Other algebraic approaches, designed for the solution of FE-discretized PDEs, have been
considered in [53, 107, 15]. In these approaches, the coarse-space basis functions are defined
so that their energy is minimizé&din some sense. This does not require the element-stiffness
matrices to be known, but leads taykbal (constraint) minimization problem the solution
of which would be very expensive. However, iterative solution processes are proposed in the
three papers to obtain approximate solutions, indicating that the extra work to be invested is
acceptable. Itis interesting to see that for a particular situation, the first iteration of the process
described in [53] results in the method [99] developed earlier. While [107, 15] concentrate
on scalar PDEs, an extension to PDE systems from linear elasticity is one major aspect in
[53] (see also the next section). The test examples presented in the three papers indicate that
energy minimization can help convergence. However, this benefit is essentially offset by the
expense of the minimization.

The approach [104, 102] uses certain local minimizations based on the Euclidedfl norm
to find, for each variable, pairs of variables which would allow for a good interpolation.
For the minimizations, so-called test vectors (see [105]) have to be provided. They should

7Loosely speaking, aggregation and agglomeration differ in the “target” of grouping: whereas aggregates are
built from variables and are disjoint subsets of them, an agglomeration process builds macro-elements from finite
elements. Here, boundary variables of macro-elements can belong to more than one macro-element.

18|n the FE context, it is natural to define interpolation implicitly by constructing the coarse-space basis functions.

Binstead of the energy norm as the approaches before. These norms are defined in Section 2.4.5.
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approximately represent eigenvectors corresponding to the smallest eigenvalu@f 4fis
symmetric positive definite). A heuristic algorithm is used to minimize the total number of
C-variables. In contrast to other AMG methods, interpolation and restriction are constructed
separately in case of a non-symmetdicThe approach is also available in parallel.

Remark 2.6 In this context, it should be noted that, albeit classical and aggregative AMG
have been developed in the variational context, both have successfully been applied to nu-
merous non-symmetric problems without any modification. In particular, the transpose of
interpolation is always used as restriction. A heuristical, but no theoretical justification is
available at this time. A

Remark 2.7 In contrast to classical and aggregative AMG, the approaches described above
need additional information which are not necessarily available. This is especially the case
for those approaches which have been designed for FE discretizations and need access to
the element-stiffness matrices. Such approaches cannot be plugged into existing simulation
codes in a straightforward way any more. This is why we classify them here as AMG-type
rather than AMG approaches. A

A new trend in general research for AMG approaches has been initiated by Brandt’s
paper on compatible relaxation [9]. [22] presents a theory for AMG that allows for general
smoothing processes and general coarsening approaches. In particular, several compatible
relaxation methods are introduced, and a theoretical justification is given for their use as
tools for measuring the quality of coarse grids. Several research groups are investigating
how the concept of compatible relaxation can be exploited in order to yield new efficient and
practically applicable AMG methods.

Another vivid area of AMG-related research is concerned with multilevel ILU-type and
reduction techniques. In Section 3.2.6, we will briefly review some of these methods and
discuss relationships to AMG.

2.2.2 Available AMG Approaches for PDE Systems

In practical applications, a variety of PDE systems has to be solved the numerical properties
of which can differ drastically. Relevant PDE systems often consist of diffusion equations
with additional convection, drift or reaction terfis The individual PDEs are often of first
order in time (if time-dependent) and of second order in space. They can be nonlinear and/or
strongly coupled, the latter normally enforcing a “fully coupled” solution approach, that is, a
simultaneous solution for all physical unknowns involved.

Typical approaches implemented in modern (industrial) simulation packages consist of
an implicit discretization in time and spaék a Newton-typ& method to treat the nonli-
nearities and a direct method and/or one or more iterative one-level methods to solve the

20piffusion is to be understood as the movement of particles due to a concentration gradiarection as
the transport of particles with a flowing fluicgaction as the transformation of speciehijft as the movement of
particles due to an external force, for example, the movement of electrically charged particles due to an electric field.
21possibly including time stepping control and regridding methods.
22possibly with a sophisticated damping scheme.
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arising systems of linear equations. The corresponding matrices are large, sparse, frequently
ill-conditioned, often not symmetric positive definite, and usually far from being M-matrices.
Hence, these matrices do not exhibit the properties that the “scalar” AMG approaches men-
tioned above principally rely on.

A way to overcome this problem consists in developing appropriate generalizations or ex-
tensions of existing AMG approaches. Until now, this way has been trodden only for specific
PDE systems, mainly linear elasticity and Navier-Stokes systems. Appropriate extensions
of the agglomeration-based AMG methods, mentioned in Section 2.2.1.3, can be applied to
FE-discretized linear elasticity problems. We will mention other progresses made for certain

e linear elasticity problems in Section 3.3.3.2 and Remark 3.31,
e CFD problems (Navier-Stokes systems) in Remark 3.19,
e 0il reservoir simulation problem%in Remark 3.20.

As indicated in Chapter 1, besides the developments mentioned above, AMG approaches
have not been investigated for PDE systems so far. This is in particular true for industrial
reaction-diffusio* as well as drift-diffusion systems.

The approaches reviewed in the remarks listed above have several strong relationships to
approaches belonging to our AMG methodology. Our general AMG methodology covers,
among others, also the basic ideas of these approaches. This will be explained in more detalil
in the respective remarks.

2.3 Formal Algebraic Multigrid Components

Each AMG algorithm consists of two parts, namely s&up phasethe purpose of which

is the automatic construction of a hierarchy of levels and transfer operators asalutien
phasein which a multigrid cycling process is performed. To describe an AMG approach,
it is sufficient to specify the components of a two-level process. The recursive extension of
a two-level to a multilevel process is formally straightforward then. In order to distinguish
fine-level and coarse-level quantities, we use indicasd H, respectively. In particular,

Aot =b" or Z a?jv? =b eV, (2.3)
jevh

At = ol (e ea
jevi

h and H are chosen in order to indicate the formal similarity to geometric multigrid. How-
ever, in general, they are not related to a discretization parameter. Later on, in subsequent
chapters, we will only make use of these level indices if it is necessary to distinguish two
consecutive levels.

23featuring linear elasticity problems and multi-phase flow problems in porous media, the latter typically black-oil
models consisting of a pressure equation and two continuity equations.

24For completeness, we want to mention that in [102] a very straightforward point-based extension of [104] has
been introduced and applied to two simple reaction-diffusion models. Similar to the approach [104], it needs test
vectors. The effort necessary to obtain such vectors has not been discussed, however.
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Remember the following general assumptions: In this thesis, it is assumed that the given
matrix A = Ay, is real, nonsingular and

VieVh :ah >0, (2.5)
unless explicitly stated otherwise.

Remark 2.8 Results carry over to singular symmetric matricéghe nullspace of which
consist of the constant vectors only (in particular, all row sums of such matrices equal zero).
In this case, the singularity of the coarsest-level system has to be treated correctly by the
selected coarsest-level solver (for example, sparse Gaussian elimination), and interpolation
and restriction have to transfer constants exactly. Since the latter is ensured by all interpola-
tion and restriction operators proposed in the remainder of this thesis, we will not discuss the
zero-row-sum case explicitly. A

Remark 2.9 The case that some (exceptional) diagonal entries of the original, finest-level
matrix A are zero will be discussed in Section 4.1.1. The case that nonpositive diagonals
emerge on coarse levels, will be discussed in Appendix A.1. A

For each AMG two-level algorithm, the smoothing process and the coarse-level correction
process have to be defined. It must especially be explained how the coarse-1&¥é| st
variables is obtained (“coarsening”) and how the operators between the two levels, namely
the interpolation (or prolongation) I}‘I andrestriction I, and the coarse-level operator

Ay are computed.

We will explain in Sections 2.3.1 and 2.3.2 how smoothing and (Galerkin-based) coarse-
level correction do formally look for the class of AMG approaches which are considered in
the remainder of this thesis. In particular, we will see tatoarsening and interpolation
are the degrees of freedom in the coarse-level correction process employed in our AMG
methodology.

We will see in subsequent chapters that the processes of smoothing, coarsening and in-
terpolation, even for the AMG class we restrict ourselves to, are not uniquely defined. Par-
ticularly, even though coarsening and interpolation are strongly related to each other - and,
moreover, to the smoothing process - there exist many variants for them. Concrete processes
for smoothing, coarsening, interpolation and their interplay will be discussed in Chapters 3
and 4.

2.3.1 The Smoothing Process
Given a lineassmoothing operator.S,, we denote a single smoothing step by
o — T with

2.6
7" := SMOOTH(Sy, Ap,, b, v") := Spo" + (I, — Sp) A, 1" . (2.6)

%5hesides the coarsest-level solver which is not explicitly discussed in this thesis but assumed to be a (sparse)
direct solver.
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I, denotes the identity operator. Analogousl\smoothing steps are denoted by
SMOOTH" (S, Ap, b, 0") .

In terms of the current erroe” := v — v" with v” denoting the exact solution of (2.3), the
application ofv smoothing steps means

e — e with &' .= SVet. 2.7)
Convention: The letterv will normally indicate approximation or solution quantities and the
lettere correction or error quantities.

As mentioned above, AMG usually employs rather simple smoothers. Often, a variable-
wise Gauss-Seidel (GS) relaxation (i&, = I}, — Q,leh with @, being the lower trian-
gular part ofA;,, including the diagonal) is selected. Clearly, unldssis positive definite,
such a simple variable-wise relaxation method is only reasonallg fiéilfills additional re-
quirements, in particular, its diagonal elements should be sufficiently large compared to the
off-diagonal entries.

In this thesis, we will consider variable-wise, unknown-wise and point-wise GS relaxation
processes, w-Jacobi relaxation, i.eS;, = I, —wD,;lAh with D, = diag(Ap,), and various
ILU variants (see, in particular, Sections 3.4.1.2 and 4.4 and Chapter 5).

2.3.2 The Coarse-Level Correction Process

The first step in AMG’s coarse-level correction process consists in the construction of the set
ofhcoarse-level variableg’. This is done by splitting’” into two disjoint subset§” and
F",
Yh = chOFM, (2.8)

- based on certain rules - witi” representing those variables which are to be contained in
the coarse level(f-variables) and F" being the complementary set of fine-level variables
(F-variables). This splitting is called &/ F-splitting of V. Note that here the coarse-level
variablesy := C" can be interpreted as a subset of the fine-level ones.

Then, an interpolation operatdf; is constructed, fitting to th€'/ F-splitting, and map-
ping coarse-level corrections to fine-level ones. We only consider interpolatioasl, e
which are of the form

(2.9)

a fori € Ch
= ey = {{ o

h oh - h
Zjepihwijej forie F*,

whereP!* C C" is called theset of interpolatory variables (for thei-th variable).
The restriction operatof/’, mapping fine-level vectors to coarse-level ones, is always
defined to be the transpose of interpolation,

7= ()T, (2.10)

26see Sections 3.3.1.1 and 3.4.1 for the last two.
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Obviously, both interpolation and restriction are full rank operators. In this thesis, the term
transpose always refers to the Euclidean inner product (see Section 2.4.5), dengted:by
in the following.

OnceVH and I}, I} are given, the AMG coarse-level correction operator (Galerkin-
operator) can be evaluated:

Ap = I ALY (2.11)

2.3.3 The Two-Level Process

Smoothing and coarse-level correction are now combined as in geometric multigrid. One step
of a two-level process, starting with the approximatidp,, is defined as depicted in Figure
2.1.

Performy; pre-smoothing steps: o := SMOOTH"* (S, Ay, b, v",) .
Compute theesidual " := b* — A, 7" .
Restrict the residual to the coarse levelb := I/7r" .

Solve the coarse-level correction systema ;e = b .

o B

Transfer the correctiogt’ to the fine level and correct the old approximatidn

T =t ke (2.12)

6. Performv, post-smoothing steps: v”,,, := SMOOTH"(Sy, Ap, bh,%h) .

new

Figure 2.1: One cycle of a two-level AMG method.

In terms of the error, one two-level cycle mags, — e”.,, where

new
elw=Knmel, with K:=Kj,pg:=1I,— INAF A, (2.13)
if 11 = v, = 0 (i.e. coarse-level correction without smoothing). If smoothing is performed,

ezew = Mh,HeZle with Mh,H = Mh’H(Vl,VQ) = S}Vth’HSZl . (214)
K, i is called thecoarse-level correction operatoy M, i the two-level iteration opera-

tor. Obviously, this AMG two-level process formally equals a geometric two-level process.
As in geometric multigrid, the extension to a multilevel process (with e.g. V-, F- or W-cycles)
is straightforward.
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2.4 More Basic Definitions and Notation

2.4.1 Unknowns and Points

We usually assumd to result from the discretization and linearization of a system of partial
differential equation (PDES)
F(uy,...,upn,) =0 (2.15)

in the domair2? C IR? attached with reasonable boundary conditions. Hereythe . u,,,
denoten,, > 1 scalar functiondR? > © — IR, calledunknownsin the sequel. In the special
casen,, = 1, (2.15) represents a scalar PDE.

The set of indiceg’ can be split intadisjoint subsetg/;, ..., U, with V = U" U,
where the subsét,, represents the indices of variables belonging tatheth unknownu,, .
Theuw,, andi{,, are both calledinknowns, which should not lead to any confusion.

We generally assume thigh equation (theé-th matrix row) to “belong” to the-th vari-
able (cf. also Remark 2.10 below). For some theoretical considerations in this thesis, it is
convenient to assume (2.2) to be reordered “unknown-wise”. That is, assuming any given
order of indices inside eadls,, the system (2.2) then has the form

Apay o A upy by
: kE : : = : : (2.16)
A[nu,l] o A[nu,nu] Uln,,] b[nu]

Here,v},,) denotes the vector of variables associated withrittle unknown,by,,; the corre-
sponding part of the vectd; and Ay, ., the submatrix ofA which reflects the couplings of

the m-th to then-th unknown. The entries in thé,, ,,) with m # n are calledunknown
cross-couplings If an order of the unknowni,, and the variables within eaély, has been
fixed, a mapping of the variable-indices to the unknown-indices is induced, the so-called
variable-to-unknown mapping (VU mapping).

If (2.15) is discretized so thdthe different unknowns are living on the same grid”
we often assume the linear system (2.2) to be reordered “point-wise”. To be more specific,
assume that the st is split into disjoint subsetsPy, ..., P,, with V = U2, Px. Then,
these subsetB;, are callecpoints, wheren,, > 1 denotes the number of mesh points, dhd
contains the indices of variables sitting at #h point. The se{1,...,n,} is denoted by
VP. Clearly, the variables associated with any fixed point, all belordjfferentunknowns.
The point-wise reordered linear system (2.2) looks like (assuming any given order of indices
inside eachP;):

Aay o Ay (1) ba)
: . : : = : , (2.17)
Ay o Ay U(n,) bny)

wherewv(;, denotes the vector of variables located at p@t b(;,) the corresponding part
of the vectorb, and A;, ;) the submatrix ofA, which reflects the couplings of theth to
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the I-th point. TheA, ;) are calledpoint-coupling matrices. If an ordering of the points
Pi. and the variables within ead®, has been fixed, a mapping of the variable-indices to the
point-indices is induced, the so-calledriable-to-point mapping (VP mapping).

For an illustration of variables, unknowns and points, see Fig. 2.2(a).

Remark 2.10 VU and VP mappings can be defined for every discretized PDE system. They

are, however, not unique, but for many PDE systems there exists a “natural” structural de-
scription. The classical counterexample that a not even a “natural” relationship between
variables and matrix rows exists, is given by the Cauchy-Riemann system. A

Remark 2.11 In the special case that (2.15) represents a scalar RREL], there is only
one unknownlf; = V), and each variable corresponds to a point, . = {k} for all
keV. A

Remark 2.12 Often, all unknowns are represented at each point. But there are important
cases, as can be seen in Chapter 5, where this is not true. In such cases, typically, not all
functionsu,, exist in the whole domain (as in Fig. 2.2(a)). A

Remark 2.13 Usually, we think of points as being grid nodes or element centers. How-
ever, the above definition does not involve coordinates and, hence, it is only important that a
clustering(with disjoint clusters) of the variables makes sense. A

2.4.2 Couplings, Patterns and Graphs

For formal descriptions, matrix-vector terminology is used. However, the uggaphs

is often very convenient to easily describe, motivate, and analyze AMG processes such as
coarsening and interpolation strategies. The use of graphs is a way to easily see similarities
and analogies to geometric multigrid processes.

All graphs used in this thesis are based ondbenectivity pattern 3(A) of a matrix A
which is defined as the distribution of the nonzero entried,ofe. the set of index pairg, j)
for which a;; # 0. Note that in practice the connectivity pattern is a subset ogiagsity
pattern of A. We come back to this in Section 4.1.1.2.

The nodes of the graphs correspond to variables or points, depending on which type of
relation level we want to investigate. The edges of such a graph, that is the connections
between the nodes, are defined via the connectivity pattern in the following way. We call a
variablev; (directly) coupled (or connected to variablev; if a;; # 0. Correspondingly, the
(direct)neighborhoodof a variablev; is defined by

N; :={j € V|j # i andv; coupled tov; } . (2.18)

Analogously, a poin®;, (an unknowri/,,) is said to be coupled to a poiffi; (an unknown
U,,) if there exists a variable i®; (U4,,) which is coupled to a variable iR; ().

For each of the coupling types, graphs can be drawn. In this thesis, we will often make
use of graphs representing couplings of variables or points. If it is necessary to visualize more
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than one “species”- variables, unknowns or points - at the same time, different “colors” (to
distinguish variables of different unknowns) and groupings of variables (to mark variables
living at the same point) can be used (see also Fig. 2.2(a)). Examples of such graphs are
given by the Figures 2.2(b) and 2.3.

2.4.3 More Specific AMG Notation

If it is necessary to distinguish between positive and negative off-diagonal entrigsves
use the notation

aj; =4 (if aij <0) and af; = 0 (ifa; <0) (2.19)
t 0 (lf Qij > 0) t Qjj (lf Q5 > 0) ,

and correspondingly

N; = {j e N; I a;; < 0} and N;r = {] e N; | aij > 0} (220)

For theoretical considerations, it is often convenient to assume vectors and matrices to be
reordered according to a giveéry F-splitting so that (2.3) can be written as

n_ [ Arr Arc vr \ _ ( bFr \ _n
Anv <ACF Acc)(vc>(bc)b' (2.21)

Analogously, the interlevel transfer operators are written as

I
I = ( Igg ) , I = (Icr, Icc) (2.22)

with Icr = (Irc)T andIcc being the identity operator. Insteaddf = 1% e and (2.9),
we simply write
er = Ipcec and e; = Z Wij€; (Z S F) , (223)
JEP;
respectively, which should not lead to any confusion.

2.4.4 Basic Matrix Types, Eigenvalues

Important parts of the AMG theory for the scalar case deal especially with the model class
of Stieltjes matricesBut also more general basic types of matrices are discussed, the most
important ones being listed in the following. Let-) = (-,-)g denote the Euclidean inner
product. Then a square matX = (b;;); ; is called

e symmetricif b;; = b;; forall ¢, 5.
e weakly diagonally dominantif

Vit by >y byl - (2.24)
J#i
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e strongly diagonally dominant if

Vit b > Y byl - (2.25)
J#i

Remark: Strong diagonal dominance is obviously equivalent to the existence of a
0 =4dp > 1with

Vit b — Y |bij| > 6bi; (2.26)

J#i

If for a classB of matricesB a ¢ can be found which is indepent &f, B is said to
satisfy the property of strong diagonal dominanogormly.

positive semi-definiteif for all v : (Bv,v) > 0 . If B is additionally symmetric, we
write B > 0. CorrespondinglyB; > B; meansB; — By > 0.

positive definiteif B is positive semi-definite and
Yo : <(Bv,v)—0:>v—0> . (2.27)

If B is additionally symmetric, we writd3 > 0. CorrespondinglyB; > B> means
B; — By > 0. The class ofymmetrigositive definite matrices is denoted Hy,q, the
subclass of weakly diagonally dominant symmetric positive definite matriceky

Examples: Well-known examples of matrices belonging g result from typical
nine-point discretizations of the anisotropic Laplace opefatetu,,, — Uyy,

—(1+e)a 20c—1 —(1+ea
200 —€ 2(1+¢) 200 — € , (2.28)
—(14+6a 2ae—1 —(14¢€a

1
h?
h
with —1/2 < a < 1/2. Fora = 0, the standard anisotropic five-point stencil arises
(see 2.30 below), far = 1/4 the stencil for the standard FE discretization with bilinear
finite elements. Note that the above stencil results from the following discretization of
—eug, (for the stencil notation, see [94], for instance)

;i[fe 2¢ 76] Cf (2.29)
1+ 2a h? A '

h

and a corresponding discretization-ot.,,,.

anM-matrix (see [85]) if its off-diagonal entries are nonpositiveis nonsingular and
all entries of its inversé& —! are nonnegative.

2'with Dirichlet conditions, for instance. In case of periodic boundary conditions, for instance, the resulting
matrices would be symmetric positive semi-definite.
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e a Stieltjes matrix if B > 0 and off-diagonally nonpositive. The class of Stieltjes
matrices is denoted hyls;. Every Stieltjes matrix is an M-matrix.

As perhaps the most known example, consider Poisson’s equation with Dirichlet bound-
ary conditions, discretized by means of the standard five-point Poisson stencil,

1 -1
=8 I T N (2.30)
~1

h

Remark 2.14 Every symmetric weakly diagonally dominant matrix with positive di-
agonals, nonpositive off-diagonals and with > >_,_, |b;;| for at least one is a
Stieltjes matrix (for a proof see [85]). A

e of essentially positive typ€e[8] if B is positive definite and if there exists a constant
¢ > 0 such that

Vo o Y (=bij) (i —v)* = e Y (=bi;) (v — v;) . (2.31)
1,5 ,J
The class obBymmetrianatrices of essentially positive type is denotedys

Remark: This condition implies that each row containing off-diagonal elements has
at least one negative off-diagonal entry. For thth row, this can easily be seen by
applying the above inequality to the vectoe (v;) with v; = §;;, (Kronecker symbol).

Examples: Higher order discretizations of second order elliptic problems or problems
involving mixed derivatives often lead to symmetric essentially positive type matrices.
For instance, consider the stencil

1

1 —16
—— | 1 —16 60 —-16 1 2.32
12h2 (2.32)

—16

1

h

which corresponds to a fourth order dicretization-ehw (ignoring boundary condi-
tions). Here, (2.31) is fulfilled withe = 3/4. As another example, the nine-point
discretization of-Au + uy,y,

-1
4 —
-1

1
h?

(2.33)

e e T
L LS

h

satisfies (2.31) witle = 1/2. In such cases, the "essential positiveness”of the matrices
is due to the fact that, for eadl; > 0, there exisstrong negative pathsof at least
length two froms to j, i.e., there exisb;, < 0 andby; < 0 with |b;z|, |bk;| being
sufficiently large compared withy ;. A
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o of essentially block-positive typef B is positive definite, alB ;. ;) symmetric, and if
there exists a constaat> 0 such that

Vo > (=B (v — vw)s v — v))
k,l

>c Y (=Buayvw —vw)vw — v)
k,l,*B(kﬁl)>O

(2.34)

Remark: We use the above definition of the term “essentially block-positive type” as
an analog of “essentially positive type” for the point-oriented case.

With A\(B) we denote arigenvalueof B. Anyin(B) and Ay.x(B) denote the minimal and
maximal eigenvalue oB, respectively. AnalogousIyA|min (B) and|A|max(B) are defined.
The following lemma holds

Lemma 2.1 (cf. [106]) Let B € IR"™" be any symmetric matrix. Then each eigenvalue
A(B) is real, and there exists an orthonormal basislRf consisting of eigenvectors &f.
Moreover,

Vo eR" : (Bv,v)g < Amax(B)(v,0)E (2.35)

VYoveR" : (Bv,v)g > Anin(B)(v,v)E , (2.36)
and Apin (—B) = —Amax(B). For two symmetric matriceB; and B,, we have

)\max(Bl + BQ) S )\max(Bl) + )\max(BZ) 9 (237)

Amin(B1 + B2) 2 Amin(B1) + Amin(B2) - (2.38)

Of course, the sum of positive definite matrices (positive semi-definite matrices) is positive
definite (at least positive semi-definite).
2.4.5 Inner Products and Norms

In addition to the Euclidean inner prodyet-) z, we will use the following three inner prod-
uctsif A > 0:

(v,w)o := (Dv,w)E , (2.39)
(v,w)1 := (Av,w)Eg (2.40)
(v, )9 := (D' Av, Aw)p . (2.41)

with D being the diagonal oA, D := diag(A) (which is also positive definite). The
associated norms are denoted|py||; (i € {F,0,1,2}). (-,-); is called theenergy inner
product, and|| - ||; theenergy norm.

Given anyC'/ F-splitting, note that wittd > 0 the matricesApr andDpp = diag(Apr)
are also positive definite. Then we can define the analogs of the above inner products applied
to Arr instead of4;,. We will use

(UF77~UF)O,F = (Dppvp,wr)rp and ('UF77~UF)1,F = (Appvr, wr)E , (2.42)
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and their associated norrfjs ||;. (i € {0,1}).
Given any VP mapping (and (2.17), see Section 2.4.1), we can define analogs of (2.39) -
(2.41) by replacing by its block-diagonal analog,

(v,w)po:=(Dpv,w)g , (2.43)
(v,w)p1 = (Apv,w)g = (Av,w)g , (2.44)
(v,w)po = (Dp' Av, Aw)p (2.45)

with Dp being the block-diagonal matrix of, that is, thek-th diagonal block oD » equals
A(k,k)- Their associated norms are defined accordingly. Of codrsed its “blocked”version
Ap are identical (besides ordering!). Analogously;)p o, 7 is defined.

In the following, we summarize some standard facts about matrix norms (see [84, 100]).
We only consider matrix norms olR™" in the following. We call a matrix norn|| - |||
compatibleto a vector nornj| - || (onIR™) if for all matricesB € IR"™" and vectors € IR"

[[Bol| < [[|BI[[ []v]| - (2.46)
With
B
11B]| = max 1B (2.47)
v£0  |[|v]|

for square matrice® a matrix norm is defined, the so-callederator norm induced by the
vector norm|| - ||. Every operator norm is submultiplicative:

||B1Bal| < [|Bi| | B2]| (2.48)
and we have|I|| = 1. Obviously, the operator norm is compatible to the vector norm it is
induced by, and|B|| < |||B||| holds for all matrix norms|| - ||| which are compatible to the
vector norm|| - ||.

Thespectral radius p(B) of any matrixB € IR™" is defined by
p(B) = |Amax(B) . (2.49)

The spectral radius dB is the infimum of all operator norms @&:

p(B) = inf 1B . (2.50)

N ||| operator norm odR ™™
For all matricesB;, B- the following holds:

p(B1Bz) = p(B2By) . (2.51)
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The following matrix norms are used in this thesis:

[|IBlle  :=1/p(BTB) Euclidean norm, (2.52)
[|Bllmaz := max |b;;] maximum norm, (2.53)
3
||Bl|rs = max )y _|b;;| row sum norm, (2.54)
b
[|1B||sen = /Z b3, Schur norm. (2.55)
ij

||-|| £ is the operator norm anél||s., @ compatible matrix norm to the Euclidean vector norm.
The row sum norm is the operator norm induced by the maximum vector o, || - || s
and|| - ||scn are submultiplicativel| - ||nq. Not. If B is symmetric, we haviB||z = p(B).

If B > 0, we obtain

1
B Y p=pB )= —rss . 2.56
For a regular matrix3, its condition number w.r.t. || - || z is defined by
condg(B) := ||B||g ||IB7 g >1 . (2.57)
If B > 0, we obtain
AIIl X B
condg(B) = )M . (2.58)
For all By > 0, By > 0 and constants > 0 the following equivalence holds:
(Ve (Bie,e)p < c(Bge,e)E> < p(B;'By) <c (2.59)

which follows fromB, = B/ By/* with B> > 0, B; */*B,B;*/* > 0 and

Ve : (Bie,e)p <c(Bse,e)g
Ve : (BlBQ_Uze, B;l/Qe)E < C(BQBQ_1/26, B2_1/2€)E
Ve : (B;1/2BlB;1/2e,e)E <c(e,e)p

p(B;1/2BlB;1/2) <ec

17

—~
N
N
©

-

p(By'B1) <c

—~
N
a1
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-
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2.4.6 Further Notation
For an arbitrary matri3, B = 0 means thaB3 contains only zero entries.

The components of a vectar are denoted byy;. w > 0 means that all of its components
are positive.

R(Q) and N (Q) denote theangeandnullspaceof a given operatof), respectively.

Finite difference discretization is abbreviated BB discretization, analogously, finite ele-
ment (discretization) b¥E (discretization), and finite volume (discretization) tV (dis-
cretization).

The following terms are used for discussing numerical results. We often make use of scientific
notation in the form Me-P foi/ - 107, for example 3.5e-@ 3.5-10~°. Analogously, Me+P
is defined. Theaverage residual reduction factor (ARF) corresponding ton;; iterations
is defined as
1)

1/nit
ARF = ( TS| ) (2.60)

wheren;; denotes the number of iterations (cycles) performéd, the residual of the first
guess (assumed to be nonzero), atl(i > 0) the residual after theth iteration. We always
use||- || = || - ||g here. In addition, (in order to obtain an ARF closer to the spectral radius
of the iteration matrix\/ in case of stand-alone AMG, see also Remark 4.25) we often skip
the first two iterations and define

(i) )\ Y (ni6=2)
ARF, — (Il (2.61)
’ [r®] '

For all solvers discussed, the iterations are stopped if an iteration (cyalih

< e (2.62)

is reached, where;; € ]0;1] denotes thdrelative) residual reduction factor demanded.

€ix = 1e-10 is used throughout this thesis unless explicitly stated otherwise. “log. residual”
and “log. error” stand fotog,, |||| andlog,, ||e||, respectively. Timings given are always
wall-clock timings.
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@)

Figure 2.2: (a) A visualization of variables, unknowns and points. Variables are depicted by
small circles. Variables belonging to the same unknown are marked by the same “color” (i.e.
grey scale here), which then represents this unknown, and points are marked by large grey
circles surrounding the variables living at that point. In this example, the number of vari-
ables per point varies, and only one unknown, the “black” one, lives on the whole domain.
Here,n, = 3, n, = 24, andn,, = 12.

(b) Couplings between variables. In this example, the couplings are assumed to be symmet-
ric (i.e. A is symmetric). In case of an asymmetdg¢ a directedgraph would be a natural

way for the visualization of couplings.

@) (b)

Figure 2.3: (a) Couplings between the variables of the “black” unknown for the example in
Fig. 2.2. (b) Point couplings for the example in Fig. 2.2.



Chapter 3

A General AMG Methodology for
PDE Systems

3.1 Overview of Strategies and Model Problems

As we have discussed in the last chapter, AMG has originally been designed for solving scalar
PDE applications. Extensions which have been developed so far can handle particular types
of PDE systems such as those arising in linear elasticity. Important other types, for instance
reaction-diffusion and drift-diffusion applications, have not been tackled successfully yet. It
has turned out that different AMG strategies are suitable for different types of applications.
We here describe AMG strategies for various types of applications. The description covers
strategies which have already been mentioned in [71] as well as new strategies. Altogether,
these strategies have led to a general AMG methodology which has systematically been re-
alized in the AMG software SAMG. Whereas in this chapter our general methodology is
discussed from a more theoretical point of view, software aspects, in particular the systematic
implementation of our methodology within SAMG, are discussed in the next chapter.

The efficient solution of PDE systems without exploiting any structural information seems
unrealistic. Hence, a natural starting point to create extensions of AMG for PDE systems
is the exploitation of structural information, such eariable-to-unknown (VU) mappings
and, if availablevariable-to-point (VP) mappingsas introduced in Section 2.4.1. Such
mappings provide the basis of our AMG methodology for PDE systems explained in detail in
this chapter.

Our AMG methodology is developed based on a variational concept. In Section 3.1.1, we
summarize the basic properties of Galerkin-based coarse-level correction processes and show,
in particular, that the coarse-level correction operatqry fulfills a variational principle.
Section 3.1.2 characterizes and surveys the three basic strategies of our methodology, namely
variable-based, unknown-based and point-based AMG, and gives an outline of the remainder
of this chapter (Sections 3.1.3 to 3.4).

Remark 3.1 For all investigations in this chapted is assumed to be symmetric positive
definite (A > 0). The principal handling of symmetric positive semi-definite matrices the
nullspaceN (A) of which only consists of constant vectors, has already been described in
Remark 2.8. Remark 2.9 has already pointed to sections which degcabical ways to

treat nonpositive diagonal entries; < 0, arising on either the finest level or coarser levels
or both.
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We will extensively make use of the definitions in Sections 2.3 and 2.4. Level indices
h, H are used, if necessary, to distinguish two consecutive levels. Lemmas, theorems and
corollaries which can already be found in [87] are marked accordingly. A

3.1.1 \Variational Principle

In this section, given anyl = A;, > 0, we summarize the basic properties of Galerkin-based
coarse-level correction processes. In particular, a variational principle for the coarse-level
correction operatofk;, i holds which simplifies further theoretical investigations substan-
tially. All our AMG approaches are based on the same formulatiok pf;, so that the
following statements hold for all of them. For proofs, see [87].

We first state that the Galerkin coarse-level operatgr = I,{{Ahlﬁ, is also symmetric
positive definité (w.r.t. the Euclidean inner product):

Lemma 3.1 [87] Let A, > 0 hold, and let7}; have full rank. Them; is also symmetric
positive definite.

Proof. This is an immediate consequence of (2.10) and
(AHUH, ’LUH)E = (I;?AhIII}IUH, ’LUH)E = (A},,I;_ZI’UH, IIf_LIwH)E

= (UH,IfA;LIng)E = (’UH,AH’LUH)E. A

The coarse-level correction operafdf, i = I, — II’;A;I,{{Ah can easily be seen to fulfill
K,f,H = K, g and to be symmetric with respect to the energy inner pro@lud, that is,
VYo,w : (Kv,w); = (v, Kw); . Having these facts and;,, Ay > 0 in mind, it can be
proved thatk;, g fulfills a variational principle. To be more specific, the following theorem
holds:

Theorem 3.1 [87] Let A;, > 0 and let anyC'/ F-splitting and any full rank interpolatior?;
be given. Thetd, i is an orthogonal projector w.r.t. the energy inner prodgct),. The
followings equalities hold:

(1) Vel :||Kpgel||s = mingu|le — Ie||;,

@) [|Knall=1.

Statement (1), the variational principle &, , shows that Galerkin-based coarse-level cor-
rections minimize thenergynorm of the error w.r.t. all variations in the range of interpo-
lation, R(I1%,). Moreover, because of equality (2), a two-level method can never diverge if
the smoother satisfigsS;||; < 1. That this result carries over to complete V-cycles, can be
shown by a recursive application of the following lemma with a zero initial gugés: 0,

on each coarse level:

Lemma 3.2 [87] Let the exact coarse-level correctieff in (2.12)be replaced by any ap-
proximatione’ satisfying||e”’ — e ||; < ||e® ||, where]| - ||, is taken w.r.t.Az. Then the
approximate two-level correction operator still satisfie&}, |1 < 1.

1For a generalization to positive definitl,, see Corollary A.1.
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This lemma ensures a minimal robustness of each approach of our methodology: (V-)cycling
will not diverge if ||Sy|| < 1. However, this gives us neither information on what influ-
ences convergence concretely nor conditions under wiigtdependent convergence can be
proved. In Sections 3.2, 3.3.2 and 3.4.4, we will investigate two-level processes for variable-,
unknown- and point-based AMG, respectively, more closely in order to obtain concrete cri-
teria for assessing smoothing, g F'-splitting, interpolation and their interplay and then to
obtain concrete statements two-level convergence for certain subclasseslgfs. For rea-

sons explained in [71, 87}4-independeninultilevel convergence cannot strictly be proved.
However, it turns out that multilevel approaches converge for many discrete PDEs and PDE
systems arising in practice (see Chapter 5, for instance).

3.1.2 Three Principal Strategies

Goals and Characterization Since increasingly large problems have to be solved in prac-
tical applications, our main concern is an optimal compléxid§ O(N) of our AMG ap-
proaches. In addition, we seek a reasonable compromise between robustness and black-box
quality within sufficiently large classes of PDE systems, small computational work (“the
magnitude ofO(NN)’s constant”) and memory requirements, plug-in character, flexibility
for adaptations to specific problems and extendability for covering more and more problem
classes.

Clearly, there is no single algorithm satisfying all our goals for solving general PDE sys-
tems. Instead, we have developed a flexible, general AMG methodology which is based on
the scalar AMG approach [87]. This methodology allows to tailor AMG components to con-
crete problem classes. Especially an exploitation of the VU and/or VP mapping plays a key
role in our overall strategy. Concrete approaches differ “only” in the amount of inforniation
they employ, and in the concrete choice of the three main components smoothing, coarsening
and interpolation.

What has been achieved regarding numerical complexity can be summarized as follows.
In the course of this and the following chapter, we will see that the computational work and
memory requirements for the setup phase and one cycle of each concrete algoritim scale
with the problem sizeéV. Therefore, if the convergence rate does not depenty gwithin
a problem class given), this will also be true for the overall approach for a fixed residual
reduction and our main aim be fulfilled. Whereas this independence cannot be proved in
a strict mathematical sense, numerical results indicate that it holds for a large number of
relevant model problems (defined in Section 3.1.3) as well as practical application classes, as
discussed in this chapter and Chapter 5.

Instead of more elaborate stand-alone solvers, we focus on relatively inexpensive AMG
algorithms which can efficiently be used as preconditioners. In practice, this has been proved
to be an efficient means to reduce computational efforts and memory requirements.

Before going into details of our methodology, an outline of its three principal strategies
and its range of applicability is given in the following paragraphs.

2See the definition of the teraomplexity in Chapter 1.

3i.e., besidesA andb, the VU and/or VP mapping, and/or coordinates.

4Note that we always assumé as well as all coarser-level matrices to be sparse. Indeed, this is observed in
practice for all problem classes which are in the scope of this thesis.
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Variable-Based AMG (VAMG) Our considerations begin with AMG as described in [87]
since generalizations of its coarsening and interpolation concepts are used in each of our
AMG approaches. AMG has been developed based on a variational concept (see Section
3.1.1) and is most mature for weakly diagonally dominant Stieltjes matrices as frequently
arising in the context ofcalar PDEs. Within our methodology, it constitutes what we call
variable-based AMGince it solvesdv = b “as is”, that means by ignoring unknowns and
points totally. It can thus only cope with very weakly coupled PDE systems. In Section
3.2, we recall the variable-based methodology and the main results on convergence as far as
important for our strategy.

Unknown-Based AMG (UAMG) Variable-based AMG can be extended in several ways in
order to cope with more strongly coupled PDE systems. The most straightforward extension,
the so-calledinknown-based AMGerforms coarsening and interpolation separately for the
individual unknowns by means of variable-based approaches applied to the diagonal blocks
A (n=1,...,n,). Quite a lot of experience has been gained with this simple extension
since its introduction in the early paper [71].

Unknown-based AMG and its range of applicability are discussed in detail in Section
3.3. In patrticular, we will see that necessary conditions for UAMG to work are that VAMG
efficiently works for all Ay, ,,), and that smoothing produces an error which is smooth for
each unknown separately. The last point will be seen to be closely related to the “strength”
of unknown cross-couplings which are completely ignored by UAMG for constructing coars-
ening and interpolation. If these couplings are too “strong”, this simple AMG approach may
become inefficient or even fail. A new measure for the strength of unknown cross-couplings
will be introduced in Section 3.3.

Point-Based AMG (PAMG) Since, for some practically very important PDE systems, the
unknown cross-couplings are indeed too strong for UAMG, one of our goals is to develop
approaches capable of handling such strong couplings. One important step in this direction is
the observation that for many PDE systetims different unknowns are discretized on (princi-
pally) the same gricgo that it appears to be quite natural to create the same hierarchy for all
unknowns. This is in contrast to what UAMG does. A concept which addresses both issues,
that is it allows for strong unknown cross-couplings and produces the same level hierarchy,
is the so-callegoint-based AMGWe speak of a point-based approach if coarsening takes
place on the level of pointpeint-coarsening) rather than variables as before.

Section 3.4 details general framework for PAMG approachesich is a main contri-
bution of this thesis. One key concept for PAMG is that point-coarsening is performed by
means of an auxiliary so-callgatimary matrix which is required to reflect the point cou-
plings in a reasonable sense. We discuss in Section 3.4.2 various ways to define concrete
primary matrices, some of which lead to “known” approaches, others to new ones. In Section
3.4.3, three general types of interpolation approaches are introduced and discussed, namely
block-interpolation, multiple-unknown-interpolation and single-unknown-interpolation. For

5To be more specific, all variables belonging to the same point either beCamé” so that, as a result, the same
level hierarchy is assigned to all unknowns. For details including a discussion of some exceptions, see Section 3.4.
Note that the basic idea of point-based coarsening can already be found in the early papers [71, 8].
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both primary matrices and interpolation schemes, we especially focalize on the development
of practical variants, that is variants which are computationally che@p/X") with a small
constant”), efficient and applicable to relevant and sufficiently large classes of PDE systems.
All our PAMG approaches make use of matrix entries and the VU and VP mappings. Only
for some approaches, additional information is needed, namely information on coordinates
of the grid nodes.

In Section 3.4.4, convergence of several typical PAMG approaches is proved under the
assumptiond > 0 (i.e. A € Aspd. Although many important PDE systems do not lead
to matrices in4spq, in NUMerical tests a similar observation as in the “scalar AMG case” is
made: A > 0 is not a necessary condition. The application of PAMG to very asymmetric
drift-diffusion systems (see Section 5.3) impressively demonstrates that PAMG can efficiently
work for considerable deviations from the “ideal” case.

Range of Applicability It seems clear that there exists no unique AMG algorithm which
will work satisfactorily for all systems of PDEs. Instead, major work is required for devel-
oping concrete approaches for relevant classes of applications. Our methodology with its
various components offers a great variety of approaches, which makes it very flexible for an
application to different specific problem classes.

UAMG can efficiently solve, for instance, certain typical applications arising in the field
of linear elasticity, at least if the simulation domain has a sufficiently large part of its boundary
fixed by Dirichlet conditions. In such cases, UAMG works usually more efficiently than
PAMG approaches. In Section 3.3, UAMG is discussed for appropriate model problems. The
model problems itself are defined in Section 3.1.3. Numerical results for linear elasticity
problems occurring in industrial semiconductor simulation are presented and discussed in
Section 5.2.1.

The flexible point-based strategy can cope with a variety of different PDE systems. This
is demonstrated for two important classes, namely reaction-diffusion and drift-diffusion prob-
lems. Throughout Section 3.4, a proper choice of primary matrices and interpolation schemes
is investigated especially for these two problem classes by means of suitable model problems
(defined in Section 3.1.3). We will see that for each of these two problem classes a dif-
ferent PAMG approach is required. Numerical tests demonstrate the effectiveness of our
point-based strategy for reaction-diffusion and drift-diffusion problems arising in industrial
semiconductor process and device simulation (see Sections 5.2.2 and 5.3).

In this chapter, we also consider some limits of our strategy. Problems for which none
of the AMG methods discussed in this thesis works efficiently include cases where the un-
knowns are too strongly coupled for an application of UAMG and, at the same time, exhibit
strong anisotropies in directions which are different for each of the unknowns so that a treat-
ment by PAMG is not appropriate either.

We also draw some comparisons to other AMG approaches for solving PDE systems
revealing that our general methodology covers (but is not limited to) many of the underlying
ideas.

A synopsis of our AMG strategies, their main features, their range of applicability, their
systematic realization and their efficiency for solving problems arising in industrial semicon-
ductor simulation will be given in the concluding Chapter 6.
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3.1.3 Model Problems

The following three model classes are used in the remainder of this chapter to illustrate several
aspects of unknown- and point-based AMG. The performance of different AMG components
applied to these classes is discussed, in particular, in Sections 3.3.3, 3.4.1.2, 3.4.2, 3.4.3.4,
and 4.6.

For all three model classes, we assume the unit sq0ar¥ to be the test domain with a
uniform grid with mesh sizé = 1/2P with p € IN. We do not explicitly discuss boundary
conditions, and assume, for simplicity, Dirichlet conditions everywhere.

Let e with 0 < ¢ < 1 be given. WithZ,.., we denote the standard 5-point stencil
discretization operator (cf. (2.30)), multiplied witf1,

-1
Loenpun(z,y):=| —€ 2+2 —¢ up(x,y)

—1 N

of the two-dimensional anisotropic Laplaciar-cu,, — uy, Wwith anisotropy in thez-
direction. Let’,,.. , denote the corresponding discretization with anisotropy igtigection.

Let L,.c = Ly, andL,.. = L. ;, denote the corresponding matrices emerging from a
standard lexicographic numbering of the grid points. Let the abbreviatienl;, denote the
corresponding matrix in the isotropic case: 1. Note that

Amin(L) = 4 (1 — cos(wh)) and Amax(L) = 4 (1 + cos(wh)) .

With these basic stencils and matrices we “compose” model problems now. We make
use of an unknown-wise ordering (2.16) of the variables to define the models and switch to a
point-wise ordering (2.17), whenever more suitable for discussing specific aspects.

3.1.3.1 Anisotropic Vector Laplacians

The matriced.,.., andL,.. ; are used to define the following three PDE system model prob-
lems which comprise our first model class. We generally assume for this and the following
models thati, b, ¢ are real constants andb positive. The discrete PDE system

v b
L ny | — (1]
A { Vjg) } { bz
with LA = LS = L&}L(G,a,b, C) = l: @ ¢ :| * |: LI:e’h 0 :l (31)

c b 0 Lz:e,h

represents the anisotropic vector Laplacian where the anisotropy is $athedirection for
the two unknown$. Analogously, the above discrete PDE system with
a c L. 0
LA = LD = LD,;L(e,a,b,c) = |: c b :| * l: Osh Ly:E_’h :l (32)

represents the anisotropic vector Laplacian where the anisotropy of the first unknds/n
again in theoppositedirection than the one of the second unknolvrSimilarly, the above

6The index “S” stands for “same direction” of the anisotropy of the first and second unknown.
"The index “D” stands for “different direction” of the anisotropy of the first and second unknown.
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discrete PDE system with

aL:L’:e,h CLh

LAZLX = LXJL(E,Cl,b,C) = CLh bLy-eh

(3.3)

represents another anisotropic vector Laplacian where the anisotropy of the first unknown
is in theoppositedirection than the one of the second unknown. We call the model problems
in this classanisotropic vector Laplaciansor AVL models throughout this thesis. More
precisely, model (3.1) is called AVLS model, model, (3.2) AVLD model, and (3.3) AVLX
model.

Note that, unless = 1 or ¢ = 0, the matriced., are not symmetric whereas the matri-
cesLg and Ly are always symmetric. Ignoring boundary conditions, we obviously get the
following stencils - a pointwise ordering assumed now -

0 (—1)*[‘; Z} 0
Ls= | (—o)+ gg] (2+ze>*[g g} <e)*[g g} ,
a C
0 (—1)*[0 b} 0 )
0 Ze e 0
w=| | e S esaliy] (28 S
—a —€C
0 | —c¢ —eb | 0 N
0 gy 0
Ly = {—ea —c} [(2—1—26)@ 4c } [—ea —c]
¢ b 4c (24 2e)b c b
0 e o 0 X

The (Lx )k are symmetric positive definite if and onlydb(1 + €)> > 4¢?. The nonvan-
ishing (Lx) 1y (k # 1) are symmetric positive definite if and onlyeiib > 2.

The (Ls) k) are symmetric positive definite if and onlydb > c2. If the latter holds,
we have(Ls) ;) < 0 for all non-vanishing Ls) ;) with & # 1. Since each eigenvalue of
L is of the form eigenvalue of ... , times eigenvalue ofl;, 1), Ls is symmetric positive

definite then, and in addition of essentially block-positive type (2.34) (with the constdnt
(2.34) being 1).
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3.1.3.2 A Class of Reaction-Diffusion Models

As a simple model exhibiting some important properties of the reaction-diffusion systems
investigated in Section 5.2.2, consider the reaction-diffusion operator

RN

0 —Auy g2(u1, u2)

For our model class, let, = f(z, y)us andgs = f(x, y)u; with a positive functionf. With
—A being discretized by means of the standard 5-point stencil, we arrive at the following

matrices:
L D
A= [ DI } (3.4)

whereD = (d;;) denotes a diagonal matrix with; = h?f(x;,;). For our model class, we
restrict ourselves to the following:

d c:=h%f for1<i<n,
“ o otherwise,
with 1 < n, < n, and a constant (functiorjj > 0. The model problems in this class are
calledRD modelsthroughout this thesis.
Obviously, all “problematic” couplings are located on the block diagonal, to be more

4 dpg
dk:k 4
Besides these point matrices, the unknowns are decoupled. Fowih d;, = ¢, we have
A,y > 0ifand only if ¢ < 4. Forn, = n,, the eigenvalues ofl can easily be seen to
be (L) £ c. In this case, we arrive &tnin(A) = 4 (1 — cos(mh)) — c. Since the smallest
eigenvalue o# is, for alln, larger or equal to the smallest eigenvalud.ahinusc (due to
Lemma2.1) 4 € Aspgholds ifh? f = ¢ < 4(1—cos(rh)). Note thatl — cos(rh) = O(h?).
The parametersandn, will be used later on to adjust the strength and number of unknown
cross-couplings, respectively.

specific, on the first, point matrices4;, i) = [ wheredy, = ¢ = h2f > 0.

3.1.3.3 A Drift-Diffusion-Like Model Class

We consider the following class of matrix equations, mimicing some important properties of
the drift-diffusion systems discussed in Section 5.3,

AL I -1 ’U[1] b[l]
_fn * Ll.:6 L 0 * ’U[Q] = b[g] (35)
fp * L 0 L v[3] b[g]

where the vector;; shall reflect the potential, v, the electron concentration andus the
hole concentratiop. Let A\, ¢ be positive constantd, denote the identity, and the functions
fn, fp be defined as

fo(z,y) == cexp(10zy) , fplz,y):=1.
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We wiill discuss the cases
ec{le-3, L, (\c) e€{(1,1),(1e-3,1e3,(1e-9,1e9} ,

so that among andp the electron concentrationis always the “dominant” species here (see
Example 3.5). The system’s matrikis not symmetric. Moreover, the largerthe stronger
the asymmetry ofd. Throughout this thesis, we call the model problems in this diz3s
models

3.2 Variable-Based AMG

In this section, we recall the essential aspects of classical, variable-based AMG (VAMG) as
described in [87]. We consider the derivation of variable-based criteria and techniques for
smoothing, coarsening and interpolation as well as results on convergence of two-level meth-
ods. We will follow, in principle, the considerations made in [87]. Additions are provided by
Sections 3.2.3.4, 3.2.5 and 3.2.6.

This section mainly serves as a preparation for the subsequent sections since the com-
ponents of VAMG, suitably modified or generalized, provide the basis for each approach
which belongs to our AMG methodology for PDE systems. Under suitable conditions, most
of the convergence statements will be shown to carry over to “analogous” unknown- and
point-based approaches, as will be discussed in Sections 3.3.2, 3.4.1.1 and 3.4.4.

VAMG has been developed in the variational context. Hence, the theoretical investigation
of convergence is most naturally done w.r.t. the energy norm, provideditba® holds for
the matrix A given. We have already seen in Section 3.1.1 that the Galerkin coarse-level
operator then fulfills a variational principle. Because of this, and under natural additional
assumptions, convergence of all approaches of our AMG methodology can be proved, which
ensures a minimal robustness. However, since we have the solution of prollesesn
mind - for instance the class of matrices representing a PDE discretized on increasingly finer
grids and/or with varying “physical parameters” - convergence results are of practical im-
portance only if convergence can be prowsdformlyfor relevant matrix classed. In the
remainder of this section, we will hence discuss what has been achieved so far on that score
for VAMG.

In Section 3.2.1, we will explain the central concept of algebraic smoothness and obtain
a concrete measure for tienoothing propertpf a relaxation operator. In particular, it will
be proved that Gauss-Seidel fulfills the smoothing propenijormly within the important
class.Ag; of Stieltjes matrices, for instance. An interpretation of the smoothing property
for certain important situations gives us several guidelines for designjig splittings and
interpolations later on.

The interplay between smoothing and coarse-level correction is studied for the two cases
post- and pre-smoothing in Sections 3.2.2 and 3.2.4, respectively. In the case of post-smoo-
thing, the focus is on criteria for suitabl&/ F-splittings and interpolations and on the deriva-
tion of concrete interpolation formulas, provided suitable coarser levels to b givethe
case of pre-smoothing, we concentrate more on ways to improve the “quality” of smoothing

8Note that concrete coarsening procedures will not be discussed before Chapter 4.
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and interpolation by “brute-force methods”, so-callfedmoothingandJacobi interpolation
which will prove their usefulness for “tough” problems. Post- and pre-smoothing are tightly
coupled but provide a different point of view. For both cases, we can prove two-level con-
vergence theorems with concrete upper boéifaisthe convergence rate. Moreoveniform
two-level convergence can be proved, in particular, for weakly diagonally dominant Stieltjes
matrices.

Remarks: If a theorem or lemma is only a special case of results for more general, point-
based approaches, its proof is postponed to Section 3.4. Proofs which can already be found
in [87] are mostly not repeated. Also far more examples than discussed in this section can be
found in [87].

3.2.1 Algebraic Smoothness

As indicated in Section 2.3, smoothing and coarse-level correction play formally the same
role as in geometric multigrid, although the term “smoothing’refers to different notions: In
geometric multigrid, “smoothness”of an error is always related to two consecutive grids: An
errorey, on a given fine grid is said to lmeeometrically smoothif it can be well approximated

on the next coarser grid (of a predefined grid hierarchy). This notion of smoothness does not
make sense in the context of algebraic multilevel approaches with automatic level construc-
tion because there is no predefined level hierarchy and, eventually, the problem to be solved
has not even a geometric background at all. However, if we interprete the given smoother
S as basic solver fodv = b, the purpose of the coarse-level correction is to accelerate this
solver. Therefore, an erreris defined to balgebraically smoothif the smoother stalls, i.e.

if ||Se|| = ||e|]| in some appropriate norm. In other words, an error is called algebraically
smooth if somethingas to bedone to speed up convergence - in the AMG context, by means
of a properly constructed coarser level.

For symmetric positive definite matricds a concrete definition of the “smoothing prop-
erty”of the relaxation operata# is introduced next. We follow the concept introduced in [8]
and interprete it for certain model classes which will give us a basis for constructing AMG
coarsening and interpolation.

3.2.1.1 Smoothing Property of Relaxation

The eigenvalues and -vectorsif ' A play a special role in investigating classical smoothers
such asv-Jacobi § = I — wD~!A) with a proper underrelaxation parameteand Gauss-
Seidel 6 = I — Q~'A). For both schemes, eigenvectors corresponding tcsthalest
eigenvalues ofD~' A typically determine the convergence §finterpreted as a solver of

Av = b. The smaller the smallest eigenvalues, the slower the convergence and, hence, the
“smoother”the corresponding eigenvectors (at least) in the algebraic sense.

Clearly, the smallest eigenvalues Bf ' A can be assumed to approach zero for all rel-
evant applications which can profit from multi-level improvements, because otherwise clas-
sical relaxation schemes would converge rapidly on their own. As an example, consider a
standard elliptic PDE of second order, standard second-order discretized on a square grid

9The upper bounds are usually far too pessimistic, though. See Remark 3.4.
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with mesh sizéh: The smallest eigenvalues ¥~ A can be shown to satisfy = O(h?) and
the largest onea = O(1).

Remark 3.2 If the PDE mentioned previously is isotropic (e.g. Poisson-like), the smallest
eigenvalues correspond to just those eigenvectors which are very smooth geometrically, and
the large eigenvalues to geometrically non-smooth eigenvectors. Here, geometric coincides
with algebraic smoothness. But this is not always the case and may be (for extreme non-PDE
examples) even the other way around (see [87] for an example). Consequently, instead of
“algebraically smooth”one should better spealslofv-to-converge say. However, we stick

to the term “algebraically smooth” for historical reasons. A

We will now make use of inner products and norms defined in Section 2.4.5 for a classification
of eigenvectors oD ~! A. First, we summarize some basic relations.

Lemma 3.3 [87] Let A > 0. Then the following inequalities hold for al
lell} < llellollell2, el < p(DT A)lellF,  [lellf < p(D™"A)|lel[ (3.6)
The application of these norms to the eigenvectoos D' A yields obviously
D™'A¢ = X = (|lgl3 = Al|¢l|? and||g|[} = All¢[[3 ) - 3.7)

Proof. The first inequality follows from Schwarz’ inequality, the other two from (2.591

If applied to an algebraically smooth erro= ¢ (A close to zero), the above three norms are
largely different in size:

ol < [[¢llr and [lo]ly < {l¢llo- (3.8)

On the other hand, if applied to algebraically non-smooth error, the three norms are compa-
rable in size. This observation motivates the significance of these norms: by comparing e.g.
the size of the 1- (energy-) and the 2-norm it is possible to identify slow-to-converge error,
giving rise to the following, central definition:

A smoothing operatof is said to satify thesmoothing property w.r.t. a matrix4A > 0
if for all e
1Sell} < |lelli —allell3 (o >0) (3.9)

holds witho being independent ef. S is said to satisfy the smoothing property w.r.t.
classA of matricesA > 0 if (3.9) holds uniformly for allA € A, i.e. with the same'.

1)

As a consequence and in accordance to the motivation of (3.9), an op&nratuich satis-
fies the smoothing property efficiently reduces an e¢ras long as|e||- is relatively large
compared withe||1. If |e]]2 < ||e|]1, i.e. if e is algebraically smooth stalls.

Obviously, o|le||3 < ||e]|? is necessary for (3.9) to hold which, because of (2.59), is
equivalent top(D~1A) < 1/0. Consequently, a necessary condition for (3.9) to hold uni-
formly for all A € A is the uniform boundedness pfD~!A) in A. This is indeed satisfied



44 Chapter 3 A General AMG Methodology for PDE Systems

for all important subclasses ofspq under consideration here. That especially Gauss-Seidel
relaxation fulfills the smoothing property (3.9) uniformly within important matrix classes will
be shown below. Let us first make the following remark.

Remark 3.3 In other applications, there might not exist an algebraic smooth error at all. For
example, ifA > 0 is strongly diagonally dominant, i.e. if it fulfilla;; — Z#i la;j| > dai;

with 6 > 0, we havep(A~'D) < 1/§ which is equivalent td|e||3 > §||e||? for all e. If e

was algebraically smooth, we would hence arrivé|at/|? < 1|le||} due to the necessary
conditiono||e||2 < ||e||? stated above. This cannot be satisfied for sufficiently large

But because multi-level methods are not required to speed-up one-level methods for such
matrices, we tacitly exclude such cases. A

In the following, important results on the smoothing properties of the classical smoothers
Gauss-Seidel and Jacobi are collected. More detailed discussions of different relaxation
schemes can be found in [8, 71, 87].

Theorem 3.2 [87] Let A > 0 and define with any vectar = (w;) > 0
._ 1 S wjla| — 1 S wylas|
Y- = mlax wan 2 wjlagg| ¢y V4= miax o 2 wj|agj| o -

Then Gauss-Seidel relaxation satisf{@®)with o =

1
Ay ) (A+v4)
For aproof, see [87]. This theorem also emerges as a special case of Theorem 3.1@

Gauss-Seidel satisfies the smoothing property (3.9) not only fad alt 0 but uniformly
within all important classesl of matrices under consideration here:

e For all Stieltjes matrices, (3.9) is satisfied with= 1/4. This is because there exists a
vectorz > 0 with Az > 0. By choosingw = z in Theorem 3.2, we obtain

1 1
V- = m?x{ 2 Zzﬂmj'} - mlax{l  ziay szaij} <t

7<i

Similarly, we obtainy, < 1.

e This result carries over to each > 0 which is obtained from a Stieltjes matrix by
symmetrically flipping some or all off-diagonal signs.

e For eachA > 0 with < [ nonvanishing entries per row, (3.9) is satisfied witk- 1/72.

e In practice, usuall}zjﬂ |a;j| ~ a;; holds. Therefore, withv; = 1, v and~,. can be
expected to be close to or even less than 1. Henee,1 /4 is a typical value for many
applications.

Also w-Jacobi with a suitable relaxation parametefulfills (3.9), with o =~ 1/2 being a
typical value (see [87]).
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3.2.1.2 Interpretation of Algebraically Smooth Error

The exploitation of what smooth error “looks like” is the key for constructihg-splittings

and interpolation schemes suitable to speed up the convergence behavidrtedrefore, in

this section, algebraically smooth error is heuristically characterized for a typical smoother,
namely Gauss-Seidel relaxation, and for important subclasség@fBoth characterizations
start from the fact that, i§ fulfills the smoothing property (3.9), an algebraically smooth error
(Se = e) is characterized byje||2 < ||e||1. With the results obtained here we will later on
motivate interpolation schemes and criteria for construdfifig’-splittings.

Gauss-Seidel Relaxation In terms of the residuat = Ae, the inequality|le||s < ||e||x
evaluates to

(D', r)p < (e,7)5 (3.10)
This states an important characterization of algebraically smooth error: corresponding scaled
residuals are much smaller than the errors themselves. Let us investigate this further for a

typical AMG smoother. Gauss-Seidel relaxation, performed for variahleorresponds to
replacingv; by 7; where

1 1 T

U= —b;i — iV | = — | @ivi +b; — iV | = v+ — .

v a < Za ij> @ (a v; +0b Za ]vj) v; + s (3.11)
J#i J

or, in terms of the corresponding error:

éi, = €; — i . (312)

273

Here,r; denotes the residubkforethe relaxation of variable;. For an algebraically smooth
error, i.e.e; ~ e;, we can heuristically conclude thiat| < a;;|e;| and thus

ai;e; + E Q;5€;

JEN;

< agiles| . (3.13)

That means, although the error may still be large globally, locally it can be approximated by
a function of its neighboring error values :

ai;€; + Z Q;j€5 = 0. (314)
JEN;

In this sense, an algebraically smooth error provides some rough approximation to the solu-
tion of thehomogeneous F-equatiotrrer + Apcec = 0. In Section 3.2.3, the derivation
of interpolation will directly be based on this equation.
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Interpretation for Subclasses of.Aspg  Another way of interpreting smooth error is based
on the fact that, because of Lemma 3.3, the inequilif}s < ||e||; implies|le|]1 < |le]lo-
For all matrices4, ||e||? can be split as follows:

1
||€||% = 52( alj)( Zal] e +e (315)
i,J
SinceA is assumed to be symmetric, this can further be simplified to
1
llell? = 52(—%‘)(61' —e)?+ ) siel (3.16)
i,J i

with s; being thei-th row sum ofA,
s; = 8;(A) == Zaij . (3.17)
J

The inequality||e||; < ||e||o is now reformulated for the clasdess A matrix A > 0 of
essentially positive type has to fulfill (2.31). Due to this and the splitting (3.16), the inequality
lle|| < |le]|o is equivalent to

C _
S e + s« Vet
i, [ [

In the most important case ef > 0, we thus have, on the average for each

, )2
= Z - <1

J#t

which can be interpreted as follows: An algebraically smooth error varies slowly in the di-
rection of large negative connections, i.e. frepto e; if |a;;|/a;; is relatively large. Even

if there are positive couplings in the matrix, an algebraically smooth error changes slowly in
their direction, as long as they are not too large - i.e. as long as there exist strong negative
paths for them (see Section 2.4.4 for examples). Since a subclakssi$ the classAs; of
Stieljes matrices, the above interpretation directly carries ovdistdut with the simplifica-

tion that there are no positive off-diagonal entries.

In the general case, howevergif; > 0 exceeds a certain size, the above cannot be expected
to be true any more. This can be seen by transforming the equality (3.16) further. The value,

i = ay — Z |asjl,
J#i
which can be used as a measure of diagonal dominance (cf. (2.26)), is relatethyto
si=ti+2Y,, a;;.. Therefore, we arrive at

el = 3 3 (S legltei— e + e e+ ) + Yt @

R E) J#i
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Assumingt; > 0 (weak diagonal dominance)e||; < ||e||o now means, on the average for
eachi,

a.. _0.)2 a‘_f‘_ . N2
Z‘ z]|(ez 2ej) +Z| zg‘(ez‘i‘ej) <1. (319)
(0777 € (477 €
i (12 i i 17
Consequently, ifz;; is positiveand a;;/a;; relatively large,e; tends to approximate-e;
relatively to the size o#;. This leads to the following general conclusion:

For all (approximatively) weakly diagonally dominant matricds > 0, relaxation
schemes which satisfy the smoothing prop€3t®) smooth the error along largeeg-
ative connections, but tend to oscillate along laggesitiveconnections.

3.2.2 Post-smoothing and Two-Level Convergence

We now combine the already gained results on the variational principie f K2 and the
smoothing property to obtain a two-level convergence estimate which is stated in Theorem 3.3
below. Afterwards, we discuss the so-calledondition of interpolation which represents a
sufficient condition for the convergence estimate to hold and will serve as a measure to assess
the quality of interpolation. Together with the above interpretations of algebraic smoothness,
it will be used to derive concrete interpolation formulas.

We adopt, as before, the theoretical approach introduced in [8] and further developed in
[71, 87] and investigate the case of post-smoothing. We assume one smoothing step per cycle,
that is, the two-level operator to be considered is.

3.2.2.1 A Theorem on Two-Level Convergence

Our goal now is to havéKe as small as possible. Hence, for a good interplay between
smoothing and coarse-level correction, the error after the coarse-level correctioi’step,
needs to be “relaxable”so that the smootlsecan effectively work again. Assuming the
smoothing property (3.9) to be fulfilledye should therefore be far away from being alge-
braically smooth, that is we walitie||, to be bounded from below byyKe||;. That this
condition ensures convergence of the two-level methiédis stated in the following theo-
rem:

Theorem 3.3 [87] Let A > 0 and letS satisfy the smoothing proper($.9). Furthermore,
assume th€'/ F-splitting and interpolation to be such that

Ve : ||Kellf <7||Ke|l3 (3.20)
with somer > 0 being independent ef Thenr > o and||SK||; < /1 —o0o/T.

Proof. Combine (3.9), (3.20) andK||; = 1. |

Remark 3.4 We want to stress already here that Theorem 3.3 and the following theorems
can be used to investigatmiformtwo-level convergence and to obtain principal guidelines.
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The concrete upper bounds obtained, however, are usually far too pessimistic. For instance,
for the matriced., i.e. the Poisson equation discretized by means of the standard five-point
stencil on the unit square (for a definition bf see Section 3.1.3}, = 2 (for an explanation,

see Remark 3.8), and = 4/9 (see Section 3.3.3.1), we obtajfil —o/7 = /1 — 4.1 ~

0.88. This upper bound cannot explain the efficiency of AMG, observed in practice, for the
ideal model case of a well-discretized Poisson equation. A

3.2.2.2 Ther-Condition of Interpolation

Condition (3.20) is difficult to examine in practice and does not really embody what we
need: practical measures which help to judge directly the quality ofgur-splitting and
interpolation and which help to create suitable splittings and interpolation operators. The
next theorem on a sufficient condition for (3.20) is an important step in this direction:

Theorem 3.4 [87] If A > 0 and if theC'/ F-splitting and interpolatior/ ¢ are such that
Ve : |ler — Ipcecls p < llell} (3.21)
with 7 being independent ef then(3.20)is satisfied.

Henceforth, (3.21) is called the-condition of interpolation. It will serve as a measure for
the quality of theC'/ F-splitting and interpolation, not only for variable-based but - general-
ized in a straightforward way - also for unknown- and point-based approaches.

The 7-condition (3.21) is non-trivial only for an algebraically smooth emorThis can
easily be seen if we apply (3.21) to the eigenpéirs\) of D~ A and use Lemma 3.3:

lor — Ircdclls r < Arllgll5 -

This implies a non-trivial condition only for thogewhich correspond to the small eigenval-

ues of D1 4, i.e. the algebraically smooth eigenvectors. Critical for a uniform fulfillment of
the 7-condition is therefore the accurate interpolation of those eigenvectors the eigenvalues
of which tend to zero ifA varies inA.

Remark 3.5 As mentioned in Section 3.2.1.1, in case tHatonsists of the matrice$ = A,
emerging from the standard second-order discretization of an isotropic elliptic problem on
grids with mesh sizé, algebraically smooth eigenvectors bf ' A are also geometrically
smooth and their eigenvalues satisfy= O(h?). In such cases, (3.21) is closely related to
the requirement of first-order interpolation. A

As already pointed out in discussing the smoothing property, we are interested in uniform
convergence within reasonable clasgesf matricesA, representing e.g. similar problems
on differently accurate grids. In the last section, it was already shown that for important
subclasses afls,q the standard Gauss-Seidel relaxation fulfills the smoothing property uni-
formly. Hence, to have also uniform two-level convergence in the sense of Theorem 3.3
within a classA, it is sufficient to develop criteria for suitabg/ F-splittings and for the
construction of concrete interpolations which satisfy-theondition (3.21) uniformly within
A.
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3.2.3 Interpolation Schemes

In the following, we explain the general variable-based approach for constructing interpola-
tion and state theorems on the quality of concrete basic interpolation schemes measured in
terms of two-level convergence. In particular, we explain the relationships of interpolation to
both smoothing and’/ F-splitting since the interplay of these three processes determines the
efficiency of the overall approach. For our concrete procedure in defining these processes,
this means that we discuss how our interpolation schemes are derived from properties of the
smoothing property, how th€/ F-splitting and interpolation influence each other, and which
conditions on the”'/ F-splitting can be derivéd. Theorems from [87] on two-level conver-
gence will be stated for concrete basic interpolation schemes. In particular, we will see that
uniform convergence for important subclassesdgfq can be guaranteed. The “ideal” case
will be seen to be the class of weakly diagonally dominant Stieltjes mattiteg(1.Asy). We
will also make remarks on handling matrices deviating from this ideal case. See especially
Sections 3.2.3.3 and 3.2.3.4.

In order to motivate the general approach in constructing interpolation, we recall that
(3.21) is a nontrivial condition only for algebraically smooth error. For such error, however,
we have seen in Section 3.2.1.2 that the homogeneous F-equations (3.14),

ai€; + Z aij€5 = 0 (Z € F) 5 (322)

JEN;

are approximately satisfied. Consequently, the definition of interpolation will also be based
on these equations. This means that the definition of the interpolation weigtits

e, = Z Wij€j (’L € F) (323)
JEP;

has to be such that (3.23) approximates (3.22) foi allF'.

Remark 3.6 Variables which are (nearly) not coupled to any other variable, corresponding to
matrix rows with all off-diagonal entries being (nearly) zero, do not require any interpolation.
Often, they arise from Dirichlet boundary conditions and are cag=sentially isolated vari-
ables Of course, such variabléwwill always become F-variables with “empty”interpolation
formulas (3.23)w;; = 0. For simplicity, they argacitly excludedn the following. A

We always assume in this section that we have already determi@gd ssplitting and sets

of interpolatory variablespP; (i € F). The C/F-splitting and theP; are, however, very
important for the quality of the interpolation itself. Generally, in order to allow the F-variables
to be interpolated from C-variablethe splitting has to be such that each F-variable has a
“sufficiently strong connection” to the set of C-variablésee also the conditions a proper
C'/ F-splitting should fulfill as discussed in Section 4.2.1.1). Although this connection does
not necessarily have to be u#rect couplings, in the following we only consider, for ease of
description, the so-calledirect interpolation where theP; are subsets af' N NV;, that is an

10Concrete algorithms for splitting a s@tinto C' and F', however, will be explained in Section 4.2.
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F-variable; is interpolated from a subset of the C-variables which belong to the neighborhood
N; of i. In practice, howeveindirect interpolationschemes, astandard interpolatiorand
multipass-interpolationplay an important role. Some remarks on these are made in Section
3.2.3.5, and detailed explanations of corresponding algorithms can be found in Section 4.3.
There, also other types of interpolation weidhtsre discussed.

3.2.3.1 Stieltjes Matrices

We have seen in Section 3.2.1.2 that for weakly diagonally dominant Stieljes matrices alge-
braically smooth error varies slowly in the direction of stroragativecouplings. To be more
specific, we define a variabldo bestrongly (negatively) coupledto a variablej (i # ) if

—aij > esprmaxfag;| (3.24)
J#i

with someeg, > 0, a typical value being 0.2%.

An error at a variable is thus essentially determined by the weighted average of the error
at the variableg it is strongly coupled to, i.e. its “strong neighbors”. Consequently, assuming
( # P; C C N N;, the more strong couplings of any F-variablare contained i, the

better will 1
Z Z ajje; = Z ai;€; (3.25)
iep % jcp, 2jen, i JEN;
be satisfied for smooth error. This suggests approximating (3.22) by
. ;i
a;;6; + o Z a;je; =0 with o; = @ (3.26)
e 2jep, ij

which results in an interpolation scheme (3.23) with matrix-dependent, positive weights
Wij = —Oéiaij/a“‘ (Z € F, j e Pi) . (327)

Theorem 3.5 below states that this interpolation scheme fulfitscandition (3.21). Note
that the row sums of (3.22) and (3.26) are equal and we have

(0771 (1 — Z ’LUij) = S; (328)
JEP;

which shows thad . p w;; = 1if s; = 0. Hence, constants are interpolated exactly in the
limit case of a zero row sum matfk

Lj.e. except of weights based on entries/bfis considered here, an example for an alternative being weights
based on coordinates.

2We will use this measure of strong connectivity in Section 4.2 to construct fife-splitting.

13For regular matrices, this is not the case. Instead, the weights are chosen Bgdtiat equals the result of
one Jacobi step applied to (3.22) with the veeter 1+ (i.e. vector with all components being ones) as the starting
vector. Cf. also Section 3.2.4 feglaxation of interpolation
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3.2.3.2 Essentially Positive Type Matrices

Also for matricesA € AessWith s; > 0 for all 4, algebraically smooth error varies slowly
in the direction of strongnegativecouplings (see Section 3.2.1.2). For them, we could use
the same interpolation scheme as described above. Remembey;that0 for all j € P;,
and that, for allA € Aess €ach row containing off-diagonal entries has at least one negative
off-diagonal entry (see Section 2.4.4). The weights (3.27) are positive again.

However, in practice, we want to implement an interpolation which - at least formally
- can be employed for matrices which do not strictly fulfill the conditichss Agss and
s; > 0 for all 4, for instance, because they contain some particularly large positive off-
diagonal entries. Other typical examples are provided by the discretizations (2.32) or (2.33)
with Dirichlet boundary conditions. The resulting matricésare in Aess but do not fulfill
s; > 0 nearboundaries In such casesz ien, Qij might become zero or even positive for
certaini € F', and we would obtain zero ‘or even negative interpolation weights. According
to the heuristic considerations in Section 3.2.1.2, it can be assumed for matricedess
with s; > 0 for all ¢ that an algebraically smooth error satisfies

Zawe] ~ Zauel ieF) (3.29)

which, for j # 4, requirese; ~ e; or a - to be small relatively ta;;. This suggests adding
all positive entries to the diagonal. We use

. al_
ai;e; + a; Z ai_jej =0 witha; =ay + Z a;-"j , O = % (3.30)

JEP: JEN; 2jep:
instead of (3.26), which yields in all cases positive weights
Wi = —aia;j/&ii (ieF, jep). (3.31)
The row sums of (3.30) and (3.22) are equal, and
aii<1 = wj> =5 (3.32)
JEP;

so that constants are interpolated exactly in the limit case of a zero row sum matrix.

The above interpolation can formally be applied to any matrix> 0 and anyC/F-
splitting provided that?; € C' N N;” andP; # () for eachi € F. The following theorem
holds:

Theorem 3.5 [87] Let A € Agsswith all s; > 0. With fixedr > 1 select aC'/ F-splitting so
that, for eachi € F, thereis asef’, C C N N, satisfying

> agl = = Z lag;] - (3.33)
JEP; jeN

Then the interpolatio3.23)with weightg3.31)satisfies the-condition(3.21)with = 7 /¢
and thec of (2.31)
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Proof. A direct proof can be found in [87]. Additionally, this theorem emerges as a special
case of Corollary 3.1 (see Corollary 3.2 in Section 3.4.4.2). [ ]

This theorem shows that thecondition(3.21) can be satisfied uniformly, for instance
within the class of weakly diagonally dominant Stieltjies matrices whenever th&;sets
(€ Cn N;") are reasonably large.

Remark 3.7 Criterion (3.33) shows thattrong couplings enhance convergence, tugak
ones only increase computational efforts. Therefore, to satisfy (3.33) with as few C-variables
as possible, the splitting should be arranged such that C-variables are only chosen from
the strongest couplings of every F-variable. This just means coarsening in the direction of
smoothness. See also the discussion in Section 4.2.1.1. A

Remark 3.8 Obviously, the concrete choice ofis crucial: on one hand, the largey the
weaker is assumption (3.33) and the faster the coarsening can be, but the two-level conver-
gence will be very slow. On the other hand,= 1 gives best convergence, but forcab
neighbors ofi € F into C. As discussed in [87], this approach, applied recursively, will
result in an extremely inefficient (direct) solver. A reasonable compromise=is2 which

means, ford € As;, that about 50% of the total strength of connections of every F-variable
has to be represented on the next coarser level. In practice, however, coarsening may still be
too slow, especially for matrices which have many row entries of similar size. A

Remark 3.9 Other variants of interpolation weights, which are usually less efficient or some-
times even not defined, are discussed in [87]. A

The requirement of; > 0 for all ¢ in the previous theorem is sufficient but not neces-
sary as the following theorem shows. However, the two-level convergence rate suffers from
negative row sums;

Theorem 3.6 [87] Let A be an essentially positive-type matrix with > —x with some
Kk > 0. AssumgAe,e)rg > e(e,e)g for all e with somee > 0. With fixedr > 1, select a
C'/F-splitting as in Theorem 3.5. Then the interpolati@?23)with weights(3.31) satisfies
the7-condition(3.21)with 7 replaced by somé = 7 (e, , ¢, 7). As a function of andx, we
haver — ccif Kk = cc0ore — 0.

Example: This theorem can be applied, for instance, to matridesorresponding to the
stencils (2.32) or (2.33) with Dirichlet boundary conditions, since they arkigbuts; > 0
does not hold near boundaries. A

Remark 3.10 While uniform smoothing is guaranteed.ity;, the above theorem shows that
the7-condition of interpolation cannot be expected to be fulfilled uniformly in this complete
class, only in subclasses, as for instance the clags) Awqq (S€€ box above).

A counterexample is the subclass of matriges- A. defined by discretizing the Helm-
holtz operator-A — cI on the unit square with Dirichlet boundary conditions and with fixed
meshsizeh. For discretizing—A, the standard five-point stencil is used. In lexicographic
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numbering, we obtaidl, = h%Lh — cly,. Let \y be the smallest eigenvalue é}Lh andeg

be a corresponding eigenfunction (normalized so fhat|z = 1). We then havé|eg||? =

Ao — ¢. Therefore, for ther-condition (3.21) to hold uniformly, its left hand side has to
approach zero if approacheg,. This means that the first eigenfunctiag ) of the Laplace
operator has to be approximated with increasing accuraey-f Ag, which is normally not
true unless special interpolation techniques are used. A

Remark 3.11 Not in all cases, the first eigenfunctions produce problems as in the example
above. For instance, il is a zero row sum matrix (a limit case since we consides 0 in

this chapter), the constant functions are eigenfunctions. They, however, do not produce such
problems since they are interpolated exactly by our interpolation schemes. A

3.2.3.3 General Case

As has been shown in [87] for an example, the approximation (3.30) becomes less accurate in
the sense of (3.21) if (3.29) is strongly violated. This indicates that the treatment of positive
couplings in interpolation is very critical in general. For instance, we have seen in Section
3.2.1.2 for matrices! € AspqgWhich are approximately weakly diagonally dominant that we
have to expect an oscillatory behavior of algebraically smooth erray; it> 0. The oscil-
lations are the stronger the larges is relative toa;; (see (3.19)). However, we can expect
that those:; corresponding to positive couplings; > 0 change slowlyamong each other
unlessa;; is so small that it can be neglected. This gives rise to the following generalization
of the interpolation scheme (3.27) which is completely symmetric in handling negative and
positive couplings.

If a variablei has both negative and positive couplings and@é’-splitting is such that
bothC N N, 2 P # @ andC N N;" 2 Pt # () hold, we can use the approximation

ai€; + oy Z aije; + ﬁl Z ajjej = 0 (334)
JEP, JEP
Z ; — Qg4 Z . + A
with oy = =L% Y and g == Y (3.35)
2jep i 2jept @i
to define the interpolation scheme. The following interpolation weights emerge:
P P ic P~
wy; = azau/au (j € 2+) s (336)
—Biaij/ai  (j € P .

We havew;; > 0 (j € P7) andw;; < 0 (j € P"). If either Nt = 0 or N = 0,
these definitions are to be modified in a straightforward way by seffjng= 0, 8, = 0 or

P~ =10, a; = 0, respectively. In particular, for Stielties matrices, the above interpolation is
identical to (3.27). The row sums of (3.34) and (3.22) are equal and

(0777 <1 — Z wij) =S; , (337)

JEP;
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which shows that also here constants are interpolated exactly if all row sums are zero. Anal-
ogously to Theorem 3.5, we obtain

Theorem 3.7 [87] Let A > 0 andt; = a; — ZjeNl_ la;;| > 0. With fixedr > 1 select
a C/F-splitting such that the following holds for ea¢he F: If N, # 0, there is a set

P~ C Cn N, satisfying
1
D laigl = = > fayl (3.38)

JEP JEN]
and, if N;* # 0, there is a seP;" C C'N N;" satisfying
> ai 1 > ai;. (3.39)
1] = . 1]
jEPT JEN
Then the interpolatiof3.23)with weights(3.36)satisfies the--condition(3.21)

Proof. A direct proof can be found in [87]. Additionally, this theorem emerges as a special
case of Corollary 3.1 (see Corollary 3.2 in in Section 3.4.4.2). |

Analogously to Theorem 3.6, a straightforward extension of the above theorem to the
caset; > —k with somex > 0 can also be proved.

The above interpolation scheme, which has been developed for matricesAqg,
can be used for all matrices, at least technically. However, its “quality” will suffer cpn-
siderably, in particular, from a violation of weak diagonal dominance. In general, the
treatment of large positive off-diagonal entries is critical for AMG's efficiency.

3.2.3.4 Elimination of Positive Couplings

The question arises if and how we can handle matri€es Aspq \ Awda appropriately. In
particular, it is an open question in general how we should treat large positive entries when
constructing coarsening and interpolation. Although a general answer might not exist, a
remedy which we caklimination of positive couplingsften helps in practice increasing the
robustness of AMG for matrices with large positive entries. In contrast to incorporating such
entries explicitly, as done in the last section for constructing interpolation, this remedy tries
to “get rid” of (large) positive entries. It can heuristically be motivated as follows.

An example for a practically relevant matrik € Aspq Which isnotin Ayqqg is the matrix
which corresponds to the stencil (2.28) with= 0 anda = 1/4,

L[ -4 1 —1y/4

AR 00
“1/4 -1 174 ],

For instance, Gauss-Seidel relaxation foproduces errors which are (geometrically and al-

gebraically) smooth ig-direction. However, a coarsening process based on (3.24) does not
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detect the direction of smoothness. Although it ignores the positive etifiess is appro-

priate for the above matrix, it regards the entriels/4 as being strong due to the standard
choiceey,, = 1/4. A simple remedy for the above matrix would be @ap > 0.25. This
workaround, however, does not help in general since it does not address an appropriate han-
dling of large positive matrix entries. Often, a better way to decide on strength of connectivity

is to “eliminate” (large) positive entries by inserting their corresponding stenéilsly for

and) prior to deciding on the strengthmédgativecouplings. For the above stencil, one such
elimination step produces the stencil

) 1/14 0 -1 0 1/14
x| 2140 2 0 -2/ (3.41)

/14 0 -1 0 1/14 |,

The positive off-diagonals have become rather small, so have the negative off-diagonals in
z-direction so that a coarsening process based on the standard criterion (3.24) correctly iden-
tifies the real direction of smoothness, tjxdirection.

The above elimination can be regarded as a first step in employing geometry implicitly.
It tries to find the “real” negative couplings reflecting the directions of smoothness.

Eliminations of positive couplings can also improve interpolation and can be incorporated
into “indirect” interpolation schemes discussed next. Variants implemented within SAMG are
mentioned in Section 4.3.

3.2.3.5 Indirect Interpolation

So far, we have constructed interpolation basedicgct connections, that is, an F-variahle
is interpolated only from C-variables in its direct neighborhdgd CorrespondinglyC'/ F-
splittings have to be such that eacke F is sufficiently strongly connected to the set of
C-variables viairect connections.

Although a strongF-to-C' connectivity is indeed crucial, it does not necessarily have to
be via direct connections. In fact, this may limit the quality of interpolation and, closely
related, the speed of coarsening. Whereas, on one hand, a too slow coarsening will result
in high memory requirements, a faster coarsening, on the other hand, typically implies a
slower convergence. However, advantages in terms of less memory requirements and less
computational work for the setup and per cycle often outweigh the disadvantage of slower
convergence. In many cases, it pays to employ a computationally cheaper AMG variant as a
preconditioner rather than a more expensive AMG approach - regardless if the latter is used
stand-alone or as a preconditioner (see also the discussion in Section 4.4).

For an illustration, consider the following situation, the typical geometric scenario of
isotropic five-point discretizations on regular meshes. Interpolation based only on direct
connections would not allow for the — 2h coarsening which is typically used in GMG
methods, the reason being that those F-variabiting in the center of a coarse-grid cell
have no direct connection to the C-variables (graphs illustrating the situation can be found in
[87]). However, all their direct F-neighborg, do havestrong connections to the C-variables
and can thus be interpolated directly.

A straightforward generalization of interpolation is obtained by interpolatingtveria-
bles first and then, via the resulting interpolation formulas;thariable. This approach can
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be applied in several variants. It can be used solely for F-variables lacking a strong connection
to C, or it can be used as a means to increase the quality of interpolation by “enlarging” the

formulas of direct interpolation. Depending on the application, such variants increase the
robustness of interpolation substantially.

In a straightforward way, elementary but technically rather involved, we obtain corre-
sponding theorems on the fulfillment of thecondition (3.21) which are analogous to the
above stated ones. Practical indirect interpolation schemes, the so-called (extended) standard
and multipass interpolation, will be considered in Section 4.3.

3.2.4 Pre-smoothing and Two-Level Convergence

The last three Sections (3.2.1 to 3.2.3) were mainly concerned with minimizing the energy
norm of the two-level iteration operatSis in case of (one) post-smoothing (step). The start-
ing point was the direct implication of tremoothing propertgn the interpolation which led
to ther-condition (3.21). Criteria for the fulfillment of this condition were then investigated
for concrete interpolation formulas the development of which was inspired by the exploita-
tion of algebraic smoothness. The interplay of smoothing and interpolation was thus analyzed
based on the concept of algebraic smoothness.

In this section, we summarize a very different approach, considered in [48, 87], for the
investigation of this interplay and for the construction of rapidly converging AMG methods.
This approach aims &brcing the right hand side of the variational principle,

| Kh, 1Sy e[y = min ||S}e" — I e[|, (3.42)

(see Theorem 3.1) to become small. For this purpose, two “brute-force” methods, the so-
called F-smoothingand Jacobi interpolation are employed. Theorem 3.8 below proves an
upper bound for the two-level convergence of the resulting “brute-force” AMG approach.
Moreover, we will see that the condition on Jacobi interpolation employed in this theorem is
closely related to the-condition (3.21) discussed in Section 3.2.2. The convergence of the
“brute-force” AMG approach isiniformfor the same matrix classes for which the approach
described in Section 3.2.2 converges uniformly. In addition, we discuss in brief advantages
in terms of convergence if full smoothing instead of mere F-smoothing is used and state that
Gauss-Seidel relaxation with “CF-ordering” may be preferable to a “lexicographic ordering”.

The main reason for discussing the two “brute-force” methods for smoothing and inter-
polation here is that each of them can help to improve convergence for some “tough” appli-
cations. Properly applied to the respective AMG strategy - based on variables, unknowns or
points -, they provide us with tools to enhance our “conventional” AMG approaches, as will
be demonstrated in Section 5.3.2 for a class of very ill-conditioned matrices.

3.2.4.1 Convergence Using Mere F-relaxation

The basic idea behind the approach considered here is the fact that, for all (scalar) applications
we have in mind here, the submatrix- can easily be forced to be very well conditioned,
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for instance strongly diagonally dominant,

i — Z |aij\ > (5&1‘1‘ (’L S F) (343)
JEF,j#i
with some fixed, predefinetl= §(Arr) > 0 (See (2.26)) - if we choose thg/ F-splitting
accordingly. Assuming (3.43) to hold, the solution of thequation

Appep + Apcec =0 (344)

(with frozene(), can efficiently be approximated, for instance, by relaxation, in the following
calledF-relaxation. Using this as the basis for both smoothegd interpolation, the right
hand side of (3.42) can be forced to become arbitrarily small. This is shown in the following.

OneF-smoothingstep is defined to be a mapping— © where
Qrrip + (Arr — Qrr)vr + Apcvc = bp, Uc = v (3.45)

In the case of Gauss-Seidel relaxati@ » denotes the lower triangular part af  includ-
ing the diagonal, in the case of Jacobi relaxation, we would ligve = Drr. However,
we only use Gauss-Seidel in practice. The corresponding smoothing opg&fatoapping
the corresponding error quantities— e, reads

SZG = < SFF(eF C_CBF) ter ) WhereSFF =1Ipp — Q;}:*AFF (346)
For any givene = (er,ec)’, we have rapid convergenc&e — € (v — oo) assuming
(3.43) to hold. Here¢ := (ép,ec)? with ép := —A;}AFcec denotes the solution of
(3.44).

Remark 3.12 F-relaxation does not satisfy the smoothing property. The last equation shows
thatSe = eforalle € £ := {e | er = —Ap.Arcec}. Hence, (3.9) cannot hold. A

We define interpolation by applying F-relaxation steps to solve the F-equations (3.44) ap-
proximately. In contrast to F-smoothing, we use Jacobi relaxation in order to keep the re-
sulting operator as local as possible. The resulting interpolation process is thuslaatiéd
interpolation. To be more specific, given amy:, we iteratively define a sequence of opera-
tors,

I = PepI¥Y — DL Ape with Ppp = Ipp — DpbApp (3.47)

starting with some reasonable first guess interpolation opefgﬁar Because of (3.43), we
have rapid convergendé?,)"ec — € (u — oc) at a rate which depends only én

Remark: In contrast to F-smoothing, there is no “natural” first guégé available. As will

be shown in the theorem below, the choice[é% is crucial for uniform two-level conver-
gence. A

The following theorem states a condition, (3.48), on the first guess interpol(éﬁ%amhich
is sufficient to imply two-level convergence of the AMG approach resulting from combining
F-smoothing and Jacobi interpolation.
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Theorem 3.8 [87] Let A > 0 and assume th€'/ F-splitting to be such thatl p is strongly
diagonally dominani3.43) with fixedd > 0. Let smoothing be performed by > 1 F-

relaxation stepg3.45) Finally, let the interpolation be defined by := If;‘c) (3.47)with

somey, > 0 and assume that the first guess interpolati ), satisfies
I(Tre = Ige)ec|hr < Tllell (3.48)
for all e with somer > 0 being independent ef and Withch = —A;}AFC. Then the

following estimate holds:

IES”elly < ([[Sprllf F + TlIPerlly @)l - (3.49)

Clearly, the norms ofrr and Prr in (3.49) are less than 1 and depend onlysonn par-
ticular, the largew, the faster the convergence. Consequently, the previous theorem shows
that we can enforce arbitrarily fast two-level convergence by selegtivgd ;. accordingly.
Moreover, the convergenceusiformfor A € A if we can construct the first guess interpo-
lation, 1%, such that (3.48) is uniformly satisfied for all sugh Lemma 3.4 below shows

that this can be achieved for the same classes of matrices for which the relededition

(3.21) can be satisfied uniformly (see Section 3.2.3).

Lemma 3.4 [87] The condition$3.48)and(3.21)are essentially equivalent. More precisely,
consider the two estimates

(@) ller — Ircecll?p < millel}, () [|(Irc — Irc)ec|} p < mllell?.  (3.50)

If (@) holds for alle and if, > p(D~'A), then (b) holds for alke with 7, = n7;. If (b)
holds for alle and if Agp is strongly diagonally dominant3.43), then (a) holds for alk
with 7 = (1 + /72)?/4.

Of course, not each choice for the first guess interpolaﬁ% can work. ForI}?% =0,

for instance, we cannot expect (3.48) to hold (see Remark 5.6 in [87]). Genéﬁ%ﬁllhas to

be chosen such that the corresponding Galerkin operator is spectrally equivalent to the Schur
complementAcc — ACFA;}AFC, w.r.t. all matrices in the class under consideration. For
more details see [87].

However, the requirement of strong diagonal dominance (3.43) and the condition (3.48)

on the first guesﬁf(); can easily be satisfied by constructing theF'-splitting and the inter-

polation according to Theorem 3.7. In particuléﬁg is then chosen to be the direct interpo-
lation (3.36). Therefore, not only the conditions on interpolation are essentially equivalent,
as stated in Lemma 3.4 above, but the interpolation can be defined on the same basis.

Remark 3.13 Remarks regarding the practical employment of F-smoothing and Jacobi re-
laxation can be found in Sections 3.2.5 and 4.3.1.5. Various numerical experiments employ-
ing F-smoothing and Jacobi interpolation can be found in [48, 87]. A
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3.2.4.2 Convergence Using Full Relaxation

The analyses of post- and pre-smoothing, respectively, lead to similar results. However, the
approach discussed here is not really in the spirit of standard multigrid since smoothing in
the usual sense is not exploited. The role of F-smoothing is merely to fitce- ¢ rather

than to smooth the error of the full system. This, together with Jacobi interpolation is a
“prute-force” approach to makeS”e — Ihec||; small for alle = (er, ec)?.

Practice has shown, however, that the usdutifrelaxation steps instead of mere F
relaxation usually leads to more efficient AMG approaches in terms of computational
work. Moreover, we want to note here that Gauss-Seidel in CF-ordering (related to
red-black Gauss-Seidel relaxation in geometric multigrid) has turned out to be a|very
efficient smoother in practice. In particular, for positive definite problems, it performs

usually more efficient than Gauss-Seidel without a specific ordering.

For general smoothing processes based on full relaxation, the results of Theorem 3.8 do not
carry over. Simply by ignoring the C-part of the relaxation, they do carry over in a trivial
way to Gauss-Seidel relaxation in CF-ordering: estimate (3.49)mthl is obtained. This,
however, cannot explain the better performance observed for full smoothing.

Heuristically, the better performance of full instead of mere F-smoothing can be explained
as follows. In case of full smoothing - assumifigo satisfy the smoothing property - rather
cheap interpolation schemes, based on simple assumptions as (3.25), are usually sufficient to
approximate algebraically smooth error. In case of mere F-smoothing, however, such “basic”
interpolation schemes have to be “improved” by Jacobi interpolation in order to treat all error
components not affectétby F-smoothing. Note that one step of Jacobi interpolation is more
expensive than replacing mere F- by full smoothing.

3.2.5 Discussion

Section 3.2 was concerned with the basic principles of AMG for scalar applications and the
two-level convergence theory. These principles as well as the convergence theory will be
extended to unknown- and point-based AMG in the following sections. We will see that
the essential aspects will carry over to our whole AMG methodology. In this section, we
make some remarks on limits of the two-level convergence theory and on practical means to
improve VAMG for “tough” problems.

The AMG theory presented here applies only to symmetric positive definite matrices. For
certain “ideal” subclasses ofspq, the most prominent example being: N Awad 15 put also
subclasses afless'® and some perturbations thereohiformtwo-level convergence can be
proved. However, the upper bounds are often far too pessimistic as has been seen in Remark
3.4. Other limits of the theory, for instance, w.r.t. multi-level convergence, are discussed in
[87].

Of practical importance are two other points. Firstly, even if not strictly provable, we
can expect uniform two-level convergence for certain larger matrix classes, being not too far

14Recall, in particular, that an errerc £ is not reduced at all by F-smoothing (see Remark 3.12).
I5weakly diagonally dominant Stieltjes matrices.
18namely matrices itdess(Symmetric essentially positive type matrices) with> 0 for all 4.
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off from the ideal case. In practice, VAMG's performance turns out to be fairly insensitive

to deviations from the ideal case, and V-cycle convergence is, to a large extent, independent
of the size of the problem. Secondly, two-level convergence investigations already reveal (at
least some) important guidelines in obtaining efficient multi-level approaches. Among those
guidelines are

e Find a smoother which fulfills the smoothing property uniformly for the matrix class
under consideration with a large(see Section 3.2.1.1).

e Find a reasonable compromise farin particular, by coarsening in the direction of
smoothness (see Remarks 3.7 and 3.8).

e Handle large positive off-diagonal entries carefully (see Sections 3.2.3.3 and 3.2.3.4).
e Consider indirect interpolation (see Section 3.2.3.5).

We will come back to these topics when discussing the practical realizati@p®fsplitting
and interpolation schemes (see Sections 4.2 and 4.3).

A “classical” means to improve convergence which has not been mentioned so far is to
replace V-cycling by F- or W-cycling. However, in contrast to their importance for GMG,
in an AMG approach F- or W-cycles do often not pay: they improve convergence rates but
are quite expensive compared with a V-cycle. They reach at best the two-level convergence
rate and are therefore not able to cure possible problems with the accuracy of the coarse-level
correction. Hence, they provide only a possibility of second choice.

A fitting of interpolation based on some “test vector(s)”, as has already been mentioned
in [71], is another possibility to improve convergence. However, such a “sophisticated” tech-
nigue tends to be computationally quite expensive. We come back to this topic in Section
3.3.3.2.

Of more practical importance for “tough” problems are the following means:

e the usage of AMG as a preconditioner, which is one of the most important ways (if
not even the most important one) known today to increase AMG’s robustness and ef-
ficiency as already indicated in Section 2.1.2. This will be demonstrated, for instance,
in Sections 4.4 and 4.6, and in Chapter 5.

e |ILU(T-type) smoothing which can often fulfill the demand of stronger smoothing for
“tough” problems (cf. also investigations in [59, 110] of ILU smoothing for GMG).

e the employment of F-smoothing and Jacobi relaxation, as discussed in Section 3.2.4.
These provide purely algebraic means to improve convergence. They should lire used
additionto full smoothing and the (indirect) interpolation schemes discussed in 3.2.3,
respectively. To be more specific, for many “tough” matrices arising in practical ap-
plications, a good compromise to obtain an efficient AMG approach is to employ full
smoothing in CF-ordering, maybe with one or more additional F-smoothing steps, to
use one of the (indirect) interpolation schemes of Section 3.2.3, and to improve inter-
polation - if necessary - by one or more Jacobi relaxation steps.

For example, the applications in Chapter 5 profit from all these means (even used in combi-
nation for drift-diffusion systems) to a large extent.
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3.2.6 Complement: Towards Even More Robustand Efficient Multi-
level Preconditioners

For many years, multigrid methods, general-purpose Krylov subspace methods, one-level
iterative preconditioners, and direct methods have been developed rather independently from
each other. Particularly in the last few years, research groups - particularly practitioners - have
incorporated ideas from other areas into their world or even started to combine different areas.
Today, the development of robust and efficient preconditioners is in the focus of research.
The overall goal is to develop preconditioners which combine the use of multilevel ideas for
(nearly) optimal efficiency with the use of incomplete factorizations or approximate inverses
for extreme robustness also for difficult applications. Promising developments include

(a) a transfer of techniques from sparse direct solvers, such as reorderings, scalings, and
pivoting, to ILU-type preconditioners,

(b) the development of new one-level preconditioners based on sparse approximate in-
verses (for instance, SPAI by Grote and Huckle, AINV by Benzi and Tuma),

(c) ILU and SPAI as smoothers for AMG methods,

(d) the usage of multigrid methods, in particular AMG, as preconditioners for Krylov sub-
space methods,

(e) the incorporation of reduction techniques into algebraic multilevel methods and, in
particular, the development of multilevel ILU methods,

(f) parallelizations of the method$ .

Due to the vast amount of literature, we do not try to give a complete survey, but refer the
interested reader to the survey by Saad and van der Vorst [76] and Benzi's recent survey [3]
and the references given therein. Points (c) and (d) are also discussed in this thesis.
Especially the combination of ILU and multilevel techniques draws much attention. Incom-
plete factorizations and AMG-type approaches are closely related. All these algorithms can
be interpreted as approximate Schur complement methods (see paragraph below and articles
by Axelsson and Vassilevski (especially AMLI), Dahmen and Elsner cited in [3]). To reach
the overall goal mentioned above, a very promising approach to develop “general-purpose”
preconditioners is thus based on a combination of algebraic multilevel techniques and in-
complete factorizations with an additional incorporation of (some of) the other techniques
mentioned above. In the following, we briefly mention important corresponding directions of
research and their relationship to AMG.

Schur-Complement Approach Assuming anyC'/ F-splitting given, remember (2.21), a
convenient form fordv = b for theoretical investigations:

Arr Arc vF br
Av = = =b. 3.51
( Acr Acc Ve bc ( )
17At least briefly, we want to mention the very interesting and popular FETI methods, a family of (nearly) scalable
algorithms, developed by Farhad et al. for solving huge problems in structural mechanics and other applications of
finite element analysis on massively parallel computers by a domain decomposition approach. [46, 45] discusses
particular interesting modern developments. The FETI methods make use of knowledge of the underlying application

to achieve a nearly optimal complexity and cannot be considered purely algebraic methods. The basic idea, however,
has the potential to be adapted to more general problem classes.
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AssumingAj . to exist, a way to solvelv = b consists in a block-elimination afic,
followed by solving the resulting equation

Cve = be — AcpAppbr (3.52)

involving the Schur complemeid := Agc — ACFA;}AFC ,and finally solving for the
F-variables:

vp = App (br — Arcuc) (3.53)

AMG as an approximate Schur complement approach If we start with a zero first guess
v(©) and define, withl ¢ being the identity,

I ,
Ik = ( ]Zg > Jrc = —AppArc I = (Ior,Ico)

we obtain the Schur complement as a coarse-level matrix (independent of the cdpedete

) Arrl A
Ay = IF AT = (Ier, Icc) ( propC +APC )

Acrlrc + Acc

7AFFA71 Arc + Arc
(Ier, Ioc) ( —AcrAppArc + Ace
With Iop := 7ACFAI;}; in addition, the same right-hand side as in (3.52) emerges:

I (b — Av®) = —AcpAptbe + bo .
Let v* denote the exact solution dfv = b. Solving (3.52) yields %, then. With a smoothing
operatorS defined as
g._ (0 —AppArc
' 0 Icc '
(pure F-smoothing!) we obtain in a post-smoothing step the exact solutidn ef b:
o = S 4 IhoE) + (I — 8)A™ b = SThvs + (I — S)v*
(0 —AppArc —AppArc oh 4 Irr AppArc vF
Lo Icc Icc c 0 0 v&

((Arbgrent ) (vh Ao ) _ (0 )

vE 0 vE

Therefore, the resulting two-level AMG methatK (i.e. coarse-level correction followed
by one smoothing step) is a direct solver, which can naturally be extended to a multi-level
method.'®

18These statements also hold for the mettioS, see Section A.2.3 (“Limit case of direct solvers”) in [87].
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Both the smoothef and interpolation/ ¢ of the direct solver described above are di-
rectly related to solving the (homogeneous) F-equation (344%er + Apcec = 0, ex-
actly. The “brute-force” AMG methods described in Section 3.2.4 use F-smoothing and
interpolation operators which are formed based on approximations of this F-equation. Also
the interpolation operator of standard AMG is based on it. Hence, AMG and, in particular,
the “brute-force” methods discussed in Section 3.2.4 can be interpreted as approximate Schur
complement methods.

Several other known methods also approximate the two-level Schur complement method
(3.52)-(3.53) and can also be extended to multi-level methods.

Reduction Methods For instance, choosing@/ F’-splitting which results in a diagonal -
or at least diagonally dominant - matrixz » leads to a “reduction method”.

A diagonally dominanid i can be constructed, for instance, by first applying an AMG-
type C/ F-splitting'® method to the matrix graph of strong couplings and afterwards, if nec-
essary at all, shifting variables @ (till Arp is as strongly diagonally dominant as desired).

Obviously, forA rr to become diagonal, the corresponding set of F-variables has to be an
independent set. This can be achieved, for instance, by applying an AMG-jpesplitting
method with the following changes: it is applied to the whole matrix graph, not only to the
matrix graph of strong couplings as done in AMG, and the rol&€s ahd F" are “interchanged
afterwards”.

An obvious advantage of forcind  to be diagonal(ly dominant) is that its inverse (if
existing) and, hence, the Schur complem@rdre easy to compute. A strong disadvantage
is, however, that the density of the coarse-level matricassually increases exponentially
unless a cut-off strategy is applied. Due to cut-off, such a method is not a direct solver
anymore.

A well-known method of this type is the method of total reduction (TR; see, in particular,
[80, 81]). TR has mainly been developed for solvidg = b with A corresponding to a
scalar elliptic PDE on a rectangle, discretized by means of a 5-point or 9-point stencil as,
for instance, (2.30§%. For such applications, the iterative variant of the method is numer-
ically stable (see [80, 81, 95]), has optimal complexity O(N) and can be implemented very
efficiently which makes it a “perfect” iterative solver. The only but strong disadvantage is its
small range of applications.

Remark 3.14 (Relationship of standard AMG and TR) Consider any standard 5-point
discretization on a rectangular mesh. Then, obvioutly; becomes diagonal if we select the

C'/ F-splitting such that, for eache F, all of its neighbors are i@’ (red-black coarsening)

The coarse-level operator of the standard VAMG method (VAMG(std,A), see Chapter 4) on
the second level consisting of the black points, say, can be seen to correspond to (“long”)
9-point stencils. By straightforward calculatidhsone can see that, applied #a = b with

A corresponding to (2.30), the two-level standard AMG method VAMG(std,A), the two-level
direct solver described above and the two-level total reduction method are equivalent.

19Readers not familiar with classical AMG should also read Chapter 4 before reading this section.

20together with Dirichlet, Neumann or periodic boundary conditions. It can also be applied to certain more general
situations w.r.t. equation, dimension, geometry of the domain.

2l g. using stencil calculus described in [80]. Cf. also Example A.2.1 in [94].
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Applied to the second-level matrix, TR and the direct AMG solver are still equivalent. A
“usual” AMG method, however, differs from them. This is because the strategies of AMG
and TR are quite different. As already mention€d F'-splittings are created and employed
in a different way; TR solves for (subsets of) the original variables on all levels instead of
smoothing errors and computing corrections as done in AMG; and TR uses a cut-off to retain
sparsity of the coarse-level matrices, whereas AMG aims at keeping the coarse-level matrices
sparseandat the same time creating good interpolation and coarse-level operators by a proper
coarsening process (max-MIS property, see Section 4.2.1). A

Remark 3.15 The MGR method combines geometric multigrid and reduction by means of
so-called "intermediate grids” (see [67], [111]). A

Approximate cyclic reduction methods as the one described in [66] make also G5d ef
splittings to produce easy-to-inveft . The resulting matriced » are usually not forced

to be diagonal. AC//F-splitting is applied to a “reduced graph”, i.e. a graph of strong cou-
plings (AMG-typeC/ F-splitting, optionally withC' and F' interchanged), and an approxi-
mation of the Schur complement based on a sequence of “point-Gauss” elimination steps is
used. The method aims at constructing approximate Schur complefiesith a similar
sparsity structure than that df.

Multi-Level Incomplete Factorizations The two-level approach (3.52)-(3.53) is also the
basis for “algebraic recursive” or “multi-level ILU” methods (for surveys, see [103, 76, 3]).
Among them are

¢ NGILU and MRILU by Botta, Wubs and van der Ploeg (cf. [103]),
¢ the hierarchical basis multigraph algorithm by Bank and Smith (see [103]),

e multilevel ILU (MLILU) by Bank and Wagner (cf. [103]; for some comparative notes
of this and the previous method, see [66]),

e multilevel ILU (ILUM), block ILUM (BILUM), BILUTM, (parallel) algebraic recur-
sive multilevel solvers ((p)ARMS) and ARMS-C by Saad and co-workers (see, for
instance, [51, 73] and the references given therein),

and more. They combine incomplete factorization techniques, AMG-yfE-splittings,
permutations or reorderings (for instance, MC64 by Duff and Koster, part of the Harwell
Subroutine Library HSL), rescalings, partial pivoting, block complete pivoting, and dropping
(cut-off) strategies to obtain robuand efficient preconditioners.

It seems clear that none of the mentioned AMG or multilevel ILU methods alone will be
the “holy grale” for all applications - and such a “holy grale” is unlikely to show up. It is
the clever combination of techniques for the concrete application considered which makes an
efficient preconditioner. Research for “hybrid” linear solvers with characteristics from both
iterative and direct methods will be ongoing with “AMG-like” multilevel techniques playing
an important role.
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3.3 Unknown-Based AMG

We now recall a rather popular AMG strategy to solve systems of PDESs, the so-galled
known-based AMG (UAMG) strategy which is very similar to the variable-based strategy
except that all unknowns are treated separately. Compared with the variable-based strategy,
the only additional information required is information about the VU mapping as defined in
Section 2.4.1.

To be more specific, let us assume, for ease of description, the variables to be ordered by
unknowns, that isAv = b has the form (2.16) (see Section 2.4.1):

Apy o A vp by
: . : : = : . (3.54)
A["ml] e A[n“,n“] U["U] b["ﬂ]
The unknown-based strategy applies variable-based methods t,the(n = 1,...,n,)

for coarsening and interpolation. Especially due to the separate coarsening this can even lead
to a decoupling of the individual discrete PDE systems in extreme cases.

A detailed description of the components smoothing, coarsening, interpolation and coarse-
level operators defining each UAMG approach is given in Section 3.3.1. Section 3.3.2 then
discusses two-level convergence of UAMG. This discussion will indicate that essential condi-
tions for the unknown-based strategy to work are that eggh, can successfully be treated
by variable-based AMG, that smoothing the individual unknowns separately is sufficient to
cause the resulting error to be smooth separately for each unknown, and that the unknown
cross-couplings are not too “strong”. In particular, as a new contribution, a measure for this
strength of unknown cross-couplingsintroduced. Finally, in Section 3.3.3, we indicate the
range of applicability and the limits of the unknown-based strategy. In particular, we dis-
cuss the conditions and the measure mentioned above for the model problems introduced in
3.1.3 and for linear elasticity problems. We also summarize experiences compiled from the
literature on the application of AMG to linear elasticity.

3.3.1 Components
3.3.1.1 Unknown-Wise Smoothing

For UAMG, we usually employunknown-wise Gauss-Seidel (UGS3¥moothing, that is,
VGS smoothing but with an unknown-wise ordering: first all variables belongiidg tare
relaxed, then all variables belongingife and so on. Both VGS and UGS satisfy the smooth-
ing property (3.9 for all A € As; and other important subclasses.4§,q (see Section
3.2.1.1). In practice, if UGS smoothing is not efficient, often ILU(O) or ILUT smoothing
helps.

22|n fact, (3.9) cannot distinguish different orderings.
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3.3.1.2 Unknown-Wise Coarsening and Interpolation

In UAMG, coarsening and interpolation only deal with thg, ,;. To be more specific,
coarsening the set of variables corresponding torittle unknown is strictly based on the
connectivity structure reflected by the submattix ,,;. A variable-based coarsening method
is applied to eachly, ,,. Also interpolation for a particular unknow, is solely based on
the corresponding matrix entries df that is, only onA, ,,;. In particular, interpolation to
any variabley; involves only coarse-level variables corresponding to the same unknown, i.e.
if v; € U, then its set of interpolatory variabld3 is a subset off,, N C. Obviously, the
following form emerges for the interpolation operaféy:

11}3,[1,1] 0
Iy = (3.55)

0 I

s[nwnu]

where eacﬁl’;} (n,n) TEPrESENtS @n interpolation operator constructedifgr,; by means of a
variable-based method as discussed in Section 3.2.3. Such an interpolation imcitilele-
unknown-interpolation (MU-interpolation) .

3.3.1.3 The Coarse-Level Matrices

The Galerkin coarse-level matrices are usually computed w.r.t. all unknowns. That means, as
for VAMG, we define
Ay = (I)T ALY (3.56)

In some cases, however, it might be more feasible in terms of computational efforts to com-
pute even the Galerkin operator unknown-wise, that is

Ag = (If) " Aunlly (3.57)
whereA,, is defined as the block-diagonal matrix consisting of g, that is

A[Ll] 0
Ay, = - . (3.58)
0

[0, ]

In case of an unknown-based approach, we call type (3ubjsalerkin and type (3.57)
block-Galerkin.

3.3.2 Two-Level Convergence

In the following, we assume that the full Galerkin coarse-level operator (3.56) is employed.
The subsequent investigations of two-level convergence give us direct generalizations of
statements that have been developed for VAMG. We discuss essential conditions on the ef-
ficiency of UAMG and quantify that the “stronger” the unknown cross-couplings the worse
the convergence of an unknown-based approach has to be expected to be.
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ForA > 0, alsoA, > 0holds. We then define thenknown-wise inner energy product
(v, W)y1 = (Ayv,w)g - (3.59)

Theunknown-wise energy norm || - ||..1, is defined accordingly.

Lemma 3.5 The following inequality holds for alit > 0:

Ve : (Aue,e) < p(A71A,)(Ae,e) . (3.60)
Proof. This follows from (2.59) and (2.51) used to obtain a valid constant

(Aye,e) = (AyA7 1 Ae,e) < c(Ae,e) .

|
Since in UAMG a variable-based coarsening and interpolation strategy is applied to each
Afp.n, itis natural to demand VAMG to work for eachy, ,,; and ar-condition (3.21) to be
fulfilled with somer = 7(A, ,,)). As has to be expected, the maximugof theser (A, ;)
comes into the upper bound for two-level convergence. We first note that the follewing
condition of MU-interpolation ,

Vet |ler —Irceclls r < 7ullelliy (3.61)

holds under the conditions mentioned above. We can prove the following analogs of Theo-
rems 3.3 and 3.4 now:

Lemma 3.6 Let A > 0 and a VU mapping be given. If th&/F-splitting and interpola-
tion I are such that the-condition (3.61) of MU-interpolation is fulfilled withr,, being
independent of, then(3.20)is satisfied withr = 7,p(A71 4,,).

Proof. Due to Lemma 3.5, we obtaiffe||2; < p(A~*A.)|le||}. The remainder follows
from Theorem 3.4. |

Lemma 3.7 Let A > 0 and a VU mapping be given. Létsatisfy the smoothing property
(3.9). Furthermore, assume th&/ F'-splitting and interpolation to be such that the condi-
tion (3.61)is fulfilled with somer, being independent &f Then||SK||; < /1 —o/T is
satisfied withr = 7,p(A7'A,) > 0.

Proof. Combine Theorems 3.6 and 3.3. |

The crucial points here are the fulfillment of thecondition of MU-interpolation and the
smoothing property (3.9). Since we employ variable-based methods for coarsening and in-
terpolation, the smoothé&f has to provide error which is algebraically smooth separately for
the different unknowns. In principle, we thus demand an “unknown-smoothing property” to
hold and define: A smoothing operat®is said to satify theinknown-smoothing property

w.r.t. a matrixA > 0 and a VU mapping given if, for ak, the following inequality holds

with ao,, > 0 being independent of.

[1Sellzr < llellsn — oullellfs  (0w>0) (3.62)
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The following theorem, a straightforward analog of Theorem 3.3 combined with Theorem
3.4, can be proved now. As for Lemma 3.6, we make use of Lemma 3.5 in the proof, here even
on several places. Lemma 3.5 provides a simple means to compare the energy norm based
on A with that based om,,. The upper bound of two-level convergence obtained below is
thus notoptimal (and might even be far away from that). However, it at least indicates which
terms influence UAMG's performance.

Theorem 3.9 Let A > 0 and letS satisfy the unknown-smoothing propefdy62) Further-
more, assume th€'/ F-splitting and interpolation to be such that thecondition(3.61) of
MU-interpolation is fulfilled withr,, being independent ef Then

I1SK]lun < \/p(A1Au) p(Ai ) V1~ 0,7 (3.63)
with 7 = 7,p(A~14,)p((A71 A)?).
Proof. Due to Corollary 3.6, the-condition of MU-interpolation implies

Ve : ||Kell? < mup(A71AL) |1 Kell3 (3.64)
with somer, > 0 being independent ef. Due to (2.59) and (2.51), we obtain
||[Ke||2 = (D"'AKe,AKe)p = (AD"'AKe,Ke)p

p(A,'DA'AD™'A) (A, D' A Ke, Ke)g .
p((ATTA)P) [ Kell7 5
With Lemma 3.6 and (3.64), we can then estimate

_ -1 —
p(AT AL T lIKellfy < [IKellf < rup(A7A)[1Kell3

Tup (A7 Au) p (AT A)?) || Kell7 -

IA

AN

Together with (3.62), we now obtain

Oy
ISKe|Ry < [|Kel%, — oullKel%s < (1 : )|Ke||i,1 .
' Tup(A~1A,) " p((Au'A)?)

We know from Theorem 3.1 th§iti(||; = 1. Again due to (2.59), we can estimate
I1KellZ1 < p(AT AL |IKel[T < p(AT AL lel[f < p(AT1AL) p(AL A)lell% -

In summary, the theorem is proved. |
Therefore, we can - in principle - measure the strength of unknown cross-couplings by
pu = p(ATTA,) p(ATA) (3.65)

Remark 3.16 Due to (2.51)p(A7'A,) = p(A,A7") andp(A;1A) = p(AA,") hold. A

Remark 3.17 The above upper bound for two-level convergence can be larger than one.
Due to Theorem 3.1, unknown-based AMG will nevertheless not divergd for 0 if the
smoother satisfig$S||; < 1 (see also Lemma 3.7). A
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3.3.3 Discussion

The investigations made above indicate which conditions are necessary for an unknown-based
approach to be efficient. First, smoothing should cause the error to become algebraically
smooth separately for each unknown. This will be the case if the unknown cross-couplings
are not too strong in the sense of a smgll Second, a similar statement can be made for
the variable-based coarsening and interpolation strategies applied #,the Not only

should these strategies be appropriate forAhg,; but the resulting operatdk also for the

whole matrixA. Again, this will be the case if the unknown cross-couplings are weak in the
sense of a small,. In summaryyp, provides a measure of ttstrength of unknown cross-
couplingsin the following sense: the larger this value, the “stronger”, that is the worse, has
the influence of unknown cross-couplings on the convergence of an unknown-based approach
to be expected.

We are going to investigate the strength of unknown cross-couplings and the applicability
of UAMG for our three model classes now. Afterwards, in Section 3.3.3.2, we will discuss
UAMG for matrices arising in linear elasticity. Also other AMG approaches for elasticity
problems will be reviewed.

3.3.3.1 Theoretical and Numerical Investigations of UAMG for the Model Problems

Investigations of the Smoothing Property The smoothing property of variable-wise Gauss-
Seidel (VGS) and, hence, also unknown-based Gauss-Seidel (UGS) is now investigated for
the three model classes defined in Section 3.1.3. We start with the AVL models.

For matrices of the forni s defined by (3.1), we can compute the parametar (3.9)
by means of Theorem 3.2 - as long|as< v/ab. Forw = 1 we obtain

:max{<1+€>a+<3+3e)c| (1+e)b+<1+e>|c|}

T+ (2 + 2¢)a ’ (24 2€)b )
_ {(1+6)a+(1+6)|c| (1+€)b+(3+3e)|c|}

Y- = max (2 T 26)(1 3 (2 T 26)b 3

Obviously, this evaluates to

a+3lc| b+ 1 1 le] el
”+—max{ %0 ' % }_2+2max{3a’b}’
1
2

N a+le] b+3lef] 1
== 2a ' 20

_ 1 _ 4

I+~ +72) (3+|c|max{%,% )(3+|C\max{%,% )

independent of. We can follow now that (fotv = 1) o €]0,4/9]. For the casel € Agpq, i.€.

lc| < /ab, we obtaino €]1/9,4/9]. For instance, fo. = b = 2|c|, we obtainc = 16/81
as a value for the smoothing property of VGS for matrifgs As expected, these results for
o indicate that large unknown cross-couplings, which correspond to a|@rgiestroy the
good smoothing property of VGS obtained for the decoupled case4/9).
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For matrices of the fornix defined by (3.3), we can compute the parametanalo-
gously. Forw = 1 we obtain

R (I+e€)a+6|lc (1+€)b+2|
T 2(1+ea = 2(1+¢€p '

If we replacea with b, we obtainy_. In contrast to the AVLS modebl; depends onr here.
2

For instance, for = b = 2|c|, we arrive ato = % , which results inc = 1/9 for
e =0and (as forLs) o = 16/81 for e = 1. The obtained values fer are the same or (a bit)
worse than those obtained fbg. Numerical results for different x matrices will be given
in Section 3.4.1.2.

Also for the reaction-diffusion-like class defined in Section 3.1.3.2, Theorem 3.2 helps in
determinings. Here,maxy, |dix| < 4 (1 —cos(wh)) ensuresA > 0 and, hence, Theorem 3.2

to be applicable. Fow = 1 we obtain

|drr| + 2 1 16
=v-= ——— | > - andthusc =
=T mkaX( 4 -2 g (maxk |dkk| + 6)2

For the cased > 0, maxy, |dix| < 4 (1 — cos(7h)), we obtain

IN

4
9

7 ] (10 —4 1(:608(7rh))2 ’ 3]

Of course, sincéc| = h?|f| is very small for smalk, the lower bound is very close to the
upper bound!/9. Note, however, that the unknown cross-couplings can in practice be much
larger than diagonal elements. The same conclusion as for the AVL case can thus be drawn.
With increasing magnitude afiaxy, |dx;| we can expect VGS and UGS to be less efficient
smoothers. Numerical results proving this will be shown in Section 3.4.1.2.

The matrices belonging to the drift-diffusion-like class (Section 3.1.3.3) are not symmet-
ric so that Theorem 3.2 cannot be employed. Numerically, it can be seen that VGS strongly
diverges. This has to be expected since the matrices are far from being diagonally dominant:
a whole off-diagonal blockd; 5, dominates the diagonal blocks,, ,,; (see Example 3.5).
Numerical results will be shown in Section 3.4.1.2.

Investigations of p, As pointed out above, the factop§ AA; ') andp(A,A~!) can be
expected to have a decisive impact on UAMG'’s convergence. For the AVLS model (3.1) with
a =band|c| < a, itis easy to see that

o[ 1o
= 7]

and thusp(AA; 1) = 1+ |¢|/a. Additionally, AA, ! is symmetric positive definite, and we
obtain
P(AATY) = Qi (AAZ)) ™! = (1= e|/a)7" .
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Obviously, for|c| approaching: (from below to retaind > 0), A approaches singularity and

o = im tends to infinity.

For the AVLX model (3.3), the matriced, A~ and AA, ! are (except of trivial cases)
not symmetric and have complex eigenvalues.derb = 1, ¢ = 10, € = le— 3 we obtairf®

Mmax(Au A7) 75382,  |Amax(AA;) ~ 1.7e+2.
Fora =b=10,c =1, e = le — 3 we obtain
M max (A A7) ~ 2.86+2, | Amax(AA,Y) ~ 2.7e+0.

Although with the above parameter settings the corresponding mattiees not> 0, the
p-values indeed indicate that UAMG is not appropriate here.

Numerical results for the AVL models will be shown in Section 4.6. They will demon-
strate that for UAMG applied to AVL models, it is not so important whether the anisotropies
for the different unknowns are in the same or in different directions. However, it is important
how large the unknown cross-couplings are, as indicated by the above considerajigns of
For the ideal situation of nearly decoupled Laplacians & 1), Remark 5.2 will give an
example.

For the RD model witm, = 1, ¢ = 1e + 3, we obtair*

{)\(AUA”)} ~ {-3.3e-3,3.3e-3, 1 , {A(AA;l)} ~ {-3.0e+2,3.0e+2,}
and, hencep, ~ 3.0e+2. For the same RD model but with= 1e + 9, we obtain
{MA, A} ~ {-3.3e-9,3.3e-9,} , {/\(AAgl)} ~ {-3.0e+8, 3.0e+8, }

and, hencep, =~ 3.0e+8. Note that, for increasing,, |\|max(AA4; ) and thusp, grow
substantially.

The situation is comparable with the AVL models. With increasingAMG's efficiency
decreases because diagonal dominance is increasingly strongly violated for,thews
containing a large positive off-diagonal entry. Due to the same reasons, also UAMG's con-
vergence will break dow®. Even worse for the DD models with moderate c). Neither
VAMG nor UAMG works here.

Concrete numerical results for both RD and DD models will be shown in Section 3.4.1.2
(investigations of smoothing properties) and Section 4.6 (performance of different VAMG,
UAMG and PAMG approaches).

3.3.3.2 Linear Elasticity

Linear elasticity or plasticity problems, as for instance material stress calculations, are of
great practical importance. For typical FE discretizations and boundary conditions, the aris-
ing matrices are symmetric positive definite. However, the numerical solution of these ma-
trices by means of one-level or hierarchical iterative solvers faces several problems, among

23Computations have been performed for the dase 1/32, employing LAPACK’s [1] direct eigensolver.
24Computations have been performed for the dase 1/32, employing LAPACK’s [1] direct eigensolver.
25regardless whether UGS or the “stronger” ILU(0) is used as smoother.
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the severe ones being locking effects (due to unproper discretizations), higher order finite
elements, shell elements, anisotropies and large positive off-diagonal matrix entries, multi-
or single-point constraints and rigid body modes. Consequences can be very ill-conditioned,
nearly singular matrices. In addition, higher order elements or shell elements pose severe
problems for (A)MG approaches.

We concentrate here on AMG approaches for matrices emerging from second-order stan-
dard FE discretizations. After describing the PDE system to be solved, we briefly go into the
problems for AMG - anisotropies, large positive off-diagonals and rigid bodes - and review
the different approaches in the literature. In particular, we explain under which conditions
UAMG can work and prepare subsequent discussions in Section 5.2.1 where AMG for appli-
cations in semiconductor stress simulation is investigated.

Lamé Equations  The classical Lam equations modeling 3D linear elasticity problems
(see, for instance, [6] for more detailed information) formulated with theé& aoefficients
A, pu read as follows

- (2,[,L + >\) Ul,zx — llful,yy — QUL zz — (,LL + >\) u2,zy - (M + )\) U3,z f
1

—pu2ee — (214 A) Uz,yy — ptiz,ze — (B +A) Urey — (LN usy: | = [ fo } . (3.66)

—HU3 zx — QU3 yy — (2,“ + )\) U3,zz — (/1/ + )\) Ul,xz — (,u + )\) U2,yz

The scalar functions, us, u3 denote the displacementsin, y- and z-direction, respec-

tively. Typical boundary conditions are Dirichlet conditions for some parts of the boundary

and 8Tg7lf“) = g for the remainder, wher&, denotes the stress tens%% the derivative

normal to the boundary; the volume force and the surface force (cf. [6]).
If we assume that external forces depend onlyzandy with vanishingz-component,
and that there are necomponents of the str&if) the plane-strain problem emerdés
= (204 A) ut,z0 — puryy — (1 + A) Uzay fi 3.67
—pU2 gz — 2+ N Uz yy — (H+ N Ut gy | { P } ' (367)

The problem class considered in Chapter 5.2.1 will be of the plane-strain type.
Generally, the Lara coefficients are related to Young's moduliof elasticity and the
Poisson ratiav by

A (BN +2p) Ev E

2+ p) T Atp )\:(1+V)(1721/)’ F=o0+)

(3.68)

The Lane system is elliptic in the sense that each individual equation is elliptic. Additionally,
each individual equation exhibits anisotropy, in particular for the case of nearly incompress-
ible material A > 1, and the anisotropy for each equation is obviously in a different direction
than for the respective other equation(s). kas u, the problem is very ill-conditioné.

26j.e. a deformation ir-direction is not allowed.

27)f we allowed for strain inz-direction, we would arrive at the plane-stress problem.

28see discussions of locking effects in [6], for example. Here, a weak formulation of the system with the pressure
p as an additional unknown function, resulting in a system with a penalty term, would help the situation. However,
(u, p)-systems are not discussed here.
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The arising stiffness matrice$ inherit the anisotropy and ill-conditioning of the continuous
PDE system. Due to the ill-conditioning, classical one-level solvers have severe problems in
solving the matrix equations efficiently.

Handling Anisotropies and Large Positive Off-Diagonals  Despite the facts that the
equations are elliptic and the stiffness matrigegsually symmetric positive definite, AMG
approaches might not be efficient. One problem being that even standard bilinear finite ele-
ments lead to large positive off-diagonals in the submatritgs,) here (see Section (2.4.4),
stencil (2.28) witha = 1/4). A modification of coarsening, efficiently curing the problem
here, has already been discussed in Section 3.2.3.4. This way, VAMG can handlg the
correctly also in case of strong anisotropies. The PDE system, however, is too strongly cou-
pled for VAMG.

Calculations ofp,, have been performed for (3.67), on the unit square, discretized by
bilinear finite elements, = 1/32, v € {0.20, 0.45 }, with Dirichlet conditions on two sides
of the unit square and homogeneous Neumann boundaries on the remaining two. Calculations
have also been performed for three stress matrices arising in semiconductor simulation, see
Section 5.2.1.3. Values fags, between3 and 10 have been obtained. These “small;
values, indicating a “moderate” unknown cross-coupling, correspond to the experience that
UAMG works quite efficiently for stress matrices - at least if they are not nearly singular. This
topic will be discussed next. Before, we note that, due to a more or less strong anisotropy
in different directions for the different unknowns, unknown-based AMG should be more
appropriate than a point-based strategy.

Rigid Body Modes  However, the application of any AMG approach to the stiffness ma-
trices A is challenging mainly due to the so-callddid body modesorming the non-trivial
kernel of an elasticity operator without essential boundary conditions. In case of 2D elastic-
ity, this kernel consists of three rigid body modes, namely two translations and one rotation;
in case of 3D elasticity, it consists of six rigid bodes, namely three translations and three
rotations. Since the “quality” of an AMG interpolation depends on how well eigenfunctions
belonging to the smallest eigenvalues are reproduced, these eigenfunctions, which are equal
to the rigid body modes in the singular case, have to be interpolated as exactly as possible if
A is singular or nearly singular. The latter is the case if only on a small part of the domain
Dirichlet conditions are imposed.

In the singular case (i.e4 has only zero row sums), the translations, being unknown-wise
constant functions, pose no problems for AMG since their exact interpolation can simply be
achieved by requiring the row sums of the interpolation mdtsix to be one unknown-wise.

Our interpolation schemes do fulfill this condition for zero-row-sum matrices. However, the
rotations are linear functions, and their exact interpolation cannot be guaranteed by an AMG
approach without special input and/or modifications. Moreover, in the nearly singular case,
the rigid body modes are only approximations of the eigenfunctions corresponding to the
smallest eigenvalues. The smaller the smallest eigenvalug tife worse the performance

of unmodified AMG can be expected to be. The magnitude of the smallest eigenvalus of
strongly related to the ratg,;, which is defined as the number of Dirichlet variables divided

by the total number of boundary variables,;, is thus an important factor determining the
performance of UAMG for the stiffness matricdsn case of linear elasticity.
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AMG Approaches for Linear Elasticity That the unknown-based approach can suc-
cessfully be applied to certain linear elasticity problems has already been demonstrated in
[69, 71]. As discussed above, the convergence of this simple and cheap approach deteriorates
if the problem is (nearly) singular since the eigenfunctions corresponding to the rotations in
the singular case cannot be exactly reproduced by the interpolation schemes employed. The
same is true for aggregative approaches.

In principle, if a set of independent eigenvectors corresponding to the smallest eigenvalues
of A is known and is passed to an AMG solver as a set of “test vectors”, interpolation can be
forced to reproduce them correctly. Whereas in general situations, of course, explicitly com-
puting these eigenvectors is too expensive, the rigid body modes of linear elasticity (being
good approximations of these eigenfunctions in the nearly singular case) can be determined
via the coordinates of the grid nodes. For classical AMG, a procedure to fit interpolation
to a set of submitted vectors (such as rigid body modes) has been outlined already in [71].
Nevertheless, the development of robust and efficient approaches, based on classical AMG,
is still subject to further research. For AMG based on smoothed aggregation, a proper incor-
poration of submitted eigenvectors has been discussed in [99, 53], for instance. Since these
approaches are point-based, we will review them and other point-based approaches for linear
elasticity in Section 3.4 in Remark 3.31.

To interpolate eigenvectors belonging to small eigenvalues particularly well is also the
expressed goal of AMGe. Instead of using a set of test vectors, local approximations to the
smallest eigenvalues are constructed via the element-stiffness matrices. As has been demon-
strated in [12, 16] for a thin body elasticity model, AMGe indeed shows better convergence
properties than unknown-based AMG [71]. However, AMGe’s efficiency in terms of compu-
tational cost has not been discussed so far.

3.4 A General Framework for Point-Based AMG

In this section, we outline a general and flexible framework for constructing AMG approaches
to solve various types of PDE systems. In contrast to the previous approaches, that is variable-
and unknown-based ones, all of the new ones operate on the level of points rather than vari-
ables. This is to be understood as follows. Whereas in an unknown-based approach each
unknown is associated with its own level hierarchy and own transfer operators, it often makes
more sense to coarsen the unknovemaultaneoushyif they live on the same grid. This
leads to what we call point-based approaches: we talk abpoingébased AMG approach
(PAMG) if coarsening takes place on the level of points (rather than variables as before)
and all unknowns are defined on the same hierarchy. Such a coarsening ispcatied
coarsening

Since we primarily have the solution of PDEs in mind, we think of points as correspond-
ing to real physical grid nodes in space, each one associated with a block of varigples,
However, we want to point out that, from AMG’s point of view, it is not important whether
points really correspond to physical grid nodes. Instead, one may think of the nodes of a
graph representing the connectivity structuredofRegarding a point-based approach, it is
only relevant for AMG to know whether there are blockg, of variables (corresponding
to different unknowns) which may be treated (at least coarsened, but often also interpolated)
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simultaneously. In the context of PAMG approaches, for simplicity, we assume the variables
to be ordered point-wise (cf. Section 2.4.1):

Ay o Ay (1) ba)
: : : = : , (3.69)
Aty Ay VU(n,) b(ny)

where A, ;) represents the couplings of tketh to thel-th point, that is ofv(;) to v;y. The
Ay, are also calleghoint-coupling matrices. In case that all unknowns are defined at all
points, allA; ;) are(n, xn,)-matrices. Generally, howevet,, ;) is a(|P|x|P;|)-matrix?®
and, hence, not necessarily square.

As VAMG and UAMG, also PAMG follows the scheme outlined in Section 2.3. In addi-
tion to the information VAMG and UAMG can exploit, namely b, and (for UAMG) the VU
mapping, PAMG makes use of the VP mapping, too, in order to define the three main compo-
nents smoothing, coarsening, and interpolation. A main difference to VAMG and UAMG is
the point-coarsening schemavhich is uniformly obeyed by all our PAMG approaches: To
obtain aC'/ F-splitting on a given level wittd being the current level-matrix the following
three steps are performed:

1. Define an auxiliary (sparsé), x n,)-matrix P = (px;), called theprimary matrix ,
which reflects the point-couplings of the current level-matfixn some reasonable
sense In particular, the employed primary matrix should reflect the physical con-
nectivity (the general structure as well as the strength of connections) of neighboring
variables reasonably weljmultaneously for all unknowns

2. Perform a scalar AMG coarsening process applid@tmobtain a splitting of the set of
points into coarse- and fine-level points. The resulting index sets of C- and F-points are
denoted byC? and F?, respectively, and the splitting is called @/ F?-splitting .

3. Assign (in principle) the same new coarse level to all unknowns by copying this split-
ting to the set of variables.

Remark 3.18 The above scheme can be generalized; we could allow more than one primary
matrix. In principle, each unknown could have its own primary matrix. Possible realizations
are, however, one topic of future research. A

Due to the various information PAMG can exploit to solve a discrete PDE system, one can ex-
pect that we have much more freedom compared to VAMG and UAMG in defining concrete
components. However, as for all AMG approaches, we have to bear in mind that smoothing,
coarsening and interpolation are strongly related processes, and that their interplay deter-
mines the efficiency of the overall appproach.

In the following sections, we describegeneral framework to set up concrete point-
based approaches. We focalize on concrete ways to construct each of the components of our
scheme for relevant applications. Since usually not only one problem but rather a whole class

29| S| denotes the number of elements of aSet
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of problems shall be solved efficiently, we especially seek definitions of the PAMG compo-
nents which can be used “uniformly” for the whole class considered. The considerations of
the next sections will reveal that for many problem classes which exhibit a point structure
efficient PAMG approaches can be defined by means of our framework. Whereas the com-
ponents can often be defined uniformly for one problem class, they might vary substantially
between the classes.

Outline of the Following Sections Section 3.4.1 investigates point-oriented smoothing, es-
pecially the block-variant of Gauss-Seidel and its application to our model problems. This is
followed by a discussion of possible coarse-level correction processes. Section 3.4.2 contains
a detailed description of possible primary matrices. It also explains their recursive definition
in case of a multilevel method and discusses the resulting point-coarsening processes for the
types of primary matrices introduced. Section 3.4.3 then explains the possibilities within our
framework of how to base the interpolation strategy on a given primary matrix. Three general
types of interpolation and, for each type, concrete variants are introduced. In both Sections
3.4.2 and 3.4.3, point-based coarsening and interpolation are discussed especially for the two
models problems 3.1.3.2 and 3.1.3.3 for which unknown-based AMG is inefficient or even
fails. We will see, in particular, that the applicability of concrete components vary substan-
tially between the models and that two main directions of point-based AMG cristallize out:
oriented on norms on one hand, oriented on coordinates on the other. These results will later
be strengthened also for practical problems arising in semiconductor simulation: Chapter
5 will reveal that, whereas a strategy based on coordinates is effective for reaction-diffusion
problems, a norm-based strategy is effective for drift-diffusion problems. In Section 3.4.4, we
develop generalizations of VAMG's two-level convergence theory and prove - under suitable
conditions - some corresponding generalized theorems on convergence of PAMG approaches.

3.4.1 Smoothing

Though, at least formally, any relaxation method could be used as a smoother in a point-based
approach, a distinctly point-oriented smoothing is often a prerequisite for the success of a
point-based approach. The reason being that a smoothing which treats variables belonging to
the same point simultaneously is often most appropriate for handling strong unknown cross-
couplings and for producing algebraically smooth error which allows for a point-coarsening.
This should especially be true for applications where the decisive unknown cross-couplings
are located mostly in thd ;. ;) on the block-diagonal ofl. An obvious example for such a
matrix class is given by the RD models (3.4).

A standard block-wise smoothertock-wise Gauss-Seidel (BGS)ts linear smoothing
operatorSpgs equals

Spas =1—-Qp'A (3.70)

with Q@ p being the lower block-triangular part af including the diagonal blocks:

_ App 1<K,
Qr = (Qu)ki=1,...n, With Q) = {0 o else.
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Note that@ p is non-singular for arbitraryl > 0.

In the next Section, 3.4.1.1, we prove tt$iss satisfies the so-called point-smoothing
property. Afterwards, BGS’ smoothing properties are examined for our model problems.
Numerical results are also presented and discussed for ILU(0) smoothing. Another remark
concerning ILU-type smoothing is made at the end of Section 3.4.1.2.

3.4.1.1 Point-Smoothing Property

Generalizations of the variable-based smoothing property (3.9), Theorem 3.2 (see Section
3.2.1.1) and Lemma 3.2 in [87] to the point-based case can be obtained in a straightforward
way. We start with the smoothing property and define:
A smoothing operatof is said to satify thgoint-smoothing property w.r.t. a matrix
A>0ifforall e
1Sell? < llel[2 — allel[35 (o> 0) (3.71)

holds witho being independent ef.
The following lemma gives us a straightforward generalization of Lemma 3.2 [87] to the
point case.

Lemma 3.8 Let A > 0 and let the smoothing operator be of the fofm= 1 — Q;lA with a
nonsingular matrixQ . Then the smoothing propert$.71)is equivalent to

cQpDp' QP < Qp+Qp — A.
Proof. A straightforward calculation shows that
[|Sellf = llellf — (Qp + QF — A)Qp' Ae,Qp' Ae)p .
Therefore, (3.71) is equivalent to
ollells < (Qp + QF — AQp' Ae, Q5 Ac)
which, in turn, is equivalent to
o(Dp'Qre,Qre)t < (Qp +QF — Ae,e)p. W

With this lemma, we can now prove a straightforward generalization of Theorem 3.2 to the
point-based case.

Theorem 3.10 Let A > 0 and define with any vectar = (wy)r=1,....n, > 0

.....

1 —1

1
P .__ - -1 4
= m’?x{ o lék wl||A(k,k) (k,l)|E} :

kS|

2
+

. , - . B 1
Then Block-Gauss-Seidel relaxati(®170)satisfieg3.71)with o = A
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Proof. We proceed analogously to [87]Spgs satisfies the assumptions of Lemma 3.8,
and we have)p + Q% — A = Dp. Hence, (3.71) is equivalent td QL D' Qpe,e)p <
(Dpe, e)g which, because abp > 0, QED;lQp > 0 and (2.59), is equivalent to

o <1/p(Dp'QEDp'Qp) -
A sufficient condition for the latter inequality is given by

o <1/|Dp'Qp| D' Qp|

for the operator norm- | induced by an arbitrary vector norm (cf. (2.50) and (2.48)). We
have

A(kk A(kl) forl <k,
0 else,

(Dp' Q) (k) = {A(_klk A(’ k) — A(k wAwy forizk,

(DR'Qp) gy = {

0 else.

For a vectorw = (wg)k=1,... np > 0, the matrix norn| - ||,, defined by
e >l B e}

is the operator norm to the vector nofa||,, := maxk{wk v |E}. For this special
choice, we get

HD;lQPmeI?X{ ZleA(kk)A(kl)HE} =147,

1<k

105 @Bl = mae] 2 S willAgh, Awolle | =1+
1>k
which proves the theorem. |

3.4.1.2 Investigations of Point Smoothing for the Model Problems

In this section, the point-smoothing properties of BGS are examined for the three model
classes defined in Section 3.1.3. In particular, the results for the RD and DD model classes
are also important for subsequent discussions.

ConsiderA = Lg deflned by theAvL model (3.1). For each of the two casés< k and
[ >k, two matrlces4 A(k ;) are nonzero and of the form (ignoring boundary conditions)

_ d 1 0
1 e
A Ay = 2+ 2 { 0 1 ] ’
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Figure 3.1: BGS relaxation for the DD model withr1/64 (,=11907), (), ¢, €)=(1e-
3,1e3,1e-3): Error of unknowm, after (a) 1 iteration, (b) 5 (and qualitatively all following)
iterations. The errors af;, us andug are similarly smooth. For and\, ¢, ¢) =(1e-9,1e9,1e-
3) the plots are very similar.

one matrix withd = 1, and one withd = €. Forw = 1, we thus obtain

1 € 1

p_ l
2—|—2e+

=7

2+2 27

independent of;, b, c. Although the matrix4 = L defined by the®vVLD model (3.2) is not
symmetric so that (3.10) can strictly speaking not be applied, the resultozgy serve as a
hint how BGS works for this case. We obtain

1 e 0 foronel < k, [ > k each
. S22 | g 1 (“on the z-axis of the stencil”),
Ay Aen = 10 foronel < k, 1 > k each
1 )
S22 e (“on the y-axis of the stencil”),

and thus arrive at the samé = ~” as forLg. Therefore, for the AVLS and AVLD models,
we arrive ato = 4/9 - completely independent éf ¢, a, b, c. This is in accordance with
numerical results: even for the asymmetfip, BGS is an efficient smoother. Applied to
Lg, the smoothing effect is as for VGS appliedig..: the error is smooth ig-direction,
but, unlessc approaches 1, not im-direction. For both unknowns, smooth error is thus
qualitatively identical to Fig. 3.1. In contrast to this, appliedtg, the error of unknown
w1 IS smooth in the contrary direction than the error of unknawnthe smoothing effect on
unknownu; (ug) is similar to that of VGS applied td,.c (Ly:e).

We can also explain these results heuristically by observing that, for/hethnd L p,
the errore;, is the approximate sum of the four summanqgl’k)A(kvl)e(l) (I # k) with
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Figure 3.2: BGS relaxation for the DD model witkr1/64 (2,=11907),()\, ¢, €)=(1,1,1e-3):
Error of (a) unknownuy, (b) unknownu, after 10 (and qualitatively all following) iterations.

The smoothness of the error @f is similar to that ofuy. The errors after 1 iteration look
similar to Fig. 3.1(a).

diagonaf® matricesA(;l’k)A(k’l) as shown above. In case bf, by construction, the point-
couplings exhibit the same anisotropy s.. That means, for each variablethe contri-
bution of the two nearest neighbors, belonging to the same unknown tivan-direction
to the sum is smaller by a factor efthan the contribution of the two nearest neighbors in
y-direction. For both unknowns, BGS thus reflects the anisotropydirection. In case of
Lp, however, the4(‘k17k)A(k’l) are identical besides the fact that for two of them the diagonal
entries are permuted compared to the other two. This has the effect that, foe siimakrror
of a variable belonging ta; (ug) is the approximate sum of the errors of the two nearest
neighbors iry-direction @-direction) belonging ta; (us).

For theAVLX model (3.3) ands := 4c? — ab(1 + €)% # 0, we obtain

1| abe(1+e€) — 262 —be(l —¢€) foronel < k, I > k each
R 25 ac(l —¢) ab(1 + €) — 2¢2 (“on the z-axis of the stencil”),
(o) 1) | oab(1+¢) —2¢2 be(1 —e) foronel < k, I > k each
2 —ac(l—¢)  abe(l4¢€) —2¢ (“on they-axis of the stencil”),

Forw = 1 and$ > 0, we obtairf*

A= = 156+ Vbl — %) -

30Therefore, only variables belonging to the same unknown than a vatiablengs to contribute te;.
31The software Maple [108] has been used to calculat%t&ék)A(k,l) and their eigenvalues.
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Figure 3.3: ILU relaxation for the DD model with=1/64 (2,=11907),(), ¢, €)=(1,1,1e-3):
Error of unknownu, after (a) 4, (b) 6 iterations.

In contrast toLs and Lp, the A(*klk)A(k,l) are not diagonal; they are not even symmetric

here. Fora = b, we have(A(f’k)A(kyl))u = —(A@lyk)A(kvl))gl. Moreover,7% 4" and
thuso strongly depend on, b, ¢, e. The largeric| compared ta, b, the more dominating the
unknown cross-couplingsL. Therefore, for largéc|, the smoothing effect of BGS applied
to L is similar to the effect of VGS applied tb. If « andb are much larger thaje|, BGS
produces an error for unknown (us) which is as smooth as the error VGS applied tg.
(Ly.c) produces. However, if is small anda = b is only moderately larger thaje|, for
instancen = b & 2|c|, BGS is not an appropriate smoother any more (see also Table 3.1).

From Section 3.3.3.1 and the numerical results shown in Table 3.2 we know that VGS
and UGS are not appropriate for tR modelsas soon ag = h2f or n, are quite large.
However, they work - at least for smail, - also forc = 1 which is considerably larger than
4 (1 — cos(h)) = O(h?) being the limit forA € Aspq *2. In the following, we show that
BGS is an appropriate smoother even for largeandc. Assumen, = n, andc® # 16.
Then observe that, for eaéhthere exist four indicesfor which

_ 1 4 —c
1 —
A A(kJ) — 02 — 16 |: —c 4 :| )

two [ are smaller thark, and two larger. The remaining(‘klk)A(kJ) (k # 1) vanish. Since
c¢>0and

1 4 —c ~ nax [d+¢c |4—¢ ~ max 1 1 1
c2—16| —c 4 B |2 — 16| |2 — 16| lc—4]" lc+4]f  |e—4]

32| Table 3.2, numerical results for the quite sniak= 1/512 are presented.
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Figure 3.4: ILU relaxation for the DD model with=1/64 (2,=11907),(}, ¢, €)=(1,1,1e-3):
Error of unknownu,, after (a) 4, (b) 6 iterations. The smoothness of the erra;aé similar
to that ofus.

we obtain, forw = 1,75 =~ = ‘034‘ , and therefore

=4\’

7 (|c—4|+2> '
The system matrix4d is symmetric positive definite if and only #2f = ¢ < 4 (1 —
cos(mh)) = O(h?). Of course, we then arrive at < 4/9. With growing ¢, we obtain
o = lin the limit. Although Theorem 3.8 cannot be applied any more dué 8 Aspq,
this largeo reflects that BGS approaches a direct solver for growingdn, ~ n,. This is
also true for ILU(0) which (at least in terms of convergence) is sometimes more efficient than
BGS here. The above considerations are confirmed by the numerical results shown in Table
3.2. Summarizing, BGS and ILU(0) are appropriate smoothers for the RD models for all
andn, whereas VGS and UGS are not as soon asn, exceed a certain limit.

The DD modelsclearly leave the range of matrices covered by theory. Hence, in par-
ticular Theorem 3.10 cannot be applied any more nor can we expect that AMG stand-alone
converges in all cases. Numerical results for the DD models are given in Table 3.3 and Figs.
3.1, 3.2, 3.3 and 3.4. Both the ARFs and the resulting smooth errors after some BGS relax-
ation steps indicate that BGS is an appropriate smoother for the DD models.

In contrast to BGS, the methods VGS, UGS and also ILU(0) diveiifee divergence
alone is, however, not the decisive criterion whether an approach can efficiently be used as
a smoother. A smoother can help improving the convergence of the overall approach even if
it diverges stand-alone. This can be the case if the divergence of the smoother is only due to
some error frequencies which can efficiently be treated by the AMG approach or, finally, the
accelerator employedindeed, this can be observed for ILU(0) smoothing. Figs. 3.3 and 3.4
show that divergence occurs only in a small area. Outside, ILU(0) produces smooth errors. In
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contrast to this, VGS and UGS diverge everywhere and “without a pattern” in the simulation
domain. The divergence is even too strong to be plottable.

Fore = 1, the errors ofu;,us,us are smooth in all directions, regardless of the concrete
(A, 0). If e < 1, the strong anisotropy of|, ;) can only be seen in one corféof the domain
in case of(\, ¢)=(1,1), but it is the stronger reflected, the largand smaller\ are. This has
to be taken into account when constructing coarsening and interpolation later on. Note also
that for largec (and small)), the smoothness of the error of (see Fig. 3.2(a)) one one
hand, and the smoothness of the errorapandus (see Figs. 3.2(b)) on the other hand is
somewhat different.

a c ARF;2(VGS) ARR(UGS) ARR(BGS) ARR(ILU(0))

10 1] div(0.107e+1) div(0.107e+1) div (0.108e+1) div (0.126e+6)
2 1 | div(0.456e+1) div (0.455e+1) div (overflow) div (overflow)
1 2| div(overflow) div (0.760e+3) 0.998e+0 0.998e+0
1 10| div(overflow) div (0.493e+6) 0.998e+0 0.998e+0

¢ eiy=1e-10 is reached in only 4 cycles. ARF = 0.316e-02.

Table 3.1: ARE for VGS, UGS, BGS, ILU(0) applied to different AVLX models. = b,
e =1e-3,h =1/512 (,=522 242). See Section 2.4.6 for the definition of ARF

n. ¢ ARF(VGS) ARR(UGS)  ARR(BGS)  ARR(ILU(0))
1 1e0 0.965 0.965 0.965 0.968
1e3 | div (0.153e+20) div (0.153e+20) 0.965 0.931
1e9 | div (0.153e+68) div (0.153e+68) 0.965 0.826
100 1e0 0.965 0.965 0.965 0.968
1e3 | div (0.150e+21) div (0.150e+21) 0.965 0.865
19 | div (0.147e+69) div (0.147e+69) 0.864 0.867
1000 1e0| div (0.188e+01) div (0.188e+01) div (0.216e+1) div (0.262e+01)
1e3 | div (0.176e+21) div (0.176e+21) 0.965 0.853
1e9 | div (0.255e+69) div (0.255e+69) 0.659 0.858

“ eix=1e-10 is reached in only 4 cycles. ARF = 0.316e-02.

Table 3.2: ARE for VGS, UGS, BGS, ILU(0) applied to different RD models=1/512.

A c ARF2(VGS) ARR(UGS) ARR(BGS) ARRK(ILU(0))
1le0 1e0| div(0.221e+16) div (0.382e+15) 0.964 div (0.162e+01)
le-3 1e3| div(0.435e+40) div (0.363e+39) 0.964 div (overflow)
le-9 1e9| div(0.948e+73) div (0.327e+73) 0.964 div (overflow)

Table 3.3: ARKE for VGS, UGS, BGS, ILU(0) applied to different DD models. =1/512
(n, = 783 363). Shown are results fa=1. Results foe = 1e-3 are slightly better.

33namely the corner whereandy approach 1. This is due to the definitionff in Section 3.1.3.3.
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3.4.2 Primary Matrices and Point-Coarsening

A reasonable primary matriR = (py;) has to reflect the coupling$;. ;) between the points
reasonably well. Depending on the type of application, there are many possibilities for defin-
ing a primary matrix - at least from a technical point of view: Not all of them lead to an
efficient overall approach (if any). Often, the constructionPo€an be done automatically

as part of AMG’s setup phase. In other cases, it may be better to let the user of (S)AMG
provide a reasonable matrix himséff based on his knowledge of the underlying physics

of the given problem. In all cases, a primary matrix can usually be interpreted as describing
the connectivity structure of some auxiliary (scalar) unknown. Clearly, this unknown should
represent the physical connectivity structure of all “real” unknowns in the given system of
PDEs reasonably well, i.e. simultaneously for all of them.

We now describe different processes for defining a primary matrix. In Section 3.4.2.1,
we start with a general discussion of the possibilities to represent the couplings between the
points by means of #. Concrete possibilities for defining the entriesldfire described in
Sections 3.4.2.2 to 3.4.2.4. We discuss primary matrices which equal one 4f.the and
we discuss several variants of primary matrices based on norms 4f theor coordinates of
the grid nodes. In Section 3.4.2.5, some other possibilities are indicated. Afterwards (Section
3.4.2.6), two general possibilities for the recursive definition of primary matrices in case of
amulti-level method are discussed. Finally, in Section 3.4.2.7, the point-coarsening process
is generally explained and, for the concrete types of primary matrices introduced, further
discussed.

3.4.2.1 Representation of Point-Couplings

For setting up a primary matrix, we need to define the connectivity pattef® as well as
the concrete values,;. Three general approaches are imaginable:

e based directly on information contained in the mattiand its VU and VP mappings.
The simplest variant is the employment of a submatrixdofor example, one of the
Apn.n if possible (see Section 3.4.2.2). The most natural variant here is the usage of
norms of theA;, ;) (see Section 3.4.2.3). The latter can always be employed, at least
technically. In practice, anutomatic constructionf corresponding types of primary
matrices is possible.

¢ in addition to the above information, based on coordinates (see Section 3.4.2.4). It
depends on the application whether such information is available. Thextamatic
constructionof corresponding types of primary matrices is possible again.

e based on an auxiliary scalar problem (different from the above) representing the physics
of the PDE system in a suitable way (see Section 3.4.2.5). An example might be a dis-
crete Laplacian. In practice, a correspondihgeeds to be provided externally.

34This will be discussed in Section 4.2.3.1.
35Recall from Section 2.4.2 that the connectivity patt&of a matrix is defined to be the distribution of its
nonzero entries.
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Clearly, sinceA is a sparse matrix in all applications considered in this thé3ibas also
to be sparse to yield an efficient approach. This directly leads to the general question of an
appropriate connectivity pattebnof P, which is considered now and prior to the discussion
of the three ways mentioned above to define the concrete valuesgf;the
If norms of theA, ;) are used to define thg,, or if P := Ay, ,,) (if possible; see also
the next section), this automatically leads to a sp&sginherited sparsity”). In case of
coordinates, however, the connectivity patterdPahust be determined in addition. It seems
reasonable to assign a zero value §g.gf Py, is not coupled td?;, as in case of norms. This
should also serve as a guideline for most cases where another measure is used 1. define
WheneverP is defined automatically within the setup phase of an approach belonging to
our framework, the connectivity pattern dfis the basis for that aP. Two different types of
patterns are considered, the so-calletnown-pattern (u-pattern) andmaximal pattern,
respectively:

e unknown-pattern (u-pattern): One possibility to define a connectivity pattern #r
is copying the connectivity pattern of;,, ,,) for any1l < n < n,. In this case, we
call then-th unknown theprimary unknown and the corresponding pattern theh
unknown-pattern.

If we want to stress that theth unknown-pattern is used, the primary matrix is denoted
by P,, and its pattern by,,.

Note that then-th unknown may serve as a primary unknown only if the connectivity
pattern ofAy, ,,) is completeor valid, that is, then-th unknown has to be represented

at all points. In practice, it often happens that not all unknowns are represented at a
point, that is, the number of variables may vary from point to point (cf. the applica-
tions discussed in Chapter 5). But a reasonable primary matrix is always required to
represenall points and is thus not allowed to contain empty matrix rows. Therefore,

if the connectivity pattern of ad, ,,) is not completel/,, cannot serve as a primary
unknown and thex-th u-pattern is said to beot valid.

e maximal pattern: We call the connectivity pattern @ maximal if it reflects the full
point-coupling structure oft. To be more specific, @, {) is in the connectivity pattern
of P if Py is coupled toP;. Obviously, this pattern is valid in all cases.

If the usage of the maximal pattern shall be emphasized, we denote the primary matrix
by P,,... and its pattern b\, -

Examples of different patterns are shown in Figures 3.5 and 3.6. Another possibiliy to visu-
alize the pattern of the primary matrix is to use graphs, if necessary directed. For a coupling
structure as depicted in Figure 2.2, the maximal pattern is shown in Figure 2.3(b) and the first
u-pattern, the only valid one for this example, in Figure 2.3(a).

In the following sections, we describe several possibilities to define the non-vanishing
entries ofP.

3.4.2.2 Unknown-Based Primary Matrix

An unknown-based primary matrix simply meaRs= Ay, ,, forany1l < n < n,. This
selection requires the-th unknown to be completdl{,,| = n,). Being natural in this case,
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Figure 3.5: Connectivity pattern of a matrix corresponding to eleven variables, three
unknowns, and four points. The eleven variables are assumed to be sorted point-wise, and
at each of the four points with increasing unknown number. At the third point, the third
unknown does not exist. Hence, one column and one row are missing.

E koL

Emaz

Figure 3.6: Corresponding connectivity pattebiis,.., 31, . . ., X3. The patterrdl; is not
valid because the third unknown does not exist at the third point (empty row!).

only ¥ = X, is taken into account here. Whether or not this choic® ohakes sense, de-
pends on the application, in particular, whether the connectivity structure oftthenknown
is also representative for the other unknowns.

Note that employing some externally defined matrix as a primary matrix may be realized
via an unknown-based primary matrix. Externally defined primary matrices will be discussed
in Section 3.4.2.5.

In the following two examples and two remarks, we discuss applications of this simple
variant. We start with an example on how certain Navier-Stokes systems might be solved
by a PAMG approach using an unknown-bag&dn the following two remarks, we review
point-oriented aggregative AMG approaches that are used for solving certain CFD problems.
Relationships to our framework are indicated, revealing that the approaches proposed in the
literature correspond to a point-based approach with an unknown-based primary matrix. In
addition, some recent research activities are mentioned. We conclude with Example 3.2 on
an unknown-basef® for drift-diffusion systems.

Example 3.1 An unknown-based primary matrix might be reasonable for Navier-Stokes sys-
tems, at least if discretized on non-staggered grids. One possibility might be the following.
If the “pressure” equation in the system (i.e. the equation not corresponding to a velocity)
contains (at least) an artificial viscosity or penalty term?(A”) as an artificial, weak con-
tribution of the pressure, the correspondifig ;) might be chosen as the primary unknown.

An investigation of corresponding AMG approaches will be a topic of future research. See
also the following two remarks. Another possibility arises if a pressure-correction equation
is already available or can be created in addition to the Navier-Stokes system to be solved.
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See Section 3.4.2.5. A

Remark 3.19 (Aggregative AMG for Navier-Stokes Equations}-or the system of Navier-
Stokes equations, we can find both segregated as well as coupled solution approaches in the
literature. In a segregated approach, scalar PDEs are solved. AMG for this application is
discussed, for example, in [29, 87] and references given therein.

More and more, the Navier-Stokes system is solved fully coupled in3€Bimulators.

For instance, the point-based approach [63, 64] can be characterized as an AM&/ACM
method suitable for the coupled, linearized, discrete equations arising from an implicit FV
discretization of the 3D Navier-Stokes equations. It employs an ILU(O) factorization as a
smoother. The coarsening of the finite volumes is done by an agglomeration method with a
strategy based on the strength of pressure coefficients. This measure of strength of couplings
is similar to the one that would be employed by a point-based approach of our framework with
the pressure being the primary unknown (see also Example 3.1 above). However, restriction
and interpolation are simply piecewise constant, classifying this AMG solver to be of the
nonsmoothed aggregation type.

Other nonsmoothed point-based aggregation-type AMG approaches for the solution of the
finite-volume discretized Navier-Stokes systems can be found in [109] and references therein.
Main differences to the approach described before are that an augmented Navier-Stokes sys-
tem, consisting of five equations for the 3D case, is solved, and that these approaches employ
block-Gauss-Seidel smoothers.

Recently, in [101] a new AMG-like concept for the coupled solution of the Oseen prob-
lem, discretized by a mixed finite element method, has been introduced. The concept em-
ploys techniques known from GMG for saddle point problems such as Braess-Sarazin- or
Vanka-type smoothing and, for two mixed FE discretizations, investigates possibilites for a(n
alternate or “shifted”) coarsening of the velocity and pressure components. This approach is
still in its infancy. A

Remark 3.20 (Oil Reservoir Simulation) Very recently, a straightforward point-based ex-
tension of smoothed aggregative AMG for the solution of FV-discretized oil reservoir sim-
ulation systems is discussed in [60]. Except for the fact that this approach uses smoothing
of aggregation (only applied to the pressure coefficients), it resembles the aggregative AMG
approaches mentioned above for the Navier-Stokes equations. In particular, aggregation of
cells based on a “strong graph of the scalar pressure equatiba’s been found to be robust
and efficient also for the oil reservoir applications considered. Again, this graph of strong
connections resembles the one employed in a PAMG approach of our framework with the
pressure being the primary unknown.

UAMG and certain PAMG approaches with an unknown-based or norm-asad be
applied successfully to certain PDE systems arising in oil reservoir simulation. Since this is
subject to recent research activities, detailed results will be published somewhere else.

36CFD = computational fluid dynamics.

37ACM = additive correction multigrid, see references in [63, 64].

38arising from a fixed-point iteration for the nonlinear incompressible Navier-Stokes system.

39In a preprocessing step, an equation that resembles the standard pressure equation is determined.
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Example 3.2 Numerical results for drift-diffusion systems (see Section 5.3.2) have shown
that, in some cases, the selection of the potential as the primary unknown yields an efficient
approach. However, this approach has not proved to be robust. A

3.4.2.3 Norm-Based Primary Matrix

A special point-based approach, sometimes célleck approach, has already been sketched

in the very early paper [74]. This approach has to some extent been further investigated,
for instance, in [58, 30}. In this thesis, we generalize the ideas of [71] and, compared with
[30] and others, develop more practically applicable variants. This will be particularly true
for interpolation, as discussed in Section 3.4.3, but is also true for the variants we propose to
construct a norm-based primary matrix.

In the discussion of norm-based primary matrices, the representation (3.69) is a natural
starting point. The entries d? are then defined based on some norm of the point-coupling
matricesA;, ;) describing the point-wise connectivity. Especially in the norm-based ap-
proach, the primary matrix can thus be interpreted as a “condensatiod”infthe sense
that each point-coupling matrit ;, ;) is reduced to a scalar entpy; of P. Besides the con-
crete selection of a norm, WhiC§1 will be discussed below, this can be done in several ways.
In this thesis, we consider four different variants. Two straightforward possibilities are the
following: for all (k,1) € X, k # [, define

(1) pr=—[A@wpll and  prr = [[Ag,kll (3.72)
2) pu=—lAwpll and pw=—> pu (3.73)
1#k

with || - || denoting a suitable norm. Both variants are simple to compute and, hence, suitable
for practical use. However, in contrast to scalar AMG, there is no sign-condition here: all
off-diagonal entries are simply defined to be negative, regardless of the sign distribution of
Therefore, one might be attempted to extend these definitiaRsfof instance, by assigning
positive entries}| A ||, to thosepy;, for which A, ;) > 0. This leads to the following two

variants: for all(k, ) € 3, k # [, define

Awpll i Ay 20,
5 - ’ ’ d pex = A 3.74
®) ou {|A(k,z)|| otherwise, and  prr = [|Ak,x)ll ( )
HA(kzl)H if A(k 1) >0,
! - ' ’ d pre = 3.75
@) pu {_IA(k,l)H otherwise, and - Pkk ZZ |pri] (3.75)
: —~
with || - || denoting a suitable norm. Not unexpectedly, one can observe that these two

approaches are a bit simpler to handle for theoretical considerations as performed in Section
3.4.4. However, at least the question on the correct handling of indeflpjtg remains.
Anyway, variants (3.72) and (3.73) are much cheaper to compute than (3.74) and (3.75).

40n [71], the idea of a point-wise coarsening and block-interpolation (see Section 3.4.3.1) was outlined, and the
result of a preliminary test was given.
41cf. also Remarks 3.27 and 3.38 for some comments.
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Therefore, only the variants (3.72) and (3.73) are used in practice, even if4Aqmek # 1)
are positive definite or indefinite.

Remark 3.21 For instance, due to the problems in handling positive semi-definite and indefi-
nite A, ;) (k # 1) or the problems in handling anisotropies which are different from unknown
to unknown, it i;xottrue that a norm-based point approach is a very straightforward or even
the natural extension of AMG to systems of PDES, an opinion which is nevertheless some-
times advocated in the scientific community. This topic will be discussed a bit further in
Section 3.4.2.7. A

Remark 3.22 A norm-based primary matrix principally inherits the sparsityof A

Remark 3.23 Note that thep,, are always greater than or equal to zero in each of the four
variants.pir > 0 is true for (3.74) and (3.72) becauseAf> 0. In (3.75) and (3.73)pxx

can only be zero if all off-diagonal point-coupling matricég, ;) of the row are zero. But
because of(;, ;) # 0, P is then arisolated point, and wedefinepy,, to be equal to 1. As

in case of Dirichlet variables, such points becdoreed F-pointsin the coarsening process
and obtain “empty”interpolation formulas as a consequeAsalways, such “trivial” points

are tacitly excluded in the discussion of interpolation formulas. A

Norms Regarding the concrete choice of the norm, Buelideanmatrix norm,||B||g =

vmax |A\(BTB)| (= p(B) for B > 0), is convenient for theoretical considerations (see
Section 3.4.4), because |t is the operator norm induced by the Euclidean vector norm. But
since||B|| g is too expensive to evaluate, various “cheaper’norms have been considered for
practical applications, such as the maximum, row sum and Schur norm (see Section 2.4.5).
The Schur norm is compatible to the Euclidean vector norm and often yields similar results
than the Euclidean matrix norm. However, it is case-dependent which norm gives the best
results, i.e. leads to a good representation of the point-coupling structdrevithin P.

Remark 3.24 It turns out that, in many applications and especially the ones considered in
this thesis, AMG convergence rates do not significantly depend on the concrete choice of
the norm. This is because often the point-coupling matritgg, are dominated by one or
more equally large entnes] each so that the different norms considered above essentially
coincide. Therefore, in order to minimize computational cost, we usually select the maximum
norm in practice. A

Example 3.3 A norm-based® computed for the AVL model g always equal€., .., regard-

less which of the above norms has been chosen. For the AVL nigglean isotropicL is
obtained. In both cases, it is reasonable to base coarsening on a nornPtssed it reflects

the direction(s) of smoothness resulting from BGS relaxation (see Section 3.4.1.2) correctly.
Therefore, we expect point-based AMG with a norm-baBed yield an appropriate solver
here. This is confirmed by the numerical results shown in Section 4.6. A
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Example 3.4 For the RD models, the situation is compardhld®=L. However, we should

have in mind here that in practical applications as presented in Section 5.2.2 large off-diagonal
entries arising from reaction terms disturb the scenario. As discussed in Example 3.10, coars-
ening should still be based on an isotrogiovhich, however, cannot be obtained from a
norm-basedP any more. A way to obtain an “appropriafg is discussed in Example 3.10.

A

Example 3.5 The matrices corresponding to the DD models are dominatedihy in the
sense that in the majority of cases the largest entry ofign, belongs toA ;. For
(€,A,c)=(1e-3,1,1), for instance, about 60% of the dominating entries aréin. The
remainder corresponds to entriesAn, ,,; all of which correspond to the discrete isotropic
LaplacianL. The largerc, that share tends to 100%. Therefore, chosing a norm-based pri-
mary matrix results in a “mixture” ofi; ;; = f.(c,z,y) L..c and L reflecting that share.

For sufficiently large, we arrive atP = A, ), regardless of the concrete norm. As long as

€ ~ 1, an unknown-basef equals - besides scaling - the norm-bagtso that both types

of primary matrices also yield the same coarsening process Refé:

Fore <« 1, however, only the norm-based variant correctly reflects the direction(s) of
smoothness resulting from BGS relaxation (see Section 3.4.1.2). We therefore expect a norm-
basedP to be the best choice here. Numerical results are presented in Section 4.6. We will
see in Section 5.3 that a comparable situation arises for the drift-diffusion systems. o

3.4.2.4 Coordinates-based Primary Matrices

The original AMG did not exploit any information on the given problem apart from the matrix
A itself. In many PDE applications, this unnecessarily limits the possibilities for an efficient
coarsening and interpolation. As a matter of fact, geometric information such as the coordi-
nates of grid nodes is usually available and simply accessible, and could thus be exploited in
AMG'’s setup phase. Note that this does not put any restrictions on the gigise

If points correspond to real physical grid nodes in space, and if we assume their coor-
dinates to be knownP may be constructed easily and automatically based on distances of
points, leading to coarsening processes which are closely related to geometric coarsening (see
also Section 3.4.2.7). A simple definition would be

pr=—1/6% (V(k1)€X, k#1) and py, = *Zpkz (3.76)
14k
wheredy; denotes the distance between poiRtsand?,, i.e.
6kl 3:||7Tk_7TlHE- (377)

with 7; being the vector of coordinates corresponding toittiepoint.
As has been mentioned above, unlig,, .. for a norm-base®, no “natural” maximal:
is imposed for coordinates-basPdso that the choice of a suitabigis particularly important

42for (3.73) and (3.75). In case of (3.72) and (3.74). with 1 < k < n can be different from the corresponding
diagonal entry off..
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in order to ensure the sparsity Bf Since, usually, there is no reason to define an artificial
coupling between points which are not coupled by matrix entrjgsthe maximal pattern,
Ymaz, OF one of the unknown-patterns, depending on the application, should be chosen.

Remark 3.25 It would also be possible to oriefit on some reasonable pattern of “strong”
point-couplings, for instance, defined via norms of the point-coupling matrices and a suitable
threshold. This would reduce the sparsityPfurther and prevent “weak point-couplings”
from getting too much influence aR and thus the coarsening. However, it depends on the
case whether this is advantageous or not. A

The resultingP is calleddistance-basedorimary matrix. Compared with/dy;, the above
variant strengthens the coupling between two nearby poinks ctirresponds to the connec-
tivity pattern of a Laplacian second-order discretized by means of, for instance, the five-point
stencil in case of a regular grid or a standard FV discretization on a Delaunay grid (see Sec-
tion 5.3.1.5) or a similar discretization, the employment of a distance-tiaseduld result
in a coarsening strongly related to the one employed in standard geometric multigrid. This
and possible applications of a distance-baBeate further discussed in Section 3.4.2.7.

The above distance-based primary matrix does not take positions of the points into ac-
count. Problems may hence arise if a pdifitis coupled to other points not surrounding
Pr. To overcome this limitation of a mere distance-based approach, we might construct a
primary matrix which punishes non-uniformly distributed couplings by appropriate scalings
of the distance-basag,;. For a two-dimensional simulation domain, sucpasition-based
primary matrix can be constructed in the following way: for each kowi P do

1. construct the distance-based entrigs(k, [ € ) of this row,

2. if the matrix rowk has more than 2 nonzero entries, scale each off-diagonal gntry
by a factorf;; computed as follows:

(a) compute the signed angle(ja| € [0;180°]) betweenm,m;, and 7, for all
m# 1k,
(b) determine the smallest angtg counterclockwise and the smallest angle
clockwise,
(©) frr = (a1 + a2)/180°, ppe™ = fr pyr.
After having scaled all entries, compuytg, = — Zl# Dkl

This “two-dimensional cake-scaling” rewards those off-diagonal engiigsvhich are faf®

from their next neighbors and punishes especially those which lie in between two near neig-
bors. Due to multiplying the distance-baggtf' by fi;, distances as well as angles are taken
into account here. Note that this scaling does not punish all cases of non-uniformly dis-
tributed couplings in the three-dimensional case. However, non-uniformly distributed cou-
plings mainly occur near boundaries or in case of a “strange” grid. In the first case, the
position-based® has not performed more efficiently than the distance-b@éu practice

so far. In the second case, which is likely to be disadvantageous for a discretization of the
problems we have in mind here, it should make more sense to “repair” the grid instead of
punishing its “failures” afterwards. Therefore, we have not investigated this topic further.

43assuming equal distancesq.
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3.4.2.5 Other Possibilities

Not in all cases is it possible to construct an (or the most) appropriate primary matrix by
extracting it automatically only from the matrik. In such a case, if an auxiliary scalar prob-

lem can be defined representing the point couplings in a reasonable way, the corresponding
matrix of the problem would be a natural primary matrix. We now give three examples where
this way of definingP is promising.

Example 3.6 If anisotropies in a given problem are mainly due to non-uniform mesh spac-
ings, a suitable primary matrix might be given by a discretization of the Laplace operator. If
coordinates are available, this might be mimiced by a coordinates-based primary matrix. If,
however, coordinates are not available, an approximate discrete Laplacian might externally
be defined to AMG. A

Example 3.7 In Section 3.2.3.4, we have discussed two possibilities to modify standard
coarsening in order to treat the anisotropic Laplacian corresponding to the nine-point stencil
(2.28) withe = 0 anda = 1/4 correctly. Since an appropriate coarsening corresponds to
the standard coarsening process for the strongly anisotropic five-point sfgnrgil, another
possibility is given by a point-bas&tapproach withP = L. . If a similar problem is
posed on an unstructured grid, a suitable primary matrix might be obtained from a “suit-
able™® discretization of the anisotropic Laplaciaru,, — u,, on that grid. Normally, it
should be possible to set up such a primary matrix in the same part of a simulation code in
which the matrix of the original problem is set up. A

Example 3.8 One can also imagine cases where it makes sense to define a primary ma-
trix based on some natural physical quantity for which there is no reasonable equation con-
tained in the original system of PDEs. An example for such a case might be the pressure
in the context of the Navier-Stokes equations. Instead of choosiAgepresenting an ar-
tificial viscosity term (h2A”, see Example 3.1), another possibility could be a (separate)
pressure-correction equation. An advantage might be that this equation typically reflects also
anisotropies and discontinuities (“material contrasts”) which are physically contained in the
system. A

Remark 3.26 (Practical Realization)As has been mentioned in Section 3.4.2.2, employing
some externally defined matrix as a primary matrix may be realized via an unknown-based
primary matrix. This could be done by augmenting the original matrby this primary ma-

trix P, interpretingP as the matrix of a new, artificial unknown in the system and selecting
this unknown as the primary unknown. Implications of this approach and another possibil-
ity will be discussed in the next section and in Section 4.2.3.1. As has been stated above,
externally defined primary matrices will be one direction of future research. A

44Remember that in the scalar case, each point corresponds to one variable.
“4Sproducinga;; < 0for all i # 5. For instance, a finite-volume discretization might be a candidate.
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3.4.2.6 Recursive Definition of Primary Matrices

So far we have described possibilities to set up a primary matrix on a given level. For a multi-
level method, there are essentially two ways for the recursive definition of primary matrices:

o separate definition: Here, on each leveR is computed “from scratch”. This is natural
for norm-based as well as coordinates-based primary matrices.

o full integration: Here, a coarse-level primary matrix is computed via a Galerkin pro-
cess. This is especially reasonable if on the finest level a submatrx-efA;, (one
of the Ay, ,,) has been chosen as primary matrix. On the next coarser level, the corre-
sponding part oAz can then be chosen as the primary matrix on that level.

For externally defined (user-supplied) primary matrices, both variants might be considered.
We will come back to this in Section 4.2.3.1.

3.4.2.7 Point-Coarsening Strategy

In our framework, point-coarsening is always performed based on a primary Ratiker
having investigated possibilities to set up concrete primary matrices in the last sections, we
now explain the process of coarsening the set of variables by means of a given primary matrix
and discuss the impact of the concrete type of primary matrix chosen on the point-coarsening
process.

As indicated at the beginning of Section 3.4, once we have defined a primary Ra#ix
“classical” variable-based coarsening process is applidditmobtain aC? / FP-splitting of
the set of points. To be more specific, the basic criterion (3.24) for the strength of a coupling
is applied to the s&P of points and the primary matriR chosen. That is, we define the point
Pr. to bestrongly (negatively) couplet the pointP; (k # 1) if

—Dkl = Estr I?;?? \p;;]| . (378)

Remember that criterion (3.24) and variants are used in concrete variable-based coarsen-
ing scheme® in order to distinguish strong and weak couplings. Based on this, the final
C/F-splitting is computed. Accordingly, in a point-based approach,GRgF?-splitting
emerges. To obtain the desirétf F-splitting in terms of variables, th€” / FP-splitting is

then “copied” in a straightforward way to the variablesPjf has been selected to be an F-

or C-point, all variables attached 18, will become F- or C-variables respectively (at least

in the first step). Details of the implementation and special cases are described in Section
4.2.3.2.

Formally, the point-coarsening process as described above is a simple extension of the
scalar coarsening process. However, whether or not this process is finally reasonable, i.e.
whether it allows good AMG interpolation and, through this, results in efficient AMG solvers,
strongly depends on the application. Moreover, the concrete selection of suitable primary
matrices is very crucial for the success of the resulting AMG solver. It seems that there is no

46The variable-based coarsening schemes implemented in our library SAMG, namely standard and aggressive
coarsening, will be described and discussed in Section 4.2.1.
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general best strategy so that, in practice, one has to make compromises. A few aspects are
discussed in this section. In particular, since (3.78) is central to the resGRing?-splitting,

we investigate this criterion for two important types, namely norm-based and distance-based
primary matrices as introduced above.

Norm Coarsening In the scientific community, the block approach is often considered as
the natural extension of AMG to systems of PDEs. However, this is the case only up to some
extent. There are also cases for which the block approach is not convenient or even fails.
As has been noted in Remark 3.21, questions arise on an appropriate definitiorpgf the
if not all Ag,;y < 0 (k # 1), for instance. lll-conditioned!; ;) constitute another field of
problems. We want to discuss this a bit further with the help of criterion (3.78).

The condition humber of a matrix is defined by (2.57). The larger the condition number,
the more ill-conditioned the matrix. In particular, a symmetfig ;) is ill-conditioned if
| Almin (A (k1)) is small compared With\|max(Ax,y) - If @ norm-based primary matrix has
been chosen, based on (3.72) or (3.73) without restriction of generality, criterion (3.78) reads

A > €sir A 3.79
Al > €st e | A5l (3.79)

fora(k,l) € X, k # [. Without additional requirements, it may happen now th&.as
strongly coupled to &; according to (3.79) even {\|imin(A(x,;)) is small compared with
the||Aw [l (G # k, (k,j) € ¥). Since, depending on the application, this may give rise to
a bad interpolation later on and thus an ineffictéaverall approach, the goal should be to
avoid situations where

A > egy IMAX A A A min (A str  max A ol .
I (k’l)H = Ot j;ék.,(l?,j)ez ] (kJ)H | Almin ( (k,l)) < st G#k, (I?,j)ez I (k’J)H
(3.80)

This is illustrated with the following example.

Example 3.9 The condition number of anl; ;y is strongly influenced by scalings of this
matrix. Correspondingly, a norm-based approach reacts very sensitive to scalihg$tod
largest impact is felt if the rows corresponding to the variables belonging to the same point
are not scaled simultaneously and “uniformly”.

For some matrix classes, norm-based primary matrices are principally invariant to such
scalings, an example being the AVL models (3.1). Not invariant are matrices where off-
diagonal couplings determine the efficiency of the approach as, for instance, in case of the
DD models. In particular, if we scale every row corresponding to the second unknown by
a small factors here, we destroy the dominance &f, ;; over the otherA,, ,;. Then, a
norm-basedP might not reflect the direction of smoothness any more (for smake also
Example 3.5). A

In case of any norm-basd@, the question arises if an incorporation of approximations of
minimal eigenvalues in addition to or instead of norms of#hg;) (approximations of max-
imal eigenvalues) could yield better coarsenings and interpolations later on. Clearly, there

47Correspondingly, worse upper bounds for the two-level convergence rate emerge, see Section 3.4.4.
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are ways to avoid the situation (3.80). For instance, in [58] a “min-max-coupling” criterion,

nin Al = eser max || Al (3.81)
(sic!) which intends comparing minimal with maximal eigenvalues was proposed. This cri-
terion prevents the problem (3.80) mentioned above, but introduces a new one: It can happen
that there is no strong coupling at all. For example, iftki block row of A contains many
(nearly) singular block matrices with some large entries, then this criterion would define all
point couplings to be weak in the worst case. Such a gBimvould then become a forced
F-point - despite the large entries contained in the row. Therefore, this criterion cannot be
expected to generally give good results or even better ones than a norm coarsening. Addition-
ally, it is more expensive to evaluate and should therefore hardly ever pay (as the convergence
rates for the simple test cases in [58] indicate, too).

In such critical cases as (3.80), the real question is if a norm-based or, in general, a point-
based strategy is a good wayall to solve the given system. If too many block matrices are
ill-conditioned, we must rather expect that it is at least not the optimal strategy. Therefore,
criteria such as the “min-max-coupling” cannot be expected to help because they do not
remove the real problem.

Up to now, there seems to be no final answer what kind of block approach (in particular,
which norm) is “optimal”. There are more possible approaches to perform the coarsening.
Since not all of them are covered by our point-based framework, we want to list some typical
ones in the following remark and comment on their practical usage.

Remark 3.27 In [58], five coarsening criteria have been investigated. Two of them are equiv-
alent to criteria emerging from suitable primary matrices of our framework:
e The “norm-coupling” criterion corresponds to variant (3.72) with the row sum norm
and a maximal pattern.

e Another criterion corresponds to the same variant but with the maximum norm. How-
ever, no numerical results for this criterion are given in [58].

Besides the “min-max-coupling” criterion discussed above, for another two criteria which
cannot be obtained from a norm-based primary matrix and (3.78), experiments were per-
formed in [58] for some simple model problems.

e One is the “min-coupling” criterion which must read

min ||A px|| > €tr max min ||Ag, T
min A el] > e max min [ Aq el
with the row sum norm and a maximal pattern. Due to the special structure of the
simple model problems in [58], for them it behaves usually very similar to the “min-
max-coupling” criterion. But in general it is problematic because |, -1 || A, z||
cannot be used to define a norm. Additionally, it is usually much more expensive to
evaluate.

e The other, “classical point-coupling” criterion defines a point coupling to be strong if

a coupling of one of the corresponding variables is strong in the sense of the unknown-
based approach. It completely neglects cross-couplings between the different unknowns
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and should therefore only very seldom be useful in a point-based approach, as simple
tests in [58] show. It leads to a similar behavior compared with a coarsening process
based on a primary unknown if the coupling structures ofig|l,,; are similar to each
other. But in this case, coarsening based on a primary unknown - i.e. basetkon
Afp.n - is of course much cheaper.

Since there is no evidence that these criteria and similar ones provide particular advantages,
we stick toour point-coarsening strategy based on a primary matrix. A

Coordinates-Based Coarsening In case of a distance-based primary matrix, (3.78) is equiv-
alent to

VestrOrr < j#kfr(l]ig)ez Okj - (3.82)
We have stated in 3.4.2.4 that, under certain conditions on the discretization, this leads to a
“geometric” coarsening process. This is simple to see if the underlying grid is regular and
Y corresponds to the connectivity pattern of a Laplacian FD-discretized by means of the
standard five-point stencil. For instance, a typical value,of= 1/4 then leads to a “red-
black” coarsening. Such a “uniform” coarsening also arisésrniépresents the connectivity
structure of a FV-discretization on a Delaunay mesh (see Section 5.3.1.5). If the grid causes
anisotropies, a distance-based primary matrix reflects them accordingly. For an illustration,
see Fig. 3.7.
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Figure 3.7: Grid of the STI test case for device simulation (see also Section 5.3.2.3). An
enlargement of the marked part is shown in Fig. 3.8.

Example 3.10 A natural area of application of a distance-ba#ti$ given by problems the
anisotropies of which (if any) are mainly due to non-uniform mesh spacings, but for which the
matrix itself does not reflect this accordingly. An important practical example where this hap-
pens are reaction-diffusion equations in which the underlying continuous diffusion operator

is isotropic but “disturbed” or “superposed” by reaction equations. Such a situation is posed
by the problem class defined in 3.4, being a model for the semiconductor reaction-diffusion
applications discussed in Section 5.2.2. We have seen that the disturbances caused by the re-
action terms are in principle removed by the smoothing operator chosen (for instance, block
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Figure 3.8: Exemplary point-coarsening with a distance-baedShown are the finest
(small) and the next coarse level (large box) for the part of the grid marked in Fig. 3.7.

Gauss-Seidel), see Section 3.4.1. Hence, a coarsening oriented on node-distances tackles the
diffusion problem which essentially remains to be solf®dn contrast to this, the efficiency

of an approach which makes only use of matrix entries in order to define coarsening and
interpolation would be destroyed by large reaction terms. A

3.4.3 Interpolation Strategies for Point-Based Approaches

Given a fine and a coarse level - the latter obtained by one of the point-coarsening strategies
- one has many possibilities to define interpolation now. Which of them may be a good
choice in practice depends, as usually, on the application, the interplay between smoothing
and coarsening, and computational costs.
For ease of description, we simply assume the interpolation opefaterto be ordered
point-wise, that is
Irc = (Wap) (3.83)

with “weights” W(;, ;) with k € F? andl € P} where P} are thesets of interpolatory
points. EachP}’ contains all the C-points the F-poif, is interpolating from. Hence, itis a
subset ofC” and, in case of direct interpolation, a subsedgfin C”. We only considedirect
interpolation here, the correspondimglirect schemes are obtained as described in Sections
3.2.3.5and 4.3.

48An “ideal” approach for such a PDE system would be a splitting of the corresponding matrix into its “diffusive”
and its "reactive” part. The “diffusive” part could then directly be used for coarsening instead of an approximation
which can “a-posteriori” obtained by a distance-baged In practice, however, such a splitting is usually not
available.
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Analogously to the fact that, in a variable-based approach, an interpolation formula shall
approximate (3.22) for an algebraic smooth error, we here seek suiitaplg for

ey = Y Wkneq (3.84)

lep?

so that (3.84) is an approximation of the equation

A(k,k)e(k) + ZA(k,’l)e(l) =0. (3.85)
1%k

This equation is equivalent to (3.22) and characterizes an algebraically smooth error as cre-
ated by a smoother obeying both the smoothing property (3.9) as well as the point-smoothing
property (3.71).

For each application, it is important to consider the following questions prior to a decision
on thetype of interpolatiorfinally employed: Is it important to takenknown cross-couplings
into account? If not, that is if each unknown should be interpolated only from variables
corresponding to the same unknown, do we need to consider each unknown separately, or
is it sufficient to use the same formulas for all unknowr@es shall the interpolation be
block-wise or not?

The combination “take unknown cross-couplings into account and do not interpolate
block-wise” does not fit to a point-based strategy but suggests a variable-based approach
instead. Hence, we consider the following thgemeral types of interpolationin our frame-
work for point-based approaches:

¢ block-interpolation (B-interpolation) : couplings between different unknowns are ta-
ken into account, and the interpolation formulas are computed block-wise.

e multiple-unknown-interpolation (MU-interpolation) : the interpolation formulas are
computed variable-wise and separately for each unknown; in particular, F-variables are
only interpolated from variables of the same unknown.

e a single-unknown-interpolation (SU-interpolation). the interpolation formulas are
computed variable-wise, but are “identical” for the variables belonging to the same
point, and F-variables are only interpolated from variables of the same unknown.

In order to completely define any of the above interpolation operators, we need to decide on
its pattern, i.e. the nonzero structure of the interpolation mafiix, and then compute the
concreteweights

In Sections 3.4.3.1-3.4.3.3, we describe details of the different interpolation processes,
assuming a fine and a coarse level to be given. The coarse level is assumed to be the result of a
point-coarsening process with some primary maRixHowever, as for all AMG approaches,
itis important to stress that the construction of coarsening and interpolation are closely related
to each other. That is, coarsening and interpolation must “fit together”. In particular, the
pattern ofl z¢ should be related in a “natural” way to the pattermPosince the definition of
the C'/ F-splitting has been based on the primary maRix

In Section 3.4.3.4, we discuss the choice of interpolation for the RD and DD models and
corresponding applications considered in Section 5.
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Remark 3.28 In Sections 3.4.3.1 and 3.4.3.2, we only consider weights based on entries
of A. In all interpolations, however, weights can be based on a pas,an P, or on
coordinates. The technical possibilities for each interpolation type are discussed in Section
4.3.2. Again, note that this choice has to fit to the remaining components chosen. a

Recall from above that we assuf® C N;’ N C?. We make use of the following definitions
being generalizations of the ones used for the discussion of variable-based approaches:

NP ={le V' |[l#kNAu # 0}, (3.86)
NPT ={le N} | Agyy > 0}, PPt =NPt PP, (3.87)
NP~ ={le Nl | (—Awy) >0}, PP =NPT QPP (3.88)
NPO = NP\ (NPT UNPH) | pP? = NN Py (3.89)

3.4.3.1 Block-Interpolation (B-Interpolation)

Generally speaking, with block-interpolation we mean any interpolation obtained by a block-

wise approximation of (3.85) in a way which is analogous to the classical “scalar” approaches
to define interpolation. Unknown cross-couplings are taken into account here. At first sight,
the use of a block-interpolation seems most natural, especi@isitiefined based on norms,

that is, according to one of (3.72)-(3.75).

Variant (1) One way to approximate (3.85) and a straightforward analog of (3.25) is
-1 —1
(Z A(lw')) (Z A(k,ﬂ%)) ~ (Z A(m)) (Z A(m)%)) (3.90)
jENP jENP jeprp jepr
with N» C N? and PP := N? N P!

Remark 3.29 Note that (3.90) is well-defined only if the number of variables per point is
constant (equal te,,) and if the inverses exist. A

Applied to bothN? = N”\ N** andN? = N*", we obtain the following analog of (3.36):
for all k € FP define

-1
Vie PE\PP™: Wiy = —A(kl,k)( > A(k,j>>< > A(M) Ay

JENPANET jePP\PPT

—1
Vie PPt Wiy = _A(_kl,k)( > A(kuj))( > A(m)) Ay

jENPT jeppt

(3.91)

provided again that the number of variables per point is constant and the inverses exist.
For A > 0, the positive-definiteness of all(;, 1) is ensured so that they are invertible, in
particular. Unfortunately, thgjem A(r,;) cannot be expected to be invertible in general.
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In addition, it is not clear how to handle indefinitg;, ;. Both gives rise to problems, if

not anyway for the efficiency of the approach, at least for its implementation since inverting
(numerically) singular matrices has to be avoided. Moreover, this type of interpolation is very
expensive because of the necessary inversions and eigenvalue calculations, and it is inflexible
according to Remark 3.29.

Remark 3.30 With I denoting the identity operator, observe that

I— Z Wiy = A(_kl’k)S(k.) with Sy = A(k-,k) + Z A(k,l) (3.92)
lepP? leN?

Therefore, if allS(;) = 0, each block-row sum of the interpolation operator equals the iden-
tity operator/ which means that constant vectors are interpolated exactly. A

Remark 3.31 (Straightforward point-based extensions applied to linear elasticity)

The straightforward variant (1) as well as a straightforward generalization of the basic in-
terpolation formula of [71] have been considered in [58, 30]. Results of tests with anisotropic
Laplacians as well as linear elasticity problems have been reported there. They confirm that
the problems indicated in the discussion of variant (1) above are likely to arise even for rather
simple model problems on uniform grids. Depending on the coarsening and concrete matrix,
one or both of the variants discussed in [58, 30] fail because required inversions cannot be
performed.

In [58, 30], a kernel-preserving property of variant (1) has been proved for linear elas-
ticity problems with homogeneous Neumann boundary conditions on simple regular meshes.
Unfortunately, this property can hardly be exploited in more complex geometric situations
(unstructured grids).

Recently, similar straightforward approaches have been suggested in [32]. Whereas [58,
30] advocate straightforward generalizations of the interpolation schemes discussed in [87],
an interpolation based on the “old” version [71] is used in [32]. In addition, simple aggrega-
tion-like components are discussed there. These investigations are still at the beginning.

A straightforwardpoint-based variant of smoothed aggregative AMGs proposed in
[99] for linear elasticity. Scalar operations are simply replaced by block-counterparts (among
them spectral radii of certain matrix products). For a set of “real-life” linear elasticity prob-
lems, the variant which takes all rigid body modes into account has been shown to be more
robust and faster than the variant which takes only the translations into account. Recently,
[62] has demonstrated the efficiency of a point-wise smoothed aggregative AMG approach.
The advocated method corresponds to [99, 53] with some modifications (local approximation
estimators [52]). A

Variant (2) (3.91) can be simplified in a straightforward way if we do not distinguish be-
tween the two classes of point-coupling matrices, naragly;y > 0 and A ;) # 0. This
leads to

—1

; P ) P
JEN JEP;
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forall k € F” (i.e. (3.90) applied taVy) - again provided that the number of variables per
point is constant and that the inverses exist (see Remark 3.29). Also here, inverses have to be
calculated, but eigenvalue computations are not necessary which considerably decreases the
computational cost for the setup of the interpolation weights. As above,

-1
IT=" Wan = 451w - (3.94)
lepP?

Variant (3) A less critical analog of (3.25) emerges if we replace the inverses in (3.90) by
diagonal matrices theth diagonal of which consists of the inverse of the sum of the entries
of thei-th row of all A, ;) with j € N? or j € PP, respectively. To be more specific, define

N:={jeV|3keNr:jeP) , P={jeV|3keP’:jcP} . (3.95
Then replace (3.90) by

RJ;/TIC( Z A(kvj)e(j)> ~ R};l( Z A(k-,j)e(j)> (3.96)

jeNP jepr

With Ry ;= (g 4;)i @dRp . = (rp ;,:)i,; being|Px| x |Px|-matrices with all off-
diagonai entries being zero and, for each P,

TN kit = Z aijand rp .= Z Qij - (3.97)

jEN jEP

If one of the'f']v,kii Or 7 1ii is zero, it is replaced by 1.

As above, the inverse matrices serve as scaling factors, but here the factors are chosen so
that the row sums of the matrié@szjefvp Ay and . 5, Ak, - if not equal to zero
- are scaled to one. In contrast to the above variants, these inverses always exist due to the
modification mentioned above. Moreover, the emerging interpolation formulas are cheaper
to evaluate than (3.93). Another great practical advantage of this variant is that it can easily
handle the case of varying number of variables per point. Appliedite= N”, we obtain

ViePPT s Wiy = —Aq By Rop Ay - (3.98)

Note that, in contrast to variants (1) and (2); Zlepf Wk, is in general not equal to one

In practice, even this scheme is very expensive so that simpler types of interpolation often
lead to more efficient AMG processes. Thus, besides the above block-interpolations, we
consider variable-wise defined interpolation formulas which make use of multiple unknowns
(Section 3.4.3.2) or a single unknown (Section 3.4.3.3). These approaches are described in
the following two sections.

49In the following two terms, thel(, ;) are suitably extended and considered as bgihg x |n.|-matrices.
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3.4.3.2 Multiple-Unknown-Interpolation (MU-Interpolation)

A multiple-unknown-interpolation is formally identical to the interpolation used in UAMG.
The only difference lies in the level hierarchy, that is @h&F'-splitting, the interpolatory sets

P; are based on. Whereas in UAMG the level hierarchies are computed separately for the
different unknowns, they are (principally) identical in PAMG. In the last case, it is depending
on the concrete matrix considered whether the compQitéa-splitting fits to theA,, ..

An MU-interpolation may be used in cases where only the coarsening should be computed
point-wise. The employment of this type of interpolation then leads to an AMG approach
which can be regarded as a compromise between an unknown-based and a point-based one.

An application for which a special MU-interpolation works quite efficiently is given by
the reaction-diffusion equations considered in Section 5.2.2. This will be explained in Exam-
ple 3.11 below. Also for DD models and the drift-diffusion matrices considered in Section
5.3.2, an MU-interpolation has advantages depending on the concrete application. See Ex-
ample 3.12 below.

3.4.3.3 Single-Unknown-Interpolation (SU-Interpolation)

We speak of a single-unknown-interpolation if an interpolation is computed for the set of
pointsV? and then transferred point-wise to the variafesf the target systerdv = b such
that the interpolation formulas are (essentially) the same for all unknowns.

To compute an interpolation for the set of points, a variable-based interpolation scheme
(see Section 3.2.3) is applied to the primary maFix Recall that we can choose between
interpolation weights based on entries of the matrix - Bre or coordinates, depending
on the application. In addition, another possibility is offered for SU-interpolations. If an
unknown-pattern has been chosen withbeing the primary unknown, we might choose the
entries ofAy, ,,; as basis for computing the interpolation weights.

Being equivalent to choosing a specific kind of interpolation weights in computing the
interpolation formulas for the points, we can directly apply a “classical” VAMG interpola-
tion to an(n, x ny)-matrix P = (pri)k,i=1,...n, With £(P) C X(P). Depending on the
interpolation weights chosen, this matrix then equlsr Ay, ,,) or is coordinates-basé#.

We call this al~3-interpolation in the following. Recall that we consider ontljrectinterpo-
lation here, i.ePY C NP N CP. Analogously to (3.86), we define:

NP ={leV’|l#k A pu#0}, PP:= NFOPP, (3.99)
NP~:={l € N | pra < 0}, PP =N N PP, (3.100)
NP*T={l € N¥ | pu > 0}, PPt =NPt PP, (3.101)

Note thatN” can be different fromV”. Analogously forN*"* and N"~. Observe that
PP = PPN NP = PP"UPP™. Furthermore, sinc has a subset of or even the same

connectivity pattern of, N,f - N,f holds. This means that only thogg can be nonzero
whose corresponding ;) are nonzero.

50see also Section 4.3.2.
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Since the interpolation formulas are constructed with the help of a variable-based ap-
proach, the following formulas emerge for direct interpolatiéi: € F?

~ D] D ieN Dkj
Vie PP wp = —@ai >0 with of := SN T
Pk > jepr— Prj

- e (3.102)
- il . e ot Drj
Vie PP wb = —@ﬂz <0 with gP.= =0T
Dkk 2 jeppt P

Remark 3.32 A P-interpolation is defined to be an SU-interpolation fuilybased on the
primary matrixP. Analogously, amy, »)-interpolation is defined. For the latter, note that
the choser? and A, ,,; can be different. A

Transfer of the P-Interpolation  For the SU-interpolation - an interpolation which is “the
same’for all unknowns - the definition of the interpolation formulas for the variables of a
point P}, corresponds to the transfer of the interpolation weighis(l € P?) to the “diagonal
elements”ofiV;, ;. That means, they are transferred tothg with i € P, and;j € P; such
thati andj belong to the same unknown - as long as such variable index (@ajhsexist.

We have to distinguish between two cases here:

e Case 1:Each (nonempty) point is attached to all unknowns.
e Case 2:There are (nonempty) points which are not attached to all unknowns.

In the first, “ideal’case, two nonempty poirf and?P; are always attached to the same set
of unknowns. Hence, each submatiy,, ;) is square and obtains the following form:

wy, 0
Wik = . (3.103)

p
0 Wy,

In the second case, not all unknowns are living on the whole domain. Two algorithms are
implemented in SAMG for the definition of tH&,, ;) in this case. A more detailed, technical
discussion is postponed to Section 4.3.2.2. However, we want to indicate the probably crucial
point here: the occurrence of amknown-overlapping interpolatiom the neighborhood

of the “interface” of regions with different kind and/or number of variables. Usually, the
impact of such overlaps on the convergence is small. However, for the case that they do
disturb, we want to mention that both of the two algorithms mentioned above provide the
possibility to “skip” unknown cross-couplings. In Example 3.13 below, we will illustrate

a typical resulting interpolation structure for case (2) and the occurrence of an unknown-
overlapping interpolation.

51That is, the interpolation for the variables dfis based on the SW-pattern (see Section 4.2.1) and the entries
pi of P.
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Remark 3.33 Another possibility to base the interpolation weights®y,,. but avoid pos-

sible problems with unknown cross-interpolations (as indicated above) is the employment of
an MU-interpolation. Here, instead of the entries of thg ,,;, the corresponding entries of
P,,.. are used to compute theeightsof /pc. A

3.4.3.4 Examples

In the following, we discuss the choice of interpolation for the RD and DD models and
corresponding applications considered in Section 5.

Example 3.11 (RD models and semiconductor reaction-diffusion equations)

For the semiconductor reaction-diffusion equations considered in Section 5.2.2, a special
MU-interpolation works more efficiently than the other two interpolation strategies, that is
block- or SU-interpolations. Heuristically, this might be explained as follows.

We have already seen in Section 3.4.1.2 and in Example 3.10 that BGS smoothing handles
the unknown cross-couplings of the RD models appropriately and that a coordinates-based
P mimicing a discrete Laplacian allows for an appropriate coarsening. However, in the RD
models, unknown cross-couplings can only be found in the diagonal blbgks whereas
in general cases unknown cross-couplings can also be located somewhere else. Indeed, this
is the case for the matrices considered in Section 5.2.2.

BGS smoothing is not always able to “remove” the influence of all large couplings which
correspond to reaction terms and are located outside the diagonal blgcksso that the
error might locally not be smooth in all directions. Hence, an SU-interpolation which is
“identical” for all unknowns>? has numerically proved to be not robust. This is also the case
for block-interpolation.

However, an MU-interpolation with weights being based on coordifateften able
to address the described “local problems” of BGS smoothing. Strong couplingsh,the
which are due to reaction terms and not due to the underlying diffusion operator are also re-
flected, and the choice of interpolatory variables is adapted to them. However, the magnitude
of the couplings is determined by distances which prevents the destruction of interpolation by
exceptionally large reaction terms. The resulting interpolation thus resembles the interpola-
tion for a diffusion operator but on the pattern of strong connectivity as reflected by both the
diffusive and the reactive terms. By construction, (at least) constant functions are interpolated
exactly here.

It should be noted that the resulting point-based approach might not always converge
stand-alone. This is mostly due to large unknown cross-couplings which are neither correctly
treated by smoothing nor interpolation. In such cases, the described PAMG approach often
profits substantially from acceleration by BiCGstab or GMRes. Concrete numerical results
for semiconductor reaction-diffusion systems will be discussed in Section 5.2.2. A

Example 3.12 (DD models and semiconductor drift-diffusion equations)
For the DD models, both MU- and SU-interpolation can have advantages and disadvantages,
depending on the concrete problem (for numerical results, see Section 4.6). We know that the

52and can be based on coordinates or matrix entries here, see also Section 4.3.2.
53see also Section 4.3.2.



3.4 A General Framework for Point-Based AMG 105

system’s smoothing behavior is controlled by two influences. In particular, the larter
stronger it is dominated by, ;) (see Fig. 3.1). In addition, a certain isotropic part plays a
role which is the larger the smallers (see Fig. 3.2). In Example 3.5, we have explained why
coarsening based on a norm-baggdan be expected to be most appropriate here. Hence,
interpolation should also be based on tRisis long as smoothing and coarsening go hand in
hand - simultaneously for all three unknowns.

However, as indicated by Figs. 3.2 (a) and (b), for smahdc ~ 1, P does not fully
reflect the local direction(s) of smoothness simultaneously for all unknowns. Hence, the more
different smooth error looks like for the unknowns, the less efficient an SU-interpolation will
be. We will see in Section 4.6 that indeed the SU-interpolation suffers - but only slightly -
from smalle together withc =~ 1. If not all error frequencies are sufficiently reduced, us-
ing the resulting PAMG approach as a preconditioner for BiCGstab or GMRes considerably
improves convergence and robustness in many cases and has turned out to be a must for prac-
tical applications here: As will be explained in Section 5.3.2, the situation for semiconductor
drift-diffusion matrices is comparable to the cdsec)=(1,1) with anisotropies. A

Example 3.13 (Unknown-overlapping interpolation)

Figures 3.9(a) and (b) show an example of the construction of an SU-interpolation as can hap-
pen in device simulation in a similar manner (see Section 5.3). In this example, the domain
Q consists of two parts (the interface is indicated by a line): only in one part, the system con-
sists of all three unknowns. Fig. 3.9(b) depicts the resulting structure of interpolation: One
variable of the grey unknown does also interpolate from a black one, a variable of a different
unknown. In general, if not all unknowns are living in the whole domain, the occurrence of
anunknown-overlapping interpolatian the neighborhood of the boundary is very probable.

@9
() (b)
Figure 3.9: (a) Exemplarfa-interpolation structure. C-points are dark grey, F-points light
grey. (b) Resulting interpolation structure for the grey unknown (analogous for the white

unknown) after transfer. Here, one variable of the white (grey) unknown does not only inter-
polate from variables of the same unknown but also from a black one.

3.4.4 Two-Level Convergence Analysis

In the following, we generalize the two-level convergence theory for variable-based and
unknown-based AMG to point-based approaches. In addition, the proofs of theorems for
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the variable-based case are given, as far as still pending. To be more specific, generalizations
of the 7-condition (3.21) and of Theorem 3.7 are developed. For the proofs, strong condi-
tions must be fulfilled, in particular, all unknowns must be attached to all paintsust be
symmetric positive definite, and the off-diagonal point matrices must at least be symmetric.
These assumptions are generally made in the following.

The obtained estimates will turn out to be at least structurally similar to the ones of The-
orem 3.7. But, as one might expect, the condition of the point matrices will come into, for
example. The general statements will then be transferred to or itself generalized for concrete
cases, as for instance the block- aRdnterpolations, which will allow for comparing the
properties of both interpolation types further.

As for VAMG and UAMG, very rough upper bounds for two-level convergence will
emerge which should not be used for quantitative assessments of specific approaches. Their
main importance lies in the fact that they provide valuable insights into what influences the
convergence qualitatively.

Throughout this Section, we only considkrectinterpolations, i.eP; C N N CP.

3.4.4.1 t-Conditions

We proceed in a way similar to the proof of Theorem 3.7, as performed in [87]. Completely
analogously to the proof of Theorem 3.3 we obtain

Theorem 3.11Let A > 0 and letS satisfy the point-smoothing propert$.71) Further-
more, assume th@? / F'P-splitting and interpolation to be such that

Ve o |[Kell < rl[Kellfy (3.104)
with somer > 0 being independent ef Thenr > o and||SK||; < /1 —a/7.

The next theorem (the direct analog of Theorem 3.4) provides us with a sufficient condition
for (3.104).

Theorem 3.12 If A > 0 and theC?/F?-splitting and interpolation/ ¢ are such that
Ve e R(K) : |ler — Ircec|por < 7llell? (3.109)
with 7 being independent ef then(3.104)is satisfied.

The next step is the generalization of some lemmata to the point-based case. We start with a
variant of Cauchy-Schwarz’s inequality.

Lemma 3.9 Leti,n € IN, v; (I = 1,...,7) be vectors inR", W; (I = 1,...,4) (n X n)-
matrices, || - || for vectors a norm and for matrices the operator norm compatible to this
vector norm, angk. := ;_, ||W;]|. Then the following inequality holds:

i
> Wi
=1

2 i
<> (Wil [l (3.106)
=1
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The proof of this lemma can be found in Section A.2 of the appendix.

The next lemma provides a splitting ¢fie, e) g under certain assumptions. In particular,
the off-diagonal point-coupling matricesl ;. ;y (k # 1), have to be symmetric. Define a
generalization of the; to the point-case:

Tuy=Awry + >, Awp— >, Awyp - (3.107)
IENP\NP'T lenpt

Lemma 3.10 (a)Let A be symmetric, andv? = N2 U NP~ for all k € V. Then the
following holds:

1
(Ae,e)p =5 Yo (FApplew —em)sem —ew)e

k,l,lEN]f’_
1
+35 > (Awlew +em)em +ea)e+ Y (Tuem) em)e -
kLLENDT k

(b) Let A be ofessentially block-positive type see(2.34) Recall S,y = >, A,y for all
k € VP. Then the following holds:

C
(Ae,e)p 2 5 > (FAwplew —ewm)rew —ew)e + D (Swem, e e -
k,LIENE ™ k

Proof of (a). The assumptiolV? = N?" U NP~ implies that each ;) (k # 1) is either> 0 or
< 0 and in particular symmetric. Sincéis symmetric, too, we havd ; ) = A<Tk’l) = A,1y, and

> (FAwnlew —ew)ew —ew)e

k,z,zeN,f**
+ Y (Awplew +ew)ew +ew)s
kLLENDT
= =2 > (Awpewpem)e+2 Y (Awnewew)s
kLIEND ™ kLIeEND ™
+2 ) (Agwewew)e+2 Y. (Awnew,em)s
k,lenNt kL leNET

2(4e,e) =2 (Awmem) ) e
k
_QZ Z (A(ksl)e(k%e(k))E"‘QZ Z (Akyewys er)) E
k 1ent = kolenpt

2(4e,e)p =2 (Twew), ) e
k

which proves (a).
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Proof of (b). We make use of the definition (2.31) and Lemma 2.1 and proceed analogously to (a):

¢ Y (FAwnlew —ew)ew —ew)e

. P, —
kL IENT

D (FAwp(ew —ewm)sew) —ew)E

kool k£l

2 Z (Aenyer), ew)) e +2 Z (—Ag, e emw))E

k,l,k#l kel k#l

2(Ae,e)m — 2> (Siyewr), e m
k

IA

This proves (b). |
The following lemma gives us lower bounds fote, e)  in terms of thed ,, ;) under certain
assumptions. These will be needed in the proof of Theorem 3.13 later on.

Lemma 3.11 (a)Let A be symmetricN? = NP U NP~ andT(,) > 0 forall k € VP.
Then

(e, e) Z Z —Awy(em —ew),em —ew)s

keFP e pP
D> Aunlew +ew) e +ew)e+ Y (Twmem:em)s
KEFP e ppt keFP

(b) Let A be of essentially block-positive type afig, > 0 for all k € V?. Then

(Aeje)p > ¢y > (—Awnlem —ew)ew —ew)e+ Y (Swew,ew)s

KEFP 1 pp = keFP

Proof of (a). Because of Lemma 2.1, Lemma 3.8, = CPUF?, P?"~ C C? andP]f’+ C C?, we
can estimate

(Ae,e)e =5 D> (“Awp(em —en)em —ew)s
k,levP,leNP ™

1
+3 D Awplem +em)em +em)e+ Y, (Tumew em)e

klevp leND T kevp

D> (Awnlew —ew) ex) —en)s

keFP lEPp -

+ YD (Awplem +ew) e +e)e + O (Twmew, ew)e

KEFP jc ppot keFP

v

Theproof of (b) is analogous. |

Now we can prove generalized versions of Theorems 3.7 and 3.5 for point-coupling matrices
Ay, instead of matrix entries;;:
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Theorem 3.13 (a)LetA > 0, NY = NJ'" UNP™, andT(;) > O forall k € VP. Selecta
C?[F?-splitting, a setP} for eachk € 7, and an interpolation . Define

HkZ|Wkl)|E+HI Z Wiy + Z Wik ’

lepy lepp lepr

If for all & € FP the inequalities

T Amin (L)) 2wl [ Age,n) || B ‘I— S W+ >, W ’ (3.108)
lepPP— leppt

A VIEPT™ + T Amin(—Aw) = ikl Awen 1 2lWn (3.109)

A YLEPET t T hmin(Awn) = il A |l Bl Wkl e (3.110)

hold with ar > 1 not depending o, [, the -condition(3.105)is fulfilled, i.e.
ler — Ircec||por < 7llellf .

(b) Let A be of essentially block-positive type, atigh) > 0 for all £ € V?. Select aC?/FP-

splitting, a setP; for eachk € F?, and an interpolation/zc with P} = P/~ for all
k € FP. Define

e = > Wwlle + HI > W(kl)

lepP? lepP?

If for all & € FP the inequalities

T Amin(S(y) = ikl A1 2{|T = D W ' (3.111)
lep? 2

AN Ve P]f : m1n< A(k l)) (3112)

(3.113)

hold with ar > 1 not depending o#t, [, the 7-condition(3.105)is fulfilled with /¢ instead
of 7, i.e.

|ler _IFCeCHPOF > H H1

Proof of (a). Let (-, -);.5 denote the energy inner product corresponding to a m&trix 0,
|| ||1:5 the corresponding norm. Singke> 0, the submatriced ;, ;) are symmetric positive

definite, too. Because d¥} = NP"* U NP"~, we haveP} = PP'" U PP~ forall k. A
straightforward calculation shows that

ller — IFCeCH?D,o,F
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=> (Awk) (eac) -y W(k,we(l)) e = Y Wkl>6(1>>

keFr lep? leP?

=20 22 Wnlew —ew) = D Wanplew +ew)

keFr e ppo— leppt

+<I— Z W(k,l)-i- Z W(k7l))€(;€)

lepp ™ leppt
< MAwmlle || Do Wanplem —e) + >, (“Wap)lew +e)

keFr lEPp’_ lEPp’+

(I— Z Wik + Z W(kl))e(k)

lepp~ leppt

1:A(k‘,k)

Lemma 3.9 yields now

ler ~ Irceclbor < 3 lanlem (X —r
kerr lepp~
+ > [Wapllellew +eqlE
leppt

= > Wan+ >, Wa

lepp~ leppt

| leaw )

Because all ;. ;) and thus alll{;,) are symmetric, their eigenvalues are real (cf. Lemma 2.1).
Then,V k € FP, assumptions (3.108), (3.109) and (3.110) are equivalent to

7Ty = puel [Ae.m | B HI— Z Wiy + Z Wi
lePP ™ leppt

’ I

AN NIePP™ o 7 (=Awy) 2 el A 2l Wenl g1,
A YLePPY 1 (Awn) = mellAwm|lEWe eI
Therefore, we can estimate

ler — Ircecllbor < > Y. T(=Awnlew —ew) ew — €w)E
keF? epP =

+ D0 > T(Awn(ew +em) eq +ew)e

kEF? 1 prt

+ Z T(Tkyerys e E

keF?P
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Finally, Lemma 3.11 shows thiltr — Ircec||p o < 7(Ae,e)r = 7lle||T, which proves
(a). For theproof of (b) proceed analogously. |

Remark 3.34 Itis easy to see that < p, <1+2 Zlepf [|Wkny || holds. A

Remark 3.35 Because ofA > 0, all D) > 0. If we now assume the conditions of
Theorem 3.13(a) to hold with eachy,, 1) replaced byD; i), we obtain analogously that the
7-condition (3.21) is fullfilled, i.e|ler — Ircec|[§ » < 7|le||} . Analogously for Theorem
3.13(b). A

Generally, Theorem 3.13(a) cannot be applied if therelare ¢ Aspq Or if there are point-
coupling matricesd ;, ;y, which are symmetric but neither positive nor negative semi-definite.
Analogously for Theorem 3.13(b).

Remark 3.36 There are ways to generalize Theorem 3.13 such that the generalizations qual-
itatively correspond to Theorem 3.6 and similar theorems discussed in Section 3.2.3. The
resulting qualitative statements say that a violation of the conditions of Theorem 3.13 leads
to an enlarged. A

Even if all T{;) < 0 (or Sy < 0) and all A, ;) are semi-definite, problems can occur: if
Ay, is singular, the inequalities in (3.109) and (3.110) are equivaleifjg) = 0, even if
Ay 7 0. Similarly, if Apin(T(x)) = 0 (which means thél;, is singular), (3.108) is only

fulfilled if
I — Z W(k,l) + Z W(k,l) =0 .
lepp— leppt
In case of\nin(Sk)) = 0, the more natural conditioh — Zlepf W,y = 0 results which

means that constants must be interpolated exactly. As for all interpolations we investigate in
this thesis, this can be enforced.

3.4.4.2 Application to Different Interpolations

In the following sections, we discuss the application of Theorem 3.13 to various concrete
interpolations to get an impression what factors determine the magnitude of

Block-Interpolations  For direct block-interpolations (3.91) and (3.93) the following corol-
lary can be derived from Theorem 3.13:

Corollary 3.1 LetA >0, N} = NP"Y UNP™ andTy,, > 0forall k € VP. Select a0%/FP-splitting
and a setP; for eachk € F?.

(a) If Irc can be defined b§B8.91) then

pe =Y IWanlle + |AG ) T lle

P
le Pt
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with T{;,) defined by3.107) If for all k£ € F? the inequalities

7 Amin (T(r)) > precond g (Age, i) Tiw 15 (3.114)
A YIePP™ T Amin(—Awy)
—1
> ukeondg (A, k)) ||A<k,z>||EP(( > A(Iw‘))( > A(Im‘)) >7 (3.115)
JENE ™ jery ™

AN Vi S P]f’-'— : T )\min(A(k,l))
—1
Z ,LLkCOIldE(A“C,k)) ||A(k,l)||EP Z A(k’j) Z A(kyj)) ) 3 (3116)
jenpt jepPt

(3.117)

hold with ar > 1 not depending o#, I, ther-condition(3.105)is fulfilled.
(b) If Irc can be defined b§B.93) then

=Y Wawlle + HH-A(_;CI,;Q)( > A(k,j))q)(k)

lep? JENF

‘ E

with )
Py = (Z A(m)) < D Awpy— Y A(km)-
jepy jePP ™ jeppt

If for all k € F? the inequalities

T Amin (T(xy) > ukCOHdE(A(k,k))HA<k,k> + ( Z A(k,j)><1>(k) ‘ (3.118)
JENP E
AN Vle PP
-1
T Amin(—Agk,1y) > pecond s (A x)) [| Akl e ( > A<k,j>) ( > A<k,j)> . (3.119)
JENP jepPP B
A ViePPt:
-1
T)\min(A(kJ)) Z ,ukcondE(A(k,k)) HA(k,l)HE ( Z A(kyj)) ( Z A(k,]-)) ) (3120)
E

jeEN? jePY
hold with ar > 1 not depending o#, I, the-condition(3.105)is fulfilled.
Proof of (a). Becaused > 0, all A ;) > 0, and we have
cond g (Ag i) Ty 12 = p(Agki) (A )1 Tl |12
= lAgmlle 1AGm |2 1T ||
> [Agm |8 [[AGek T |2
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=[Awmlle [|[T= D> Waen+ Y, W(kl)
lepp ™ leppt
because of
I— > Wan+ >, Wan =A5uTw - (3.121)
lepPP\PPT leppt

Hence, (3.114) implies (3.108). Analogously,
-1
CondE(A<k,k>)||A<k,1>||EP(( > A<k,j>) ( > A(m)) )
JjENPT jEPP™
= |lAwmlle lAGwllE | = Agplle

(5 )5 40))

JENDT jEPP ™

-1
<kk)( Z A<’@’J)>< Z A(k,j)) Ak,
E

JENP T e pPi—
GN,C jGPk

v

[ A2

NA® & e Wknlle

which shows that (3.115) implies (3.109). Analogously, (3.116) implies (3.110). The proof of (b) is
straightforward now. [ ]

Remark 3.37 If Ty, > 0, (3.114) is equivalent to > uicondp (A k) condg(T(x))
according to (2. 5%) and (2.58). #A ;) > 0 holds, (3. 115) is equivalent to

—1
T 2 ukCOndE(A(k’k)) COndE A(k l) (( Z A (k J)) < Z A(k ])) ) 5 (3122)
eNP™ epp~
analogously for the other inequalities. A

Obviously, the obtained estimates foare similar to the ones for the variable-wise interpo-
lation which can be found in Theorem 3.7.

Remark 3.38 If we additionally demand thé ;, ;), which are in the same row of, to com-

mutate pairwise, i.ed ) Ak, j) = Ax,;)Ak,1)» We can drop (3.114) and replace conditions
(3.115) and (3.116) by

T> nup(( > (_A(k.,j>)) ( > (—A(,w-)))l) ; (3.123)

JENDT jePP ™
-1
JENPT jepPT

Ideas of a proof (for the case that all; ;) < 0 for k # [) can be found in [58]. How-
ever, these apparently simpler conditions, which are formally nearly the analogs to (3.38) and
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(3.39), are obtained by paying too high a price because the assumption of commutating matri-
ces doesisually not hold not even for symmetric matrices. In addition, the above estimates
with n,, need not to be better. A

Remark 3.39 In contrast to the estimates obtained for variable-based AMG, the setting
PP = N} does not automatically result in = 1 as one whould expect. In the inequali-

ties (3.123) and (3.124}, = 1 can only emerge for,, = 1. This, however, is in contrast to

the fact that we investigate coupled PDE systems here. For conditions (3.115) and (3.116),
the situation is comparable since= 1 impliescondg (A ;) = 1 for all k, I here. However,

if only the symmetry ofd ;. ;) (k # [) is demanded, also coupled systems Wit ) = ¢11

0

(c1 > 0) and, for instanced ;) = (with acy so thatd € Agpgis still satisfied)

would result incondg(A,y) = 1 for all &, 1. A

Variable-Based AMG  In case of variable-based AMG where point-coupling matritgs)
degenerate to matrix entriag;, we can directly derive Theorems 3.7 and 3.5 from Theorem
3.1

Corollary 3.2 (a) Let A > 0 andt; = aii — > ey, |ai;| > 0 for all 4. With fixedr > 1 select a
C'/ F-splitting such that the following holds for eacke F: If N;- # 0, thereisaseP,” C CNN;”

satisfying
1
> lail > - > lail (3.125)
JjEP; JEN;

and, if N;" # 0, there is aseP,;” C C N N; satisfying

> ai; > Z ij - (3.126)

jep;t JGNJr

Then the interpolatioi3.23)with weights(3.36)satisfies the--condition(3.21)
(b) Let A be a weakly diagonally dominant, essentially positive type matrix. With fixedl select a
C'/ F-splitting so that, for each € F, there isasef; C C'N N, satisfying

- 1 _
> lagl > = > lagl- (3.127)
JEP; JEN;
Then, interpolatior(3.23)with weights(3.31)satisfies the--condition(3.21)with /¢ rather thanr.

Proof of (a): According to (3.36) and the assumptions, we haye > 0 for all j € P,”, w;; < 0 for
all j € P and

—t
> lwigl = Y wij— Y wij = =D ait Y ay 27,, :
. ZZ
JEPR; jep” jep;t JEN, jen;

Hence, we have; = 3~ p |wij| + ‘i — 1 . The remainder follows from the obvious reduction of
Theorem 3.1(a) to the varlable based case. frbef of (b) is analogous. |

Different variable-wise interpolations, especially the direct interpolation with weights (3.27),
were already discussed in Section 3.2.3.
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13-Interpolations Forﬁ-interpolations (3.103) the following corollary can be derived from
Theorem 3.13:

Theorem 3.14 Let A > 0, N’ = NP'" UNP'~ and T > Oforall k € VP, Selectar > 1, a
CP|FP-splitting and a sefP? for eachk € F?. Let

VEEF : 1— > wh+ > wh>0. (3.128)
lePP~ leppt
@ If P~ = P"~ and P""" = PP" and Irc is defined by(3.103) then, for allk € F?, the
inequalities
A
7 Amin(Ty) > H‘Ei”“)HEtZ (3.129)
Pkk
AN Vle PP
A D ienp—Drj|
7 Amin(— A > [ Awlle| Ziexp™ P P | (3.130)
Pkk Zjep]fv_pkj
A Yie PPt .
A Z Np#ﬁkj N
P min(Agy) > Wbl | e g (3.131)
Prk ZjeP,f’+ Pkj

imply the7-condition(3.105) If the A, 1) are replaced byD; 1), the above inequalities imply the
T-condition(3.21)

(b) If N> = () and Irc is defined by3.103) thenN? = NP'~, PP~ = PP = P! and, for all

k € FP, the inequalities

T Amin(Tw)) 2> ||A(k,k)||E(1— Z why, + Z wﬁl) (3.132)
lepP— leppt
AN Vie PP
A > et Dhi| _
T Amin (—Aw,)) > I (f’k)”E ] (3.133)
Pk |22 jcpr Pkj
N Yle P,f’+ :
A E Z'eﬁpﬁkﬂ' .
T Amin(Agr,ny) > I ‘f"”” = ] (3.134)
Pkk Zjep}f Pkj

imply ther-condition(3.105)

Theproofs of (a) and (b) are analogous. Hence, we only prove (a) explicitly. Since (3.103) holds for
allk € FP and alll € P?,

Wk ey — eqy) = wiy(ew) —ew)
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holds, and we can evaluate

[Pl ZJGNIZ’_ Phi le PP
Prk zjeﬁ’,f’* Drj |’ ko0
Weenlle = |wi,| = - (3.135)
_ > <p,+ Pkj -
[Proa| | ZIENE le prt
DPkk Z].E}gger DPrj |’ ko
» p | _ [tk
I- Z Wk + Z Wik =|1- Z Wiy + Z Wiy | = Iﬂ
lepP~ leppt B lepP~ 1epPt
With £ := ek + > Pri— Y D =Drk— Y |Pril -
leNP ™ leNDF leEN?
According to (3.102) and the assumptions, we have
1= > w4+ Y wh >0, (3.136)
lepP~ lepPt
VIiePP™ :wl >0 and Vi€ PPT Wk <0, (3.137)
and therefore
Suene Pul o Dicxe Pl Pre — X icme [Pl
pp = =S T Tk N T il T | (3.138)
Pkk Pkk Pkk Pkk
The remainder follows from (3.135). |

For all types ofP, the diagonal entrieg,;, should be as large as possible and the sums (for
instance| Zjeﬁ,f” Pkj| and| Z].Ep]f,f Dkj|) as similar in magnitude as possible in order to
obtain a smalt-. This corresponds to the results we have obtained for variable-based AMG.

Remark 3.40 A difference, however, lies in the fact that in the estimates above even for
PP~ = NP~ (etc.) not automatically = 1 emergess = 1 would result if, for instance,

Prt = |Almin(Ak,y) for k # Landp, = [|Ag ||z andt] = Auin(T(x)). However, as we
have discussed in Section 3.4.2.7, such a definition opthés not advantageous since this
might prevent coarsening totally. A

For P-interpolations with a norm-basd®, we can concretize the above results further.

Corollary 3.3 (a) If P is defined by3.74)with the Euclidean norm,

[Awplle  for Agy >0 (k#1)

d = ||Aw
MAnlls else (k£ 1) . pe = el

V(k,l) €Y pr = {
thenP ™ = 13,5’_ andPPt = 13,5”*', which shows that we can apply Theorem 3.14(a) if the remaining
conditions are fulfilled. The conditiof3.128)is equivalent to

VEeF” : t=Awrlle— D [[Awylle >0, (3.139)

NP
JENT
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and the inequalitie$3.129) (3.130)and (3.131)are equivalent to
T dmin(T(wy) > 1), (3.140)

A Yle PP
Zjenr Awalle

T)\min(—A k,l ) 2 HA k,l |E (3141)
() = S epr Al
A Vie PPt
Y ienet NAwpllE
T Amin(Agn) > [Awp]le et (3.142)

Xiepr+ Awplle

(b) If P is defined by3.72)with the Euclidean norm,
V(k,D)EX : pu=—|[Auplle (k#1) and pux=|[|Awnlle,

then N,f’* = (), which shows that we can apply Theorem 3.14(b) if the remaining conditions are
fulfilled. Define
_ Zjepr MAwplle =3 ppt [[Awaglle
" ZjeP]f HA(k,j)HE
Then condition(3.128)is equivalent to
VEEF” : [[Awmlle —¢x Y lAwylle >0,

o NP
JENT

and the inequalitie$3.132)to (3.134)are equivalent to
TAmin(Tw) 2 Awwlle —ox Y Awsplle (3.143)
JENP
A VIePP
2jeny 1Awglle

T Amin(—Awn) > [ Awylle =—5——— (3.144)
0 COES serr A e
A ViePPt .
diene [ Awplle
T Amin(Agey) = Ayl (3.145)

Zjep,f A e '
(c) If P is defined by3.75)with the Euclidean norm,

A for A >0 (B#1
[Awp e w20 (kAD o =3 Ipwil

V(k‘,l) € DIR Pk =
—NAwplle else (k#1) 2

thenP?~ = P»~, PP"" = PPt The condition§3.128)and (3.129)are fulfilled because af = 0,
and the inequalitie$3.130)and (3.131)are equivalent to

Vie PP
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NAwlle |Awmlle 2iexr— 1Awplle

7-)\min _A s 2 (3146)
) 2 s e anlle em Twnlls
A YiePPt
A Apolle 2jenr+ 1Awalle
T>\min(A(k,l)) Z || (kﬂl)HE H (k7k)||E e ’ . (3147)
2jenr lAwplle 2 jeppt [Awplle
(d) If P is defined by(3.73)with the Euclidean norm,
V(kDeX :pu=—||Awpplle (kK#1) and ppr = _Zpkh
1#£k
thenN,f’+ = (). Define¢y, as in (b). Then conditiofB.128)is equivalent to
VEeF?: 1—¢,>0,
and the inequalitie$3.132)to (3.134)are equivalent to
T Amin(T(r)) = (1= &%) [[Agm) |2 (3.148)
AN Vlie PP
A A
i (—Aey) = Awplle [ Awmlle (3.149)
Zjeplf HA(k,J')HE
A YiePpt:
A Ak
T Amin(A@w,ny) > [Agelle (k’k)HE. (3.150)

T e lAwplle

Proof. The statements follow from (3.73) to (3.74), (3.136), (3.138) and (2.57)ff. by straightforward
calculations. [

Remark 3.41 If (—A,;)) > 0 holds, inequality (3.141) is equivalent to

2jenr Awplle
2 jepr— Awplle’

analogously for the other inequalities. A

7 > cond(—A,) (3.151)

3.4.4.3 Comparison of the Block- andP-Interpolations

As can be expected, the “best” conditions emerge for the block-interpolation (3.91) and the
P-interpolation (3.103) withP being defined by (3.74) or by (3.75). This is because negative
and positive definite point-coupling matricds;, ;) are distinguished there. However, for the
variants which treat all; ;y equally, the lower bounds far are comparable. Only these
cheaper variants are used for practical applications.

Regarding theP-interpolations, Corollary 3.3 reveals that variants (3.74) and (3.72), in
particularpy; = || A¢,x|, should be preferred [f A || is larger tharb > g (1A, |-
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Otherwise, variants (3.75) or (3.73) should yield better upper bounds. Since, in addition, the
last two variants ensurP being an M-matrix, but (3.73) is cheaper, this variant should be
chosen as a default for practical applications.

By comparing Corollaries 3.1 and 3.3, we can conclude that the conditions on the block-
interpolations and on the “corresponding-interpolations are quite similar. Hence, the
upper bounds for the two-level convergence rates should be similar for both interpolation
types, and it is problem-, that meads, dependent which set of conditions yields a smaller
lower bound forr. However, keep in mind that all these convergence estimates are only
very rough upper bounds and rather “worst case estimates” since, for instance, geometric
information is not taken into account. In practice, the convergence is usually much faster
than predicted. It can be observed that block-interpolationPuitterpolation behave often
similarly. In addition, aP-interpolation is usually much cheaper to compute than a block-
interpolation and does not face technical problems. Therefore, we usually prefiiriber-
polation.
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Chapter 4

Software Issues -
The SAMG Library

In the preceding chapters, we have described our AMG strategies for solving PDE systems
from a methodical point of view. In particular, the range of applicability of the strategies and
their robustness have been discussed. This discussion will be continued in Chapter 5 for three
concrete practical applications. In this Chapter 4, we explain the realization of our strategies
within the Fortran90 libranBAMG [89] and finalize the discussion of the model problems.

SAMG has two faces. One one hand, it is a product-quality library of efficient AMG
approaches for solving matrices arising from different industrially relevant PDEs and PDE
systems. On the other hand, it provides a user-extensible, rich AMG environment for a flex-
ible testing of combinations of various different modules and for tailoring AMG approaches
to even more applications than those already handled efficiently.

The “standard” AMG components are discussed as well as several variants serving the
goal to increase their robustness, or to decrease their computational work or memory require-
ments. We especially show that SAMG provides highest flexibility for adaptations to various
situations arising in practice. We analyze the computational work and memory requirements
of the setup phase and one cycle and show that, in practice, they are U3U&ly We also
demonstrate that our AMG solvers exhibit reasonable “magnitude(f)’s constants” re-
garding computational worknd memory requirements. AMG approaches watligressive
coarsening and GS smoothing used as preconditioners often turn out as reasonable compro-
mises for the overall efficiency. Typically, their memory requirements are approximately
equal to or even lower than 1.5 times the requirements for the standard one-level precondi-
tioner ILU(0) L.

We start with an overview of SAMG. Section 4.1 outlines its key features and the basic
course of each AMG approach. In Sections 4.2 to 4.4, we concentrate on the three main
AMG components, i.e. coarsening, interpolation and smoothing. Section 4.4 also comments
on the usage of AMG as a preconditioner, and which one-level solvers are incorporated in
SAMG. For each of the general AMG strategies, the characteristic factors (complexities)
dominating the computational cost are discussed in Section 4.5. Finally, Section 4.6 presents
the performance of different AMG approaches applied to the model problems.

Remark 4.1 We are not going to describe the “real” implementation of SAMG on Fortran90
level. Due to the rich possibilities SAMG provides, only the most important features are de-
scribed. We concentrate on the principal methods and work out which “routines” the VAMG,

1This means thatpre. defined in Section 4.1.3 is approximately equal to or even smaller than 1.5.
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UAMG and PAMG approaches can use in common, and where different “routines” are nec-
essary. Detailed information on the installation and usage of the SAMG library and an ex-
planation of all of SAMG’s user parameters are given in the “SAMG user’s manual” [89].
A

4.1 Overview

SAMG is a modern, modular Fortran90 library of algebraic multigrid approathkss the
successor of the Fortran90 library RAMG which, in turn, is the successor of the old Fortran77
code AMG1R5. Whereas the AMG approach described in the classical paper [71] has been
implemented in AMG1R5, RAMG is basically the realization of AMG described in [87] (see
also Section 3.2). RAMG'’s extension to our current library SAMG incorporates our whole
AMG methodology, in particular our point-based strategy described in Chapter 3.4 with a
variety of different concrete primary matrices and interpolations.

Our overview of SAMG starts with a summary of its key features in Section 4.1.1. At the
end of Section 4.1.1, we emphasize the corresponding new features compared with SAMG’s
predecessor RAMG.

All our AMG approaches consist of two phases, a setup phase and a solution phase. In the
setup phasethe level hierarchy is constructed, the main parts of which are the construction of
coarsening and interpolation. In teelution phase standard multigrid cycles are performed
by means of a smoothing process and the constructed coarse level and interlevel transfer
operators. These two phases are outlined in Sections 4.1.2.1 and 4.1.2.2, respectively. In
Section 4.1.3, some additional definitions are made.

4.1.1 Key Features
4.1.1.1 Modularity, Adaptability, Flexibility, Special Features

SAMG's realization is based on a modular concept. Each of the main components of an AMG
algorithm, that is smoothing, coarsening, interpolation, computation of the Galerkin opera-
tor, and coarsest-level solution, represents a separate “module”. The coarsening module, in
turn, consists of two or three modules, namely the definitio® ¢bnly in case of a PAMG
approach), a sorting and a splitting process.

All modules are completely separated from each other, and each has a fixed task (for in-
stance the construction of interpolation) and a fixed type of output (for instance, an interpola-
tion operatol r¢), but consists of several concrete variants (for instance a direct interpolation
based on coordinates) of the respective AMG component. Moreover, in each module, a vari-
ant may be released only for one or two of our strategies (variable-, unknown- or point-based,
respectively) or may require additional data such as coordinates to be available.

The separation and clear interfacing has the important advantage that new variants can
be added quickly to a module when necessary, without touching the other modules. As a

2Clearly, by forcing the number of levels in the hierarchy to be one, also a variety of one-level solvers can be
selected. For details, see Section 4.4. Consequently, the SAMG library can even be regarded as a complete library
containing also classical one-level solvers.
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consequence, we can offer user interfaces for each of SAMG’s main parts to implement their
own variants and to adapt SAMG further to specific situations.

By combining proper modules, very different concrete approaches can be selected, with
or without the employment of additional data such as VU or VP mappings or coordinates.
This makes SAMG a complete and very flexible AMG environment, corresponding to the
general, flexible AMG methodology discussed in the previous chapter. However, it should be
stressed again that the variants have to be selected carefully: the natural technical limits as
well as the dependence on the concrete application have always to be borne in mind.

Special Features If a series of matrix equations with similar or even identical matrices shall
be solved, for instance for time-dependent and/or nonlinear problems, SAMG can be advised
to reuse parts of or even the whole setup. An example is given in Section 5.2.2.

In general, SAMG can be forced to exclude particular variables from the coarsening
process. For each variable, it can be specified whether it is forced to remain on the finest
level or stay in all levels. (see also vectior set described below). Such an interven-
tion into SAMG’s setup phase is often useful. For instance, it provides simple and powerful
workarounds for cases where a PDE system with a small number of additional (algebraic)
constraints is to be solved, and the algebraic constraints can and shall be handled by (ILU-
type) smoothing and (BiCGstab or GMRes) acceleration only. An example is discussed in
Section 5.3.2. The last row of the respective matrices corresponds to an algebraic constraint
and has a zero diagonal. In the case of zero diagonals, it is usually necessary to force corre-
sponding variables to remain on the finest level. If necessary, they can also be excluded from
smoothing.

If the input matrix A is positive definite, so are the coarser-level matrices (cf. Lemma
3.1), at least up to round-off. Practically, however, it might happen that some coarse-level
diagonals become (numerically) zero or even negative. For instance, this happens for the
semiconductor drift-diffusion systems discussed in Section 5.3.2. Besides the technical prob-
lems such exceptional matrix rows produce, AMG’s convergence usually suffers from their
occurrence. Ways to handle or avoid nonpositive diagonals are discussed in Appendix A.1.

SAMG features several user-interfaces. Already explicitly providedameg user coo
(see below)jc set , a new type of primary matrices, another coarsest-level solver and an
acces to SAMG's message handler. For user-defined smoothing, coarsening or interpolation,
simply the corresponding controlling parameters and calling sequences would have to be
extended.

4.1.1.2 Data Structure

The matrix data are transmitted to SAMG in the so-called modd@dpressed sparse row
format* which consists of three vectoia(1l: n,+1) ,ja(l: n4),a(l: n4).n, denotes
the number of variables, 4, the number of matrix entries stored. dnandja the entries of
A and their column numbers are stored. The entries of the first row come first, followed

3This is, in particular, necessary in case of Jacobi or VGS smoothing. Depending on the concrete matrix and its
“arrangement”, BGS- or (M)ILU(T)-smoothing might be able handle them.
4CSR format, also called Harwell-Boeing format.
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by the entries of the second row, and so on. For dacia(i)  stores the beginning of
rowi ina andja, and we definda( n,+1)= na+1. It is amodifiedCSR format since

diagonals are stored first within a row (ija(ia(i))=i ). Except of the diagonal entries,
the off-diagonal entries can be stored in any order within a row.

For UAMG approaches, a VU mapping needs to be passed to SAMG, for PAMG ap-
proaches, a VU and a VP mapping. This can be done via veoidrs n,) andip(1: n,)
containing the mapping of the variable indices to the unknown and point indices, respec-
tively. For VAMG approaches, boiln andip can be submitted as dummy vectors of length
1. For UAMG approachesp(1: n,) can be dummy. The order of the variables can be ar-
bitrary. In particular, an unknown-wise ordering is not necessary. When using a point-based
approach, botiu(1: n,) andip(l: n,) have to be submitted and have to follow the fol-
lowing rule. Withinip , the values are not allowed to decrease. This means, the variables
have to be sorted pointwise with an increasing numbering of points. To avoid a renumbering
of the concrete point data, passed to SAMG by a simulation code, empty poinf®, ize )
for somek, are allowed though. The order of the variables of a p@ipttan bearbitrary.
Moreover, the number of variables may vary from point to point. This is very important since
it often occurs in practical applications (for an example, see Section 5.3).

Optionally, if (2D or 3D) coordinates shall be used, the user can provide a subroutine
called
samg user coo which returns, for eachariable i, the coordinates of the corresponding
grid node.

As mentioned above, SAMG provides an interface for the user to explicitly force some
variables intoF' or C. For this purpose, the user has to call an allocation routine for a vector
calledic set , and then to mark the corresponding variables by a set routine.

The five vectors mentioned, optionally the user-defined funciBong user coo, op-
tionally the vectoic set , and, of course, control parameters (see the SAMG User’s Manual
[89]) are the maximum amount of data that have to be provided to SAMG.

Remark 4.2 With its easy-to-use interface, SAMG can simply be plugged into existing sim-
ulation codes regardless if they are written in Fortran95, Fortran77, C or C++. SAMG runs
on all platforms used today, ranging from Unix systems (tested on Compaq Alpha, IBM, Sun,
SGl, HP) over Linux (on Alpha as well as PC) to Windows systems, and is compatible to all
state-of-the-art compilers. A

Remark 4.3 Compared with RAMG, in particular the whole point-based strategy, the user
interfaces and the support of C and C++ have been added. Most of these features have been
added or substantially extended during the work on this thesis. New features of coarsening,
interpolation and smoothing will be mentioned in Sections 4.2 to 4.4. A

4.1.2 SAMG’s Two Phases

4.1.2.1 The Setup Phase

Fig. 4.1 outlines the general steps which are performed within SAMG’s setup phase. The
algorithm starts with a preparation of some auxiliary quantities and an initialization of pa-
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call of SAMG

setup phase v _
preparation

k=0

» kek+1

|coarsening: computation of C/F-splitting of Vi |

| computation of interpolation operator /. ,fﬂ |

'

| computation of Galerkin operator: A4,,, := (I )" AT},

coarse enough?

yes

¥
solution phase

Figure 4.1: The main steps of SAMG's setup phase.

rameters which control the different parts of the whole SAMG run. Yhbe recursive
process of constructing the level hierarchy begins, starting on the finest level, numbered by
index 1:

k=1 5 A12:A 5 V12:V .
For the current levek, the coarsening is then constructed, i.e. €h& -splitting of the set
V. is computed. If a reasonable splitting cannot be determined successfully, the setup phase
is terminated, the current levglis defined to be the coarsest level, and the solution phase
is entered, in which multigrid cycling between the finest leveind the coarsest levélis
performed.

Otherwise, if a newC'/ F-splitting for V;, has been constructed successfully, the set of
variables on the next coarser levek 1 is defined to be the sét;, = C of coarse level
variables on levek:

Vk+1 = Ck .

The algorithm continues with the computation of the interpolation opei%;rqr and, after-
wards, the computation of the Galerkin operator on léve!1:

Apr = IFPAGIE (4.1)
Remark 4.4 In SAMG, the restriction operatdr,’j“ is always defined to be the transpose of

interpolation, i.e.
o= (1f)"

Sunless a one-level method has been selected by the user.
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However, it is constructed only temporarily when needed. A

Remark 4.5 There is one exception concerning the definition (4.1) of the coarse-level ma-
trix, namely UAMG’s variant (3.57). This variant is denoted by block-UAMG. A

The coarsening process and the construction of interpolation contain many degrees of free-
dom. However, their interplay as well as the properties of the employed smoother strongly

affect the performance of the coarse-level correction process. Moreover, the differences be-
tween variable-, unknown- and point-based approaches lie in the concrete forms of coarsening
and interpolation. Hence, in Sections 4.2 and 4.3 , we explain coarsening and interpolation
in more detail, in each case starting with the methods implemented for the variable-based
approach because they form the basis for the unknown- and point-based approaches.

4.1.2.2 The Solution Phase

In SAMG's second phase, the solution phase, standard multigrid cycles of V-, F- or W-type
are performed. Details on these cycling types can be found in [94]. We have already men-
tioned in Section 3.2.5 that, although uniform V-cycle convergence cannot strictly be proved,
V-cycles are typically more efficient than the more expensive F- and W-cycles. Therefore, in
practice, we usually select the V-cycle.

The important degrees of freedom in defining the solution phase are the choice of

e the smoother,
¢ the type of cycling,
e the coarsest-level solVer
e the accelerator.
In Section 4.4 all smoothers and accelerators available within SAMG are listed.

4.1.3 Additional Notation

In all graphs of this chapter, items in light grey mark features of SAMG which - compared to
RAMG - are new or substantially different, as has already been done in Fig. 4.1. We usually
omit level indices. The notation introduced in Chapter 2 is used, extended by the following
definitions.

Variable-based AMG is abbreviated by VAMG, analogously are UAMG and PAMG de-
fined. The notation for the concrete variants for coarsening, interpolation, smoothing and
acceleration are explained in Remarks 4.17, 4.21, 4.24, and 4.26.

For any matrixA, we will distinguish its sparsity pattern and its connectivity pattern.
The sparsity pattern X(A) is defined to be the set of index paiisj) for which entries
a;; of A are stored. The sparsity pattern represents a superset cotinectivity pattern
¥(A) = X.(A), thatis, the distribution of its nonzero entries.

Svariants are not explicitly discussed here. Sparse Gaussian elimination is used as a default and has been used
for all numerical tests discussed in this thesis.
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The cardinality of a setS is defined to be the number of elementsSoénd denoted by
|S]. TheA-complexity c4, thegrid complexity ¢, and theaverage “stencil size”(i.e. row
length)s, over all levels are defined as

SE A SR SRS S e B4

PR AR T eVl e me

Cp =

wheren,., denotes the number of levels in the AMG h|erarchy including the finest level.
Analogously, we define th#-complexity cp and thepoint complexity c,. s, denotes the
average number of interpolatory variables per F-variable Note that|>;(A;)| = O(n,)

for all application classes we have in mind here. In case of PAMG, the computational costs
will be seen to be (principally) proportional to the sum of the memory needed fot ttaand
(unlessP is a part ofA) the P;.. Hence, we define theMG-complexity as

red (126 (Ax) [ + |54 (Pi))
25 (A1) '

In order to compare the memory requirements of an AMG method with the standard one-level
preconditioner ILU(0), we define th@econditioner's complexity as

CAMG =

Cprec ‘= IneHlAMG/HleInILU

where memy¢ (Memy,y) denotes the memory necessary for the AMG-method (the ILU(O)
method) stand-alone including the memory necessary for steking

4.2 Coarsening

The first setup step in creating a new level is the coarsening process. The corresponding
C'/ F-splitting constructed in the coarsening process should be suitable for the interpolation
to be constructed in the next step.

In Section 4.2.1, we demonstrate that a basic, so-caligedard coarseninglgorithm
[71] for VAMG can heuristically be derived from Theorem 3.5 (which indicates the quality
of direct variable-based interpolation for weakly diagonally-dominant Stieltjes matrices).

Standard coarsening as described in Section 4.2.1.1 is the classical coarsening for the
variable-based case. Itis particularly based on the assumption that the matrix does not contain
largepositiveoff-diagonal entries. However, for many matrices arising in practice, this does
not hold. Section 4.2.1.2 indicates appropriate extensions of standard coarsening to deal with
such situations.

For typical applications, standard coarsening gives r%@#—metween 0.25 and 0.5. Re-
garding the efficiency of the overall approach, it is often worthwhile to reduce this further.
For this purposeaggressive coarsenirttas been introduced in [48]The explanation of this
accelerated coarsening strategy completes Section 4.2.1.

Also in the core part of the coarsening phases for the unknown- and point-based ap-
proaches, variable-based coarsening algorithms are used, applied to suitable matrices. This
is discussed in Sections 4.2.2 and 4.2.3.

“pbased on an idea in [71].
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approach based on?

points

definition of P

4 computation of coarsening
coarsening of /' coarsening of *: separate for each unknown:
compute C/F -splitting compute C* /F*splitting _
with COARS (V,4) with COARS (V,P) form =1,...,m do
1 call COARS(V,y, Ay

pointwise transfer
of C* /F* -splitting to

A

—
» return [«
L=

Figure 4.2: Overview of SAMG’s coarsening process.

Remark 4.6 Note that for coordinates-based coarsening a point-based approach has to be
chosen. Point-based coarsenings for scalar problems are discussed in Section 4.2.2.2

The overall coarsening phase of SAMG can be depicted as shown in Fig. 4.2. The variable-
based coarsening scheme - including all features mentioned above and discussed in Section
4.2.1 - is written in function-like style a80ARS(V, M), where) denotes the set of variables
which shall be split and/ the matrix the coarsening algorithm is applied to.

4.2.1 Variable-Based Coarsening

We now recall heuristic criteria for the definition 6f/ F'-splittings and appropriate algo-
rithms for their computation. Since the quality of’g F-splitting cannot be seen indepen-
dently of the interpolation, our criteria are motivated by “consequences” of conditions on
interpolation such as (3.33).

We start with the “ideal case” of symmetric essentially positive type matrices and their
special case Stieltjies matrices since the development dftémelard coarsening algorithm
[71] has been oriented on the last case.

4.2.1.1 The Standard Coarsening Algorithm

Recall from Theorem 3.5 the-property ofdirect interpolation for symmetric essentially

positive type matrices:
_ 1 _
> a1 = = > lag; (4.2)
JEP; JEN;
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for eachi € F. Note thatdirectinterpolation mean®; C C N N; .

The magnitude of directly determines the upper boutqdl — o /7 for convergence of
the two-level method K (see Theorem 3.3). Obviously, the smali¢r- 1), the smaller is
this upper bound. On the other hand, the smaljehe larger the number of variablgs P;
for eachi € F has to be in order to fulfill the inequality above. Becausé’pfC C, this is
directly related to the complexitieg andc.

One extreme case, namelyy = N;, can be seen to lead to a direct solver (see [87]).
However, this approach is very expensive and thus not practical at all. The other extremum,
|P;| = 1 for all i, essentially leads to piecewise-constant interpol&ti@enerally, this is too
inaccurate to be used directly. We seek for a compromise between both extrema which yields
both a sufficient interpolation and an acceptable complexity.

The sum on the left-hand side of inequality (4.2) “profits” from matrix entigs< 0 the
absolute value of which are large compared with the other off-diagonal eaffies0. Such
couplings are said to b&rong To be more concrete, we recall from (3.24) that a variaple
is strongly (negatively) coupled(strongly n-coupled to a variablev; if the following holds

—0i; > €ty MAX |ay, | (4.3)
with aeg, € [0;1]. Note that the relation of being strongly coupled is not symmetric.

Remark 4.7 A standard value fog, is 0.25. Sometimes different values may make sense.
An example where a larget:, is one possibility to find the correct direction of smoothness
has been discussed in Section 3.2.3.4. However, this is not typical. A

Remark 4.8 In general, if coarsening is based on this notion of strong connectivity, posi-
tive off-diagonal entries, if any, should be small since we declare all positive connections,
regardless of size, as weak here. A

Obviously, we can efficiently decreasenly by putting variableg corresponding to strong
couplings inP;. Since errors are algebraically smooth in the direction of strong negative cou-
plings (forA € Awqg), this essentially means that coarsening is in the direction of smoothness
then.

SAMG's first step in the coarsening phase is the computation of the; sétstrong cou-
plings for each variablé € V. Given a concrete definition of strong coupling, the definition
of S; is:

S; :={j € V| iis strongly coupled tg } . (4.4)

The set of all(z, S;) defines gpattern of strong and weak couplings (SW-pattern)of A.

This SW-pattern is not only needed for constructing the(sdtut also for computing the
interpolation, as will be discussed in Section 4.3. Computing the SW-pattern is performed by
“sorting” the entries within each matrix row. A correspond®@/-sort algorithm, applied

to a matrixM, is denoted in function-like style &0ORT()M) and returns the SW-pattern of

M. If the sorting is based on (4.3), we obtain 8tendard SW-sort algorithm, denoted by
SORT(M).

8and corresponds to what is done in aggregation-based AMG.
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Remark 4.9 During this algorithm, the following two degenerate cases have to be han-
dled. Variables with couplings only tpositive off-diagonal entries are marked &wced
C-variables (FC-variables)in the standard SW-sort algorithm. As already mentioned in Re-
mark 3.6, variables corresponding to strongly diagonally domfrramts will always become
F-variables with “empty”interpolation formulas (3.23);; = 0. In general, such variables
are calledorced F-variables (FF-variables) Obviously, all other potential F-variables will
have at least one strong n-coupling so that tiSgi . A

According to the considerations made above and corresponding discussions in Section 3.2.3,
the setsP; of interpolatory variableshouldhave the following properties:

P1: Necessary fodirectinterpolation:|P;| > 0, that is, for eachi € F', there exists at least
one variable from which it can be interpolated.

P2: EachP; N S; should be reasonably large to ensure a small

P3: The variables inP; should “surround” the variable, in order to provide the basis for a
reasonably good interpolation. Geometrically speaking, one-sided interpolation should
be avoided as much as possitfle

P4: The |P;| should be as small as possible in order to reduce computational cost and to
preserve sparsity.

Recalling that all’; € C 1, the following set of heuristic criteria for constructing thg F-
splitting “corresponds” to the set P1-P4:

C1: (Fordirectinterpolation:) Each F-variablieshould have a strong connection to at least
one C-variableS; N C # 0.

C2: EachC N S; should be reasonably large.
C3: C-variables should “surround” the F-variables which interpolate from them.
C4: |C| should be as small as possible.

In particular, criteria C2 and C4 cannot both be satisfied at the same time so that a suitable
compromise is necessary. This can be achieved by the following critdPiefer variables
with many variables strongly coupledtttemto be put intoC'. A measure of the importance
of a variablei being inC is therefore the cardinality of theet S!' of its strong transpose
couplingsdefined as

ST={jeVviies;}. (4.5)
Note thatj € S does not implyi € ST in general. The above criterion can now be
formulated as follows:

C5: Variables with largeS? | should be put inta.

9defined via one of SAMG's user parameters corresponding té th€2.26), applied to one row at a time.
1%or jllustrations, see [87].
mplications of this and other cases are discussed in Sections 4.2.1.3 and 4.3.1.
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In practice, the accuracy of interpolation (in the sense of C3, in particular) and thus the con-
vergence and the-independence of completé-cycles can often substantially be improved -
without sacrificing complexity - by arranging tla& F-splitting carefully. As a rule of thumb,

the set of C-variables should approximately build a set with the following properties:

e The set of C-variables should buildnaaximally independent set (MIS) “Indepen-
dent” means that the C-variables are not strongly coupled among each other:

C6: For variables, j € C we should have ¢ S; andj ¢ S;: C shall be anndepen-
dent set

“Maximally independent” means that, if any of the F-variables was made a C-variable,
the independence of the set would be violated.

e Among the sets with the MIS-property, chooseaximal one. Such a set is said to
have themax-MIS property .

This can be ensured to a large extent by using the coarsening algorithm presented now.
The standard splitting algorithm 12 is a reasonable compromise which emphasizes the
“quality” of interpolation more than a reduction of the grid complexity. The algorithm is
depicted in Fig. 4.3. In function-like style, it is denoted 8pLIT  q( V,SORT( M)) and
returns the set€’ and F'. Here,V is the index set which will be split int6¢’ and F’, and
SORT(M) is the SW-pattern of the matrik/ the splitting is based on. This i§in VAMG,
each of thed, ,,; in UAMG, and P in PAMG.
The splitting process is based on the followimgasure of importancef a variable to
become a member @f at the current stage of the algorithm:

A= ST nU|+2|SF N F (4.6)

whereU denotes the set of variables which are “undecided” yet. Note that welhave
U UCUF at any time. Obviously, at the beginning; is largest for variables with many
U-variables strongly coupled to thetd. Dependent variables (dependent in the sense of
criterion C6) are put inf. At later stages of the coarsening process, variables are favored
with many already decided F-variables strongly coupled to thenNote that only at the
beginning\ has to be computed “globally”. In subsequent steps, only local updates are
necessary. That is, for instance, if the status of a variable has changed from U to F, its own
A-value is reset to zero and, for gl S;, the \;-value is raised by 1.

Standard splitting thus favors variables with a ldi§€| to become C-variables according
to criterion C5. At the same time, it aims at arranging @&--splitting in such a way that
the C-variables are independent from each other (criterion C6) and even approximately build
a max-MIS set. Hence, standard coarsening aims at buildjg-splittings with themax-
MIS-property . Practice has shown that this often fulfills criterion C3, at least approximately.

Remark 4.10 None of the C-variables is strongly coupled to any of those C-variables created
prior to itself in the coarsening process described above. However, since the relation of being

jntroduced in [71] as “preliminary C-variable choice” and called “standard coarsening process” in [87].
Btowards criterion C5 and, indirectly, criteria C2 and C4 with a preference of C4.
14again towards criterion C5 and, indirectly, criteria C2 and C4, but with a preference of C2 now.
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no

| pickie U withmax. 4,: C=CU{i},U=U\{i} |

—| forallje ST NU: F=FU{j},U=U\{,} |

Figure 4.3: The standard splitting algorittBPLIT 4q.

strongly coupled is not necessarily symmetric, criterion C6 does not necessarily hold in a
strict sense. A

Remark 4.11 Before the last step, namely := F U U, of SPLIT 4 (see Fig. 4.3) is
performed, it may indeed happen that the status of some variables remains “undecided”, that
is the selU is not empty. Itis easy to see that such remaining variatilase all the following
properties:
e \; = 0. Therefore, no F-variable is strongly coupleditoand the undecided U-
variables are not strongly coupled among each other.
e 7 is not strongly coupled to a C-variable sintevould have become an F-variable
otherwise.
e 7 is strongly coupled to at least one variable since it would have become an FF-variable
otherwise.
It follows thati can have strong connections only to F-variables and is strongly coupled to at
least one of them. We have at least the following two possibilities now. We can put each of
the remaining € U into C, or we can put each of them infd and interpolate it from the F-
variables to which it is strongly coupled. The latter is don&RLIT 44. How interpolation
formulas for such variables are created, is discussed in Section 4.3.1.1. A

We now define thatandard coarsening algorithmfor a matrix M as follows:
COARSq := COARS4(V, M) := SPLIT 4q(V,SORTM))
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SORT,, is one possibility for an SW-sort algorithBORT An important extension, used as a
defaultin SAMG, is discussed in the following section. Important other varianG@ARS
implemented in SAMG, are discussed thereatfter.

4.2.1.2 Treatment of Positive Couplings

In practice, we often have to deal with matrices which are notdg In fact, they are often
not symmetric, and in many cases at least some large positive couplings occur. Since the stan-
dard SW-sort algorithm explained above defines the the strength of connectivity according to
(4.3),all positive couplings, regardless of their size, are defined as weak. Convergence might
suffer considerably from completely ignoring positive off-diagonal entries, in particular if
they are of comparable size or even larger than the negative ones.

One reason may be that it is no longer sure that error will be smooth in the direction of
large negative connections. A simple remedy for this important case (for an example, see
Section 3.2.3.4) is as follows: SAMG defines a positive coupling as large if

Ajj > €lpos Max |a;,| . 4.7)

The threshold value,s can be defined by the user, a typical value béirtgwhich is used

in SAMG as a default. Now, before a decision on the strength of connectivity is made,
large positive couplings are eliminated (see Section 3.2.3.4). That is, foi eael(locally)
eliminate all strong positive couplings; by means of thg-th equation:

€ — — Z ajkek/ajj . (48)

kEN;

A new equation foe; results:

aie; + Z a;;e; =0 with N; = {J#ila; #0} .
jej\\,i

After this elimination,
—Q;j > €gy Max [ay, | 4.9

is used to decide which couplings are strong. Other approaches, realized in SAMG, taking
positive couplings into account are described in [89].

4.2.1.3 Aggressive Coarsening

For many (scalar) PDE applications, only a few nonzero entries per matrix row are typical.
Unfortunately, in such cases, standard coarsening and its modifications, as discussed above,
might produceC'/ F-splittings with a grid size reduction of only’|/|V| ~ 0.5. Usually,

this results in Galerkin matrices for the second level which have more entries than the finest-
level A. For instance, as shown in [87], standard coarsening for the isotropic 7-point stencil
on a regular 3D mesh produces a first-legelvhich corresponds to the “black” points of a
“red-black” grid, so that the Galerkin operator on the second level corresponds to a 19-point
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stencil, and the second-level matrix contains approximately 1.36 times more entries than the
finest-level matrix4. Although subsequent coarsening will typically become faster, because
the enlarged matrix typically contains “more” strong connections, the first coarsening step
significantly influences the overall complexitiesandc 4.

The main reason for such an insufficient coarsening is that the algorithm discussed above
relies ondirect strong connections, that is strong connections of F- to C-variables. However,
an incorporation of théndirect strong connections, that is strong F-to-F connections, can
substantially reduce the complexity. For a demonstration, consider the standard 5-point sten-
cil (2D-Laplace). Standard geometiic— 2h coarsening would give a reasonable grid size
reduction of|C|/|V| ~ 0.25. In the resulting grid, half of the F-points do have strong cou-
plings only to other F-points. However, all F-points can be interpolated if we allow bilinear
interpolation. This means, first all F-points with a strong connecti@rnwall be interpolated,
afterwards the remaining F-points from their strong connectiois to

An algebraic analog and extension of this process is the reduction of complexity by means
of so-calledaggressive coarsening. As indicated above, we extend the definition of strong
connectivity to also include variables which are not directly coupled. In SAMGg;dheept
of long-range strong connectiofigl] is used: A variablé is said to bestrongly coupled to
a variable j along a path of lengthl if there exists a sequence of variablgsi1, . . ., i; with
i = ip andj = ¢; such thati,,, € S;, fork = 0,1,...,] — 1. With given valuep > 1
and! > 1, we then define a variableto bestrongly coupled to a variablej w.r.t. (p,1)
if at leastp paths of length< [ exist such that is strongly coupled tg along each of these
paths (in the above sense). However, it usually does not pay to exploit strong connectivity in
this generality. The casdp,!) = (2,2) and(p,l) = (1,2) have turned out to be the most
efficient so that only these two variants are considered here.

For the implementation, theet of strong couplings w.r.t.(p, 1),

Sf’l := {j € V| strongly coupled tg w.r.t. (p,1)} (4.10)

might directly be used instead &f in SPLIT 4. But even forS;*> and.S;*, this would

require a substantial extra overhead because the computation and storage of the complete
connectivity information contained iﬁf”l and also its transpos(és‘f”l)T are necessary for

eachi. However, basically the same coarsening can be achieved by applying the standard
coarsening algorithn€OARS, twice (for [ = 2) instead. That is, aggressive coarsening
COARS,, proceeds as follows:

1. Carry outSPLIT yq( V,SORT( A)) .

2. Only the resulting set of C-variables is thinned out further. For that purpose, we define
strong n-connectivity only between the C-variables (via neighboring F-variables), that
is, for eachi € C, (4.10) is replaced by

Sf"l := {j € C'|]istrongly coupled tg w.r.t. (p,1)} .

With these sets constituting the new SW-patt&@RT; for the “old” C-variables
the procedur&SPLIT q(C,SORT () is applied now. The resulting set of “new” C-
variables will then be used as the set of variables on the next coarser level.

I5together with the so-callenhulti-pass interpolation which is explained in Section 4.3.1.3.
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In the following, we refer to the aggressive coarsening strategies basgti“oand S7* as
Al- andA2-coarsening respectively.

Remark 4.12 It hardly ever pays to employ aggressive coarsening on more than the finest
level since on coarser levels standard coarsening is usually fast enough. Clearly, Al- is faster
than A2-coarsening. lllustrations of both types are shown in [87]. Note that generally A2-
coarsening is effective only in (at least) “plane-wise” isotropic areas while Al-coarsening is
also effective in strongly anisotropic parts of the problem. For the numerical tests reported in
this thesis, always the Al-variant has been used. A

Remark 4.13 In order to show the differences between standard (“std.”) and Al-coarsening
("A1”; only on the finest level), we summarize values fgr andc, as presented in [87]

for several typical scalar applications (1 = 2D diffusion problems on structured grids, 2 = an
industrial test case from 2D CFD simulation (pressure-correction method), 3 = two industrial
test cases from 3D CFD simulation (pressure-correction method), 4 = 3D diffusion problems
on unstructured grids with strongly discontinuous coefficiits

(std.) (A1)
application class ca Cq ca Cg
1 ~ 24 ~ 1.7 ~ 1.5 ~ 1.2

2 ~24 ~ 1.7 ~14 ~ 1.2
3| €[28,34 €[1.516] | €[14,15 €[1.1,1.2
4| €[25,29 €[16,1.8 | €[1.4,1.8 €[1.1, 1.3]

4.2.2 Unknown-Based Coarsening

The coarsening schen@ARSor the variable-based case can be employed for the unknown-
based case as well, with all of its features. However, as discussed in Section 3.3.1.2, the
unknowns are coarsened separately. Within SAMG, this mean€DARSY),,), Aj,.n)) IS
performed for each = 1,...,n, separately (see Fig. 4.2).

An important characteristic of this procedure is that during the coarsening phase all un-
known cross-couplings are completely ignored, regardless of sign and size. The range of
applicability of UAMG has been discussed in Section 3.3.3. If applicable, an advantage is
that unknown-based coarsening is among the cheapest coarsenings for the system’s case.

Remark 4.14 It should be noted that the submatricés, ,,; are never explicitly set up in
SAMG. Instead, the vectou is used to identify the corresponding matrix entries. A

4.2.3 Point-Based Coarsening

We recall from Section 3.4.2 and Fig. 4.2 the basic steps of coarsening in case of PAMG
approaches, namely the setup of the primary ma®&iand point-coarsening. All variants
implemented in SAMG for the setup &f are described in Section 4.2.3.1. Important remarks
on SAMG’s implementation of point-coarsening are made in Section 4.2.3.2. Also the special
case of point-coarsening for scalar problems is discussed there.

16[87] presents results, e.g., for a test case from industrial oil reservoir simulation based on a streamline method.
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4.2.3.1 Definition of the Primary Matrix

Connectivity and Sparsity Pattern of P A primary matrix suitable for the problem which
shall be solved should reflect two things, namely, which points are connected, and how strong
these connections are. Which points are connected is describeddyntiectivity pattermof
P. As discussed in Section 3.4.2.1, several such patterns can be considered. In SAMG, the
maximalor anunknown-patterrtan be chosen. Formally, theth u-pattern can be selected
only if it is completen the sense that the-th unknown is represented at all points.

It has to be noted that, in SAMG, patterns are actually derived frorsgghesity patterrof
the matrixA and are only sparsity patterns,(P), themselves. That is, they might contain
zeros and are thus only supersets of the actually desired connectivity paitéfs An
obvious drawback is that zero entries storedlior P waste memory. However, searching
and expunging zeros from would mean extra computational effort and an interference in
the data structure and is therefore left to the user. Ideally, the two types of patterns coincide.

Implemented Types of Primary Matrices P In Section 3.4.2, several types of primary
matrices have been introduced, and areas of applicability have been discussed for each of
them. The following list shows which types of primary matrices can automatically be con-
structed by SAMG.

e norm-based primary matrix: According to the discussions in Sections 3.4.2.3 and
3.4.4, the variants (3.72) and (3.73),

PRl = and  prr = [|A,p)l (4.11)
and py = and  per=— Y pr (4.12)
12k

respectively, have been implemented. Selectable are the maximum, row sum or Schur
norm. These variants and norms are favored because the computation of the corre-
sponding entriepy,; of P is cheap and much cheaper than for variants (3.74) and (3.75)
or for more expensive matrix norms as, for example, the Euclidean matrix norm. In ad-
dition, possible problems with non-squatg;, ;) are avoided.

e coordinates-based primary matrix: Two variants are implemented. The entries can
be computed based on distances or positions of the points. The corresponding formu-
las have been described in Section 3.4.2.4. The only prerequisites for both variants are
that (two- or three-dimensional) coordinates are available for all variables, and that one
of SAMG's user-accessible subroutineamg_ user _coo, provides these data accord-

ingly.

° unknown based primary matrix: This is the simplest type possible. Sinfe =
Appy (foranl <1 < n,), P needs not to be computed or stored additionally (see
Section 3.4.2.2). The only technical requirements for Fhire that the:-th unknown-
pattern has been chosen, (irehas been chosen to be the primary unknown), and that
the underlying connectivity pattern is complete. It depends on the application whether
such a simple primary matrix makes sense.
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The next paragraph describes how the user can provide a primary matrix to SAMG
himself.

User-Provided Primary Matrix ~ As has been mentioned in Section 3.4.2.5, the user him-
self can provide any reasonable primary matrix to SAMG. There are two ways to submit the
corresponding data.

e One way is to augment the original mattkby an (n, x n,)-matrix Ay, 11,0, +1)
(see Fig. 4.4), and the vectossandb by vectorsvy,, 1) and (an arbitrarypy,,, 41
of lengthn,. Additionally, thek-th new variable must be attached to pot (by
augmenting the vectdp correspondingly), and the new variables must be attached to
an artificial unknown with numbet,, + 1 (by augmenting the vectau ), so that the
resultingn + 1-th u-pattern is complete. The new unknown can then obviously serve
as a primary unknown and is called tthemmy unknown.

T ﬁhﬁi
(@) :(‘:ith:

Figure 4.4: An augmented system: The “black part” represents the original rAafsixeady
point-wise ordered), the “part in light grey” the submatwy, ., ., 41 belonging to the
dummy unknown. Shown are the augmented system (a) before and (b) after a point-wise
ordering.

In the current SAMG realization, the augmented system must be reordered point-wise,
as in Fig. 4.4(b), before a point-based SAMG approach can be applied. Then, we can
simply chooseA,,, 41,n,+1] t0 be the primary matrix.

Remark 4.15 Since the dummy unknown does not have couplings to other unknowns,
it is possible and natural to exclude it from the solution phase and, in particular, from
the computation of residuals in order to avoid misleading results. This corresponds
to applying the solution phase only to the original matdx To use this exclusion
process, we just have to declare the unknowr+ 1 to be “dummy” by setting an
SAMG parameter properly. A

e The second possibility to provide a primary matrix to SAMG is to implement a new
setup routine fol?. SAMG provides a corresponding user-interface. In this case, not
only Ay, +1,n.,+1) Must be defined, but also all coarse-level primary matrices.
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Remark 4.16 Note that internally defined primary matrices (e.g. norm- or distance-based)
are usually constructed “from scratch” on each level. Therefore, such coarse-level primary
matricesP}, are hardly ever identical to the corresponding Galerkin operators which depend
on P, and the interpolation. In general, this is the main difference between an SAMG ap-
proach with internally definef;, and an approach where SAMG is applied to a system which
has “physically” been augmented by the finest-level ma#ix A

4.2.3.2 Point-Coarsening

Point-coarsening consists of coarsening the set of pdiftey means ofCOARS{?, P)

and transferring the resulting? / F?-splitting to the sed’ to obtain itsC/F-splitting. All

variants implemented for variable-based coarsening (see Section 4.2.1) can also be employed
for COARS{”?, P).

Thetransfer then proceeds in two steps. In the first step, all variables belonging to points
in C? (FP) are put intoC' (F). In the second step, it is checked whether some variables
shall become (additional) forced F- or forced C-variables. This can be the dasesdft
has been set correspondingly by the user, or if an MU-interpolation has been selected. In the
latter case, an SW-pattern fdrhas been computed, and tBORT(A) algorithm may have
returned (additional) forced C- or F-variables. If, according to such additional information,

a variable shall be forced int&, this variable - but not automatically the whole point - is
forced intoF’. However, if a variable shall be forced inf¢ the whole point is forced int@'.
This takes precedence over possible forced F-variables.

Also in the special case afcalar problems a distance-based or position-bad@dan
be chosen. Possible applications include reaction-diffusion equations (cf. Section 3.10). It
should be noted that a norm-bad@does not make sense since it would only resultin flipping
signs of all positive off-diagonal entries. However, special variants sorting out or modifying
positive off-diagonals might be appropriate for special applications and can be implemented
via the user interface.

Remark 4.17 (Notation): The type of coarsening used - “std” or “agqg” - is added as first
parameter in the list defining the AMG approach, e.g. VAMG(std, for variable-based

AMG with standard’ coarsening, UAMG(agg, .) for an unknown-based variant with ag-
gressive coarsening. In the case of a point-based approach, we add the type of primary matrix
before the “type” of coarsening. We writelf,, ;" for P = Ay, ,,), “ns” for norms (3.73),

“nf” for norms (3.72), “dist” for distances, and “pos” for positio#s. Example: we write
PAMG(ns,std,..) for PAMG with a primary matrix based on norms (3.73) and standard

coarsening. A

1"Note that positive off-diagonals are treated as described in Section 4.2.1.2.
18|n the numerical tests presented, we only use variant Al in case of aggressive coarsening and only on the finest
level and always choose the maximal pattern fofaéixcept ofP = A,

n,n]-
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4.3 Interpolation

After having computed th€'/ F-splitting for level & successfully, the algorithm proceeds
with constructing the interpolation formulas for all F-variables. An overview of the interpo-
lation process is depicted in Fig. 4.5. It shows that the main branching is due to the overall
type of AMG approach employed, that is variable-, unknown- or point-based. Figs. 4.5
and 4.6 indicate that in all three branches the same “sch®T( F', C,t pat,t weights)

is employed®. VINT computes interpolation formulas for a givély F-splitting, based on

an SW-patterrSORT()M) for a matrix M (specified byt ,,.=1), and with interpolation
weights of the type yeights-

unknowns——

y i computation of interpolation

computation of point-based )

interpolation for F : approaches: . sepfrjte for eatc:ih unknown :

call VINT(F, C, 4, & ) computation of orn =1..,n do
1 1 Cr Ap Bgeights interpolation call VINT(F, Coiy Ay s g )
A 4
*ly return l<

Figure 4.5: Overview of interpolation.

In the following section, we explain interpolation schemes for VAMG and thus directly the
main features oWINT. Afterwards, only the interpolation schemes for PAMG need to be
discussed in more detail.

4.3.1 Variable-Based Interpolation

In this section, we assume for simplicity that we want to compute an interpolation operator
for our basic systemlv = b in case of a variable-based approach. For other matrices, for
exampleAy, ,,) or P, all possibilities discussed here work analogously.

All variable-based interpolation schemes considered in this thesis are derived from the
following basic formulas for the interpolation weights,

wyy = e/ UER) (4.13)
! —Biaij/ai (€ B)
24 — Q44 Z + Q44
with ;= =N Y and g = =L Y (4.14)
> jep i Yjept @i

19VINT stands fowvariable-baseéhterpolation.



140 Chapter 4  Software Issues - The SAMG Library

These formulas have been derived from thproperties (3.38) and (3.39) in Section 3.2.3.
The different schemes mainly differ in the way strong F-to-F couplings are treated. In Sec-
tions 4.3.1.1 to 4.3.1.3, the variants implemented in SAMG are explained, starting with the
simplest variant, the so-calladirect interpolation continuing with(extended) standard in-
terpolationand concluding wittmultipass interpolation Afterwards, possibilities to incor-
porate other kinds of interpolation weights, for example based on coordinates, are explained.
The realization of different means to improve efficiency, namely smoothing of interpolation,
scaling and truncation, is explained in Section 4.3.1.5.

Remark 4.18 It should be noted in advance that in case of aggressive coarsening only multi-
pass interpolation can be used. A

4.3.1.1 Direct Interpolation

Direct interpolation assumes that thg F-splitting has been constructed by means of stan-
dard coarsening. At the beginning, the sBt®f interpolatory variables are set to
P,=P-UP" with S;=5nN_, Sf=85nN", (4.15)

(2

Pr=5"nC , Pr=s‘ncC, (4.16)

based on the set$ constructed bysSORT Then, the interpolation weights are directly com-
puted by means of the equations above. Due to the definition of theP’setand Pf the
interpolation formulas (4.13) are well-defineddf # (). However, two exceptional cases can
arise for particular F-variablegsee also Remarks 4.9 and 4.11 in Section 4.2.1.1):

e P, = () andi is an FF-variable. Forced F-variables receive an empty interpolation
formula.

e P, = () andi is not an FF-variable. Such a variable is calteateptional F-variable
(XF-variable). It has at least one strong F-to-F coupling. These are used for inter-
polation. Hence, the computation of the interpolation formula is postponed until all
regular F-variables have been treated. Then, analogously to (4.8), we (approximately)
eliminate alle; with j € .S; C F'in the equation

aii€; + Z €5 = 0 (417)
JEN;

by means of the correspondingth equations. By applying (4.13) to the resulting
equation, but with?,” = S;” C FandP;" = S;" C F | the interpolation weights for
the XF-variables are then computed.

Remark 4.19 If an XF-variable has strong connections only to FF-variables, an empty
interpolation formula would result. Such variables are forced into C. This is also the
case for XF-variables which have strong connections only to F-variables for which no
interpolation formula has been computed at the current stage of the algorithma
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4.3.1.2 (Extended) Standard Interpolation

A straightforward enhancement of direct interpolation is the inclusion ddtedhg F-to-F
couplings in the construction of the interpolation operator. This is caligadard interpo-
lation - “standard” because it is more robust and usually more efficient than direct interpo-
lation. Standard interpolation is used as a default in SAMG (unless aggressive coarsening
has been selected). It assumes thatdié-splitting is obtained from standard coarsening
and is defined in the following way. Analogously to the treatment of XF-variables in direct
interpolation, we first (approximately) eliminate aflwith j € F? := F'N.S; in the equation
(4.17). By definingP; as the union o’} := C'N S; and allC; (j € F}), we now define
interpolation analogously to (4.13).

Extended standard interpolation then denotes the variant waBre-to-F couplings are
taken into account, regardless if strong or weak. Advantages of ihdisect interpolations
have already been discussed in Section 3.2.3.5. The incorporation of couplings to F-variables
increases the quality of the approximation of (4.17). In addition, it contributes to the objective
of having F-variables nicely “surrounded” by interpolatory variables.

4.3.1.3 Multi-Pass Interpolation

The previous types of interpolations require that €&F-splitting has been obtained from
standard coarsening. In particular, they require that each F-variable which is not an FF-
variable has at least one strong connection. Moreover, for computing the interpolation for-
mula for an F-variablé which has strong connections only to F-variables, they require that
at least for one of these F-variables a “regular” interpolation formula has been constructed
before. Otherwise, this F-variablds forced intoC' (see also Remark 4.19 above). Even in
case of standard coarsening, depending on the corn@yetesplitting (including user-forced
F- or C-variables) and the order of the variables, such situations can happen.

Multi-pass interpolation has been designed to “release” the requirements o' ftie-
splitting and the order of the variables. If aggressive coarsening has been chosen, SAMG
enforces the use of multi-pass interpolation. It proceeds as follows:

1. First pass: For alli € F for which C N S; # ( holds, use direct interpolation and
define the sef™ to contain all these variables. i = F'*, stop the process.

2. Next pass: For alli € F \ F* for which F;>* := S, N F* is not empty, we base
their interpolation formulas on those already computed;ferF;*. For this purpose,
we replace in the-th equation (4.17) akk; with j € F;** by the interpolatory term
Zkepj wjker. This leads to a new equation fey. Defining P; as the union of all
P; for j € F."®, the interpolation formula foe; is then computed as in case of stan-
dard interpolation. Updaté&™ by all variables which have obtained an interpolation
formula now.

3. If FF = F™* stop, otherwise go back to step 2.

Note that, in order to preserve the locality of interpolation, the updafé*df each pass is
done in a Jacobi and not a Gauss-Seidel fashion.
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In principle, multi-pass interpolation can always be selected, but has been designed for a
use in connection with A1- and A2-coarsenffg If coarsening and interpolation are based
on the same matrf the multi-pass process can be seen to terminate after at most 4 passes
(besides some very exceptional cases).

Remark 4.20 If multi-pass interpolation has not finished after 4 passes or has even run into a
deadlock, the remaining variables without an interpolation formula are forced'irand (by
default) the complete process is started from scratch based on thg ffésplitting. If again

a deadlocks occurs, the remaining variables are again forced'jridot - by default - no new
process is initiated. Instead, SAMG continues with the interpolation formulas computed.

4.3.1.4 Types of Weights

So far, we have only considerddNT (F, C, At weights) With t weignis="A" (See Remark
4.21 below). That means, in particular, that the interpolatieightshave been based on the
entries ofA.

Alternatively, if for each variable coordinates are given, then interpolation weights might
also be computed via the distances or positions of these grid nodes. Another possibility is
to utilize the entries of a suitable matriX instead of those ofi, simply by exchanging,;;
by b;; when computing the interpolation weights.Uf, has been chosen to be the primary
unknown in a PAMG approach (bl # Ay, ), this matrix B might equalAy, ,,;. This
option is built into SAMG, other choices might be supplied by the user via an interface.

What remains to be explained here is the way interpolation weights are computed based
on coordinates. In the distance-based case, during the construction of a particular interpola-
tion weight, the squared reciprocal Euclidean distdfice- ;|| * is used instead of a matrix
entrya;;. Instead of scaling bw;/a,; andj; /a;; according to (4.13), each weight of a row
is scaled by the row sum. In the position-based case, first the interpolation for the distance-
based case is computed (without performing a scaling). Afterwards the resulting weights are
multiplied by penalty factors as explained in Section 3.4.2.4, and finally each weight of a row
is scaled by the row sum. Note that coordinates-based interpolation interpolates constants
exactly.

Remark 4.21 (Notation): The type of weights is denoted by the paramétgr; n.s and
appended to VAMG's and UAMG's “parameter list” as follows: we write VAM® (eights)

and UAMG(,t weights). In case of VAMG and UAMGTH y.ights Can be equal to “A” (entries

of matrix A; default), “dist"(ances), or “pos”(itions). For instance, VAMG(agg,dist) denotes
a VAMG approach with aggressive coarsening and multi-pass interpdfatioth weights
being based on distances. We make use of the abbreviations VAKMGYVAMG(-,A) and
UAMG(-) for UAMG(-,A). See Remark 4.24 for the general type of interpolation (direct,
(extended) standard, multi-pass) being used. A

20Corresponding illustrations for a 5-point Poisson stencil can be found in [87].
21This is the case for VAMG, UAMG and PAMG witP-interpolation.
22gee also Remark 4.18 above.



4.3 Interpolation 143

4.3.1.5 Improving the Interpolation

(Extended) Standard interpolation is a means to improve direct interpolation. Different pos-
sibilities to “improve” any of our interpolation schemes are Jacobi interpolation, scaling, or
truncation. All of these three means have a different objective. They can be combined.

Jacobi interpolation?3 can be seen as an a-posteriori improvement of direct, (extended)
standard or multi-pass interpolation: first, one of these interpolation schemes is computed.
Afterwards . Jacobi interpolation steps are performed with the interpolation weights con-
structed in the first step as an initial guess.

In practice,u < 2 is usually enough to improve the convergence without sacrificing the
overall performance. Note that per Jacobi interpolation step not only the computing time of
the setup phase but also the radius of interpolation is increased which is likely to blow up the
complexities. However, since usually a lot of small entries are creategineation?* of in-
terpolation limits the increase of complexity considerably so that the method works feasibly
again. Hence, Jacobi interpolation should always be used in combination with truncation.

Not only Jacobi interpolation, but also standard or multi-pass interpolation tend to in-
crease theadius of interpolation and thus thd-complexity. Again, truncation is a feasible
remedy in all these cases.

Remark 4.22 Note that truncation of interpolation is a “safe” process whereas, for instance,
a truncation of the final Galerkin operator is not. This is due to the fact that the variational
principle?® for K is usually destroyed by modifying the Galerkin operator. A

AMG's interpolation schemes interpolate constant functions exactlyig a zero row
sum matrix (unknown-wise). However, for matrices with non-vanishing row sums (near
boundaries for example), this is not necessarily the case (unless coordinates-based weights
are used). In fact, forcing the constants to be always interpolated exactly might or might
not result in a less accurate approximation of algebraically smooth error and thus reduced
efficiency.

For matrices with some rows strongholating diagonal dominance, an example being
reaction-diffusion equations (cf. Sections 3.1.3.2 and 5.2.2), care has to be taken. In such
cases, the interpolation schemes might suffer considerably from “critical” matrix rows. A
cheap means to bring back a reasonable convergence in many such saaisgshe inter-
polation: the original interpolation weights are scaled so that all row suni$,afqual one.
Constants are always interpolated exactly then. Experience shows, however, that more robust
coarsening and interpolation schemes (for instance elimination of positive entries or Jacobi
interpolation) should be tried first.

4.3.2 Point-Based Interpolations

Fig. 4.6 outlines SAMG's realization of interpolation for PAMG. MU-interpolation is com-
pletely defined sinc¥INT is used, applied to each unknown separately. All features available

23For a definition and discussion, see Section 3.2.4.
24Truncation is here defined as a dropping of weights which are below a certain user-definable threshold.
Z5holding in case ofd > 0, see Section 3.1.1.
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in the variable-based case can be employed here and, in addition, the interpolation weights
can also be based on the entrieshbff the maximal pattern has been chosen. A possible
application for the latter has been mentioned in Remark 3.33.

In case of the block-interpolation, we still have to defI&T. This is done in Section
4.3.2.1. Afterwards, in Section 4.3.2.2, we explain variants for the concrete transfer of inter-
polation weights to the variables in case of an SU-interpolation. Finally, the special case of
scalar applications is discussed in Section 4.3.2.3.

block: type? MU
SuU
compu‘:ation of computation of computation of interpolation
o e Interpolation for F* with separate for each unknown :

form=1,...,n, do
PINT (F,C,V?, A, € ) VINT (F?, C®, £ 1 Coeignts) ror e
r 7 L1 = weights 4 7 “patf ights call VINT(F,,,Cln]rAm,n,rtwdgm;)

l .

pointwise transfer of
interpolation weights
from F* to '

T

» return [-‘

Figure 4.6: Overview of the three general types of interpolation for point-based AMG.

4.3.2.1 Block-Interpolation

Due to the fact that variant (3.93) is likely to produce problems in practice and is consider-
ably more expensive than (3.98), the algoritPhNT is based on the variant (3.98). Great
advantages of this algorithm are that it can easily handle the case of varying number of vari-
ables per point, and that only th&, ;) have to be inverted. If ad', | cannot be inverted

(k,k)
numerically, the variables of thieth point are forced int@’.

There are essentially two possibilies for the generalization of “elimination” processes
used inVINT for an incorporation into block-interpolation. It could be done fully block-wise
in a direct analogy to the scalar variantg i, | is constant), or it could be performed variable-
wise before the application oi(kfk) (i.e. the solution of the corresponding block-systems)
in (3.98). Only the variable-wise variants are implemented in SAMG to limit computational

work and avoid problems with a varying number of variables per point.
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4.3.2.2 Single-Unknown-Interpolation

In an SU-interpolation, the interpolation weights are most naturally based on the primary
matrix P (default). Other possibilities atéy,, ,,; 26 or coordinates if available.

The SW-pattern, the SU-interpolation is based on, is denoted Ny 's parametet ;.
(see Section 4.3). The choitg,;=P is always possible and always used for the numerical
tests with SU-interpolation presented in this thesis. Note that, ifittle unknown-pattern
has been chosen, SAMG also allows ok =Ap, -

The general way to transfer the interpolation weights resulting YoNIT has already
been explained in Section 3.4.3.3. The only open point here is the concrete transfer of weights
in the case that in parts of the simulation domain not each unknown is defined on each point.
The following methods are implemented in SAMG:

e “Cheap” method: For the transfer of a concretg to a variablev; belonging to the
pointP;, a “position shifting”is attempted: if; belongs to thei-th unknown and is the
t-th variable on poinP, check if thet-th variable {;) on pointP; also belongs to the
n-th unknown. If this is true, define,; := wy},. If not, simply use the first variable on
pointP; (instead ofv;) regardless of its unknown-type. This is possible siG€aloes
not contain empty points.

e More expensive method: Proceed as in the cheaper variant but search for a suitable
variable, i.e. one with the desired unknown-number, within the point. Only if this fails,
use the first variable attached to the current point.

There is another option for both methods in case a suitable variable is not found at the point
in question. Instead of using the first variable on that point, simply skip the weight (maybe
with a rescaling of the remaining weights).

Remark 4.23 Note that skipping can result in empty interpolation formulas for some vari-
ables and should be used with care. In general, it is an open question whether unknown
cross-couplings should be taken into account in interpolation. Whereas this is fairly natural
in the context of block-interpolation, it depends in case of SU-interpolation on the concrete
application?” which of the above methods makes sense, and whether skipping should be
allowed or not. A

Remark 4.24 (Notation): In all numerical tests, standard interpolation is used in connection
with standard coarsening, and multipass-interpolation in connection with aggressive coarsen-
ing. This is not explicitly added to the “list” defining the concrete AMG approach.

The parametet .ionts, defined in Remark 4.21, is extended by the choice “P” (pri-
mary matrixP) in case of a PAMG approach. For instance, in cas®-afiterpolation, we
havet ;=P andt ,.ignis="P", and in case ofd, ,,j-interpolation, we have ,.;=Ap, ) and
t weights= A’ (see also Remark 3.32).

The type of interpolation (“B”, “MU”, or “SU"), and the value of ycignts follow the
type of coarsening in the parameter list for VAMG, UAMG, PAMG. For instance, we write

26possible only if then-th u-pattern has been selected, different onl i Al
27¢f. Section 3.4.3.3.

n,n]-
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PAMG(ns,std,SU,P) for a point-based approach witR hased on norms (3.73), standard
coarsening, and ®-interpolation. Another example: we write PAMG(dist,agg,MU,dist)
for a point-based approach with a distance-baBediggressive coarsening, and an MU-
interpolation with weights being based on distances.

Note that we do not explicitly add ,,; to the parameter list since in all numerical
tests presented in this thesis SAMG's standard choide,gf is used:t ,,;=A for VAMG,
t pat=Apn,n) for UAMG, t ;=P for PAMG. A

4.3.2.3 Point-Based Interpolations for the Scalar Case

In the scalar casen(, = 1), B-, MU- and SU-interpolation are reduced to one interpolation
scheme, namelWINT( F, C\t patit weights) . The parameter y.ignes Can be set to the
types “A’, “P”, “dist”, or “pos”, t ,,; to the typesP and A.

4.4 Smoothing, Acceleration, One-Level Solvers

The following smoothers are available in SAMG:
e Jacobi relaxation.
e variable-, unknown, block-wise Gauss-Seidel (VGS, UGS, BGS) relaxation.

e (M)ILU(O): (modified) incomplete LU decomposition without fill-in outside the spar-
sity pattern ofA, see [74]. For ILU(0), we also write ILU.

o ILUT (I, Taroptol) [72, 74]: ILU with a dual-dropping strategy controlled by two pa-
rameters, namely the parametgji, determining the maximum level of (absolute!)
fill-in per row of the incomplete inverse, and the dropping tolerangg,..1. Entries
which are smaller thany,optor are dropped.

o (M)ILUTP ({611, Taroptot) [74]: (modified) ILUT(lgu, Taroptor) With @& column pivoting
Strategy.

By default, one pre- and one post-smoothing step is performed, both in CF-ordering in case
of a Gauss-Seidel variant (see Section 3.2.4.2). Note that, for symmetric matrices, “symmet-
ric” variants of Gauss-Seidel relaxations are employed: in post-smoothing, the variables are
passed through in the reverse order of what has been selected for pre-smoothing. This is done
in order to obtain a symmetric iteration matrix.

Compared with RAMG, ILU(0) has substantially been accelefdtethd MILU(0) and
(M)ILUTP have been added. The “M” variants add positive values to the diagonal entries of
the matrixU of the incomplete LU decomposition in order to prevent ILU(TP) from failing
due to zero diagonals i, see also [59, 74]. This stabilizes ILU(TP) and can be useful, for
instance, for matrices containing some (nearly) zero diagonals (see also Section 4.1.1). In
Remarks 5.15 and 5.16 we mention planned extensions which might increase the robustness
and efficiency of smoothing further for certain applications.

28for the price of only one additional working vector with length.
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AMG as a Preconditioner For many applications, the convergence of stand-alone AMG
approaches is slowed down by just a few eigenvalues of the iteration nidtsvhich are
close to or even larger than 1. Typical eigenvalue distributions for such cases are depicted in
Figs. 4.7 (a) and (b%. Itis provenly efficient for such situations to employ the AMG method
not stand-alone but as a preconditioner. This is particularly true for matrices considerably
deviating from the ideal weakly diagonally-dominant Stieltjes-matrix case, as is the case for
many industrially relevant PDE systems. But even VAMG applied to a discrete Poisson’s
equation might profit considerably, in particular, if aggressive coarsening is used.

In SAMG, right-preconditioning is used (see [74], for instance). The one-level iterative
method which is preconditioned that way is calkettelerator. The following accelerators
are implemented in SAMG:

e CG: conjugate gradient method (cf. [74]).

e BiCGstab [96]: stabilized biconjugate gradient method. Note that during one BiCGstab
iterationtwo AMG cycles are performed.

e GMRESk) [75, 74]: restarted method of generalized minimal residuals with a Krylov
space of dimensioh.

For the examples mentioned in Figs. 4.7 (a) and (b), a drastic improvement of convergence is
achieved by acceleration (see Table 5.5). Noteworthily, the stand-alone variant with ILU(0)
smoothing diverges in contrast to the one with GS smoothing for this case but, when acceler-
ated, the variant with ILU exhibits a better convergence rate than the variant with GS.

Remark 4.25 The iteration matrix)/ for a stand-alone AMG method can numerically be
constructed by applying, for all=1...n,, one cycle of the respective AMG method to the

systemAe() = 0 with () being thei-th standard unit vectoe{” = 1, all other components

being 0). Combining the resulting approximation vectof8 yields the iteration matrix
M= [Me® ... Me™) ] =[v® . p)], A

One-Level Solvers By limiting the number of levels to 1, that is, preventing SAMG from
creating a hierarchy, only smoothing and acceleration are performed. This way, several stan-
dard iterative methods, namely CG, BiCGstab and GMR&Sreconditioned by arf) one

of the “smoothers” mentioned above, can be selected. Therefore, SAMG does not only pro-
vide a whole AMG environment but also a broad collection of classical one-level solvers.

Remark 4.26 (Notation): The selected smoother precedes, the selected accelerator follows
the AMG approach chosen. For instance, ILU-PAMG(dist,std,MU,A)-BiCGstab denotes a
PAMG approach with a distance-basPd standard coarsening, an MU-interpolation with
weights being based af, ILU(0) smoothing and BiCGstab acceleration. A

29The corresponding iteration matricgé$ have numerically been constructed according to Remark 4.25.
30Among the reasonable combinations are CG with Jacobi, symmetric VGS/UGS/BGS or (M)ILU(0), and
BiCGstab or GMRESk) with Jacobi, VGS, UGS, BGS, (M)ILU(0) or (M)ILUT(P).
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Figure 4.7: Eigenvalue distributions of exemplary iteration matrices for the SILO2 example
(stress simulation, see Section 5.2.1). SAMG approaches employed: (a) GS-UAMG(std),
p~ ARF = 0.532 for n;; = 36. (b) ILU(0)-UAMG(std),p = ARF; = 0.315e+7 (strong
divergence!).

4.5 Computational Cost

The computational cost, thatis memory requirements and computational work, of AMG1R5’s
setup phase has been discussed in [71]. That SAMG usually ceadi&lerably less mem-
ory than AMG1R5, due to reduced complexities, has been demonstrated in [90]. However,
the estimates for the computational work remain qualitatively valid so that the work for con-
structingCOARS4 andVINT( F, C,std,A)  sumsup toy, p2(s., sp) and for the Galerkin
operators taw, p3(sq, sp) Wherep,,(s,, s,) denotes a polynomial of in totak-th order in
sq, sp With small coefficients. Note that typically, = O(ca/c,) ands, < 3 holds. For
aggressive coarsening, more work has to be invested first, but the 4jzea(id |V, |) of the
following levels is usually considerably reduced. See also Section 4.2.1.3.

The work for UAMG’s coarsening and MU-interpolation dependscpand theA, ,,j-
complexities. For the PAMG components,andcp come into in addition te, andc, so
that PAMG’s memory requirements and computational work are essentially proportional to
camc- The more physical unknowns the system contains and the larger the number of entries
in Apy, n) (m # n) compared tody, ,,), the smaller are thE(Ay, ,,)) compared ta:(A), and
the less matters the additional memory for if it has to be stored - relatively to the overall
memory requirements. WhereagAy, ,,)) typically equals¥(A) multiplied by 0.25 up to
0.5 in case of two unknowns, for three unknowns this factor typically lies bet@deand
0.3. A similar estimate holds foE(Py)/X(Ax) so that we typically obtairanic = faca
with f4 € [1.1, 1.5] (see Table 4.1).

Due to the inversions and incorporationalf entries ofAy, B-interpolation is the most
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expensive variant. MU-interpolation needs principally the sum of the codt\dF applied
to all Ay, ), SU-interpolation is even cheaper. Often, if reasonably working, a cheap PAMG
approach is PAMGA,, ,,;,agg,SU,P) both in terms of memory requirements and computa-
tional work. In general, the incorporation of coordinates in one or more components of the
setup can add a considerable amount of computing time.
Since usually only (at most) one of VAMG, UAMG, and the PAMG types is reasonable
for a fixed problem class, we skip a more detailed comparison of the different approaches.
The work for each cycle is dominated by smoothing and acceleration. The latter only
affects the finest-level matrix so that the work for each SAMG accelerator is proportional to
|25 (A1)]. The total work for smoothing is in principle proportional to the number of entries
stored in all matricesy '} |£,(Ay)|. Thereforecs + 1 is a convenient approximation of
the ratio of the total work per V-cycle including the accelerator to the relaxation work on the
finest level.

The complexities strongly depend on the nature of the problem and the concrete AMG ap-
proach. For a fixed application class and AMG approach, however, they should principally
be constant. The costs of both the setup phase and each cyCérarethen.

As a general rule of thumb, the setup phase needs approximately the same time as 3-10
cycles. This strongly depends on the application class and the concrete approach chosen.
For instance, a coordinates-bage@dds a considerable amount of work to the setup phase,
ILU(0)-smoothing or acceleration a considerable amount of work to each cycle.

Concrete complexity values for SAMG are given in Remark 4.13 for typical scalar ap-
plications, in Table 4.1 for our model problems and in the next chapter for industrial test
cases.

In all cases, the cosindconvergence rates for AMG approaches with aggressive coarsgning

are very reasonable so that very efficient preconditioners result. For (B)GS smoothing, a
considerable speedup for the price of 1.0 up to 1.5 times more memory compared with the
standard one-level preconditioner ILU(O) (i®.ec € [1.0,1.5]) is typically obtained. For
ILU(0) smoothing, we typically obtain,e. € [1.5,2.0].

4.6 Numerical Results for the Model Problems

In this section, we complete our discussion of the models with numerical r&soiteuns

with different AMG approaches. Memory requirements have already been shown in Table

4.1. We concentrate on robustness now. The investigations made in Sections 3.3.3.1 and

3.4.1.2 and Examples 3.3, 3.4, 3.5 and 3.10 are confirmed by the results presented here.
The AVLS models are very simple to solve - in principle all PAMG variants and (if

c? < ab) even VAMG and UAMG work here very efficiently stand-aléfieln contrast to

this, theAVLD models need acceleration. As long a% < ab, a variety of AMG approaches

3INotation: GS: VGS,UGS, or BGS. I: ILU. Bi: BiCGstab. V: VAMG, U: UAMG. Remainder: PAMG with a,n,d:
P = Ap ), “ns”, "dist”. m,s,b: MU-,SU-,B-interpolation (with default type of weights). In all cases, standard
coarsening and interpolation have been used. In all tables, the numbers of cycles tgrebeti0 are shown. div
= divergence, stag = stagnatianh = more than 100 iterations.

32PAMG(dist;,MU, -) needs the least memory. However, VAMG, UAMG and norm-based PAMG are faster.
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model parms. crs Cg ca fa Sp Cprec
AVLS e=le-1 stP® | 1.87,1.67 3.49,220 1.06,1.41 1.94,2.39 2.56,1.69
AVLS =1 std. 1.66 2.16 1.25 2.32 2.60
AVLD  e=1e-3 std. 1.67 2.81 1.36 2.89 2.39
RD alln.,c std® | 1.67,1.67 220,220 1.71,1.71 239,239 211,211
DD e=1e-3 std. 2.00 2.88 1.27 1.52 231
DD =1 std. 1.67 2.58 1.29 2.40 2.06
AVLS e=le-1 agd® | 1.28,1.13 1.51,1.24 115,143 1.33,1.61 0.97,1.03
AVLD  e=le-3 agg. 1.17 1.30 1.43 1.72 1.06
RD alln.,,¢c agg® | 1.17,1.67 1.30,2.20 1.74,1.71 1.71,2.39 1.31,2.15
DD e=1e-3 agg. 1.48 1.96 1.29 1.35 1.51
DD =1 agg. 1.21 1.74 1.28 1.76 1.32

¢ First value: (nearly) identical for VAMGY, UAMG(-), PAMG(ns/nflA[; 1;,-,MU/B,A) and
PAMG(ns/nf/A}; 1;,-,SU,P); second value: PAMG(dis§U,P).

b Theworstvalues are a bit less than the ones presented in [58] for comparable tests.

¢ First value: PAMG(dist,MU,A) and PAMG(dist,,SU,P); second value: PAMG(disB,A).

Table 4.1:Complexities for the model problems and the BGS-PAMG approaches marked bold-face
in Tables 4.2-4.5 below (for AVLS, see footnote for RD, see footnot€). parms.=parameters,
crs.=coarseningfa := cama/ca. Here always,=c, andcp < ca.

yields quite efficient preconditioners (see Table 4.2). With increagifg.b), however, VGS

and UGS are no appropriate smoothers and VAMG and UAMG no appropriate precondition-
ers any more. Only the PAMG(SU,P) preconditionefd show a stable convergence be-
havior. Due to the shape of algebraically smooth error, produced by BGS and also ILU (see
Section 3.4.1.2), a coarseninggdirection would be most suitable far, and a coarsening

in z-direction most suitable fot,. PAMG(n,;,SU,P) performs a coarsening which yields a
compromise of both. SU-interpolation fits best to the norm-based coarsening here so that,
in total, this PAMG-approach is the most robust and efficient one for the AVLD models.
ILU-PAMG(ns,,SU,P)-BiCGstab turns out to be the best variant here.

As could be expected from the discussion in Section 3.3.3.1, VAMG and UAMG are
not suitable for the®vVLX models (see Table 4.2). Similarly to what we have observed for
the AVLD models, PAMG(n,SU,P) as a preconditioner should also be suitable for AVLX
models - in contrast to the AVLD models, however, only for “extreme” parameter settings
such asib > c? orab < ¢ ore = 1 (in the last case, AVLX, AVLD and AVLS coincide, of
course). This is indeed the case. To be more specific, for PAMG to be applicalbias to
be much larger or at least moderately smaller ti¥an

Not unexpectedly, the picture for tfRD modelsis more complicated (see Tables 4.3 and
4.4). GS-VAMG and GS-UAMG usually fail even with BiCGstab. Also with ILU smoothing,
the situation remains unsatisfactory, and the results are quite unpredictable: BiCGstab can
even make it worse! Using PAMG approaches with distance-based coarsening increases the
robustness considerably. B-interpolation shows the most robust behavior here. In general, the
performance of the variants with BGS smoothing increases with increasiigly the case of
a largen, together withe =~ 1 shows very slow convergence. For PAMG, the performance of

33Both variants for a norm-basd®, “ns” and “nf”, give nearly the same results here.
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a c|GSV IV | GS-U I-U| GS-nm I-nm| GS-ns I-ns| GS-nb I-nb
10 1 9 4 4 2 5 2 84 7 4 2
2 1 43 div 6 div 8 div 82 8 9 div
1 2 div  div div  div >h div 82 8 div div
1 10 div  div div  div 18 div 87 8 div stag
10 1 >h stag >h stag >h  stag >h  div div  stag
2 1 div  div div  div div div div div div div
1 2 div  div div  div div div 5 3 div  div
1 10 div  div div  div 7 stag 4 3 div  div

Table 4.2:AMG-BiCGstab applied to AVLD (first) and AVLX models (second block of results)b,
e=le-3,h=1/512, n,=522242, n4=5214244. Error reduction approx. le-8 or better in all cases
where the method converges.

the runs with BGS smoothing qualitatively “corresponds” to BGS’ stand-alone performance

(see Table 3.2). In contrast to this and to Table 3.2, ILU smoothing suffers from increasing
n, andc which might be due to the fact that a variable-based ILU is used. A corresponding

block-variant can be expected to perform comparably to BGS (cf. also Remarks 5.15 and
5.16).

For the DD models VAMG and UAMG diverge in most cases. Only ILU-UAMG-
BiCGstab for\ = ¢ = 1 works quite efficiently. As discussed in Example 3.5 and as can
be seen from Table 4.5, PAMG with a norm-based coarsening yields a robust and efficient
approach here - however, in casesck 1, only with SU-interpolation (see also discussions
in Example 3.12). Note that using B-interpolation leads to divergence here. ILU-smoothing
does not increase PAMG’s performance for the DD models. However, it can again be ex-
pected that block-variants of ILU-type smoothers do lead to better convergence rates (cf. also
Section 5.3.2.2).

The results presented here together with the investigations made in Section 3.3.3.1 and
3.4.1.2 show that UAMG can handle strong anisotropies which are different from unknown
to unknown but is likely to fail if the cross-unknown couplings are strong. In contrast to
this, PAMG can handle strong cross-unknown couplings as long as the smoother employed
(BGS or ILU, for instance) produces an algebraically smooth error which allows for a point-
coarsening strategy.
The AVLX models show a limit of our AMG methodology: PDE systems with unknown
cross-couplings which are too strong for UAMG and for which a point-coarsening and thus
PAMG is not suitable as well cannot be handled by our AMG methodology.
The other model examples as well as real-life applications (see next chapter) show|that, in
particular, PAMG can handle very strongly coupled, practically very relevant PDE systems
which exhibit very different numerical properties.
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N, c| GS-V |-V | GS-U I|-U| GS-dm I-dm| GS-ds I-ds| GS-db I-db
1 1e0 10 7 10 7 10 7 26 13 10 7
1le3 dv 11 div 11 10 11 26 13 10 11

1e9 div 18 div 18 4 18 7 16 4 18

100 1e0 >h 65 >h 65 98 64 26 13 10 7
le3 div. 19 div 19 31 >h 32 71 21 17

1e9 div 28 div 28 3 div 4  div 2 div
1000 1e0 div div div div div div div  div div div
le3 div div 33 div >h div 75 div 32 28

1e9 div div div div 2¢ div 2¢ div 1¢ div

@ Too less cycles: error reduction only one order of magnitude.
However, after 11 (13 for GS-db) iterations, the error is reduced by 1e-14.

Table 4.3: AMG applied to RD models.h=1/512, n,=522242, n4=3129364. Error reduction
approx. 1e-8 or better if the method converges, with the exception of ¢&se “

N c| GS-V IV | GS-U I|-U| GS-dm I-dm| GS-ds I-ds| GS-db I-db
1 1e0 div 3 div 3 4 3 6 4 4 3
1le3 >h 4 >h 4 4 4 6 5 4 4

1le9 >h 8 >h 8 2 9 3 10 2 8

100 1e0 14 10 11 8 11 8 6 4 4 3
1le3 div 9 div >h 7 >h 7 15 5 7

1e9 >h >h div div 2¢ div 2¢ >h 1¢ >h
1000 1e0 >h >h >h div >h div >h  div div div
le3 div 13 div div 14 >h 11  >h 7 11

1e9 >h >h div div 2¢ div 2¢  div 1° >h

Table 4.4:AMG-BiCGstab applied to RD models. Parameters aticas in Table 4.3.

A c e | I-U-Bi GS-am GS-as GS-nm GS-ns
le+0 1e+0 1e+0 32| 10 4| 10 4| 10 4| 31 7
le-3 le+3 1letQ div 10 41 10 41 10 41 10 4
le-9 1e+9 1le+Q div 10 4| 10 41 10 4| 10 4
le+t0 1e+0 1le-3 stag| >h 53| >h 51| >h 56| >h 25
le-3 1e+3 1e-3 div | >h 62| >h 66| >h 62| >h 13
le-9 1e+9 1le-3 div | >h 68| >h 69| >h 67| >h 10

Table 4.5:AMG applied to DD modelsh=1/512, n,=783 363, n4=7 562 289. For PAMG variants,
left column: AMG stand-alone, right column: with BiCGstab. Again, error reduction approx. 1e-8 or

better.
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Industrial Applications

The general AMG methodology described in Chapters 3 and 4 formally allows the definition
of various concrete algorithms. It seems clear that there exists no unigue AMG approach
which will work satisfactorily for all systems of PDEs. Instead, major work still needs to be
invested to compose and optimize concrete algorithms for certain classes of industrial appli-
cations. In this chapter, we consider the application of AMG to semiconductor simulation.

Semiconductor circuits play a central role in nearly all areas of our life. Popular exam-
ples of semiconductor circuits are microprocessors and memory chips. They can contain up
to millions of single semiconductor devices, such as transistors, fabricated on the same die, a
small piece of a semiconductor substrate (a wafer). The design and test of both single semi-
conductor devices and whole circuits is very expensive and due to the ever decreasing size
very difficult. Therefore, great efforts are spentin replacing the iterative experimental process
of constructing, testing and optimizing of hardware prototypes by computer simulations as
far as possible. By now, semiconductor simulation can assist this experimental process and
is able to reduce the number of expensive prototypes to an increasingly large extent.

Section 5.1 gives a short survey on semiconductor simulation. As discussed there and
in more detail in the remaining sections of this chapter, two important and computation-
ally expensive parts are process and device simulation. They mainly aim at the approximate
computation of the final shape and doping profile of a single semiconductor device and its re-
sulting electrodynamic behavior, respectively. Due to the complexity of the models and grids
used, industrial process and device simulation are increasingly recognized as important and
challenging areas for numerical simulation. Occurring PDE systems instres governing
equations reaction-diffusion equationand drift-diffusion equations Brief explanations of
the terms diffusion, drift and reaction can be found in Section 2.2.2. All these systems exhibit
different numerical properties and difficulties. As one consequence, different strategies are
necessary to solve the arising linear systems efficiently by means of AMG.

That a simple unknown-based AMG approach as a preconditioner is suitable to speed up
stress simulations will be shown in Section 5.2.1. For reaction-diffusion and drift-diffusion
equations, the situation is more complicated. Where classical iterative solvers often converge
only slowly (or even break down) and variable-based or straightforward unknown-based
AMG are no sufficient preconditioners any more, suitable point-based AMG approaches,
accelerated by BiCGstab or GMRes, can cause remarkable speedups. In Section 5.2.2, we
will demonstrate that some typical reaction-diffusion problems can efficiently be solved by
using a primary matrix based on geometric distances. As can be seen in Section 5.3, typi-
cal drift-diffusion problems, on the other hand, are efficiently solved by selecting a primary
matrix based on norms.
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We have performed concrete tests with the following simulation codes:
e FLOOPS [50] for stress analysis,

e DIOS [39] for reaction-diffusion simulation,

e TAURUS [92] for drift-diffusion simulation.

One should point out that the concrete industrial test cases, we had at our proposal, are rather
small or only of medium size w.r.t. number of variables, compared to what industry can
run today. They are too small to demonstrate “real” advantages of SAMG over one-level
preconditioners in terms of computational speed. Nevertheless, compared with typical one-
level solvers, a speedup of 2 is achieved for the largest stress analysis matrix. Compared with
the iterative one-level solver used as a default in DIOS, a speedup of 2 is also achieved for the
complete reaction-diffusion simulation run. For the largest drift-diffusion problem, SAMG is

a bit faster than the iterative one-level solver used as a default in TAURUS. However, since
SAMG clearly shows a robust behavior for all three applications and a considerably faster
performance with increasing problem size, it can be expected that for larger problems than
the ones presented here the observed trends will continue. Hence, we can expect that SAMG
clearly outperforms the one-level solvers which are commonly used in commercial simulators
in case of large(r) problem sizes.

Remark 5.1 We use the definitions and descriptions of our AMG approaches made in the last
chapter. Descriptions of the standard one-level iterative approaches, our AMG approaches are
compared with in this chapter, can be found in [74]. In Section 2.4.6, the definitions of ARFs,
stopping criteria etc. can be found. Remember, in particularythatenotes the number of
physical unknownsy,, the number of points;, the number of variables, and, the number

of matrix elements storedv(; > number of nonzeros). A

5.1 Semiconductor Simulation

The main purposes of semiconductor simulation are twofold:

1. circuit design: the design of a suitable “logic” and layout of a circuit serving a specific
application,

2. circuit simulation: the validation of the design and the computation of physical prop-
erties of a concrete circuit.

The knowledge about the properties of single semiconductor devices, such as resistors, ca-
pacitors, diodes, transistors, et cetera, which are used to construct whole circuits, forms the
basis for both parts. Therefore, a simulation of the manufacturing process, the sgoadled

cess simulation and afterwards a simulation of electrodynamic properties of the device, the
so-calleddevice simulation have to be carried out for each type of device used in mod-
ern circuits before the process of circuit design and circuit simulation can be performed. The
steps (re-)design and simulation have typically to be performed in an iterative fashion in order
to optimize the circuit layout for a specific application.
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An overview of semiconductor simulation is depicted in Figure 5.1. It shows the four
main steps involved, namefyrocess deviceandcircuit simulation andcircuit design indi-
cating their dependencies. Short characterizations of the four steps are given in the following.

for all relevant devices do:

Process Simulation

Lithography
------------------- Etching ...
E g
Material Stress Analysis
~V-o,@)+V(-KV-u)=f

0, () = 2G,, (L (Ve + Vi )= L(V-u))

Oxidation, Deposition, Metalization
Diffusion, lon Implantation

Reaction-Diffusion Processes

% :
DiyV.J =R (i=1,...n,
> =R n,)

q
J,=-D/|Vf + Vi
i v[f; kBTf‘ J

v

Device Simulation

Drift-Diffusion Processes

=V-(&Vy)+gn—-p-C)=0

%+V-(/4nnVy/)—DnVn)+R=0

3
a—};—v-(,uppvy/)+Dpr)+R=0

v

Circuit Design «g———p Circuit Simulation

Figure 5.1: Overview of semiconductor simulation. The parts in dark grey indicate the prob-
lem classes discussed in this chapter.

Process Simulation Figure 5.2(a) shows a schematic view of an (n-)MOSEHT order to
fabricate the different material layers, in the example the gate oxide and the contacts, on the
semiconductor wafer, several steps of pattern definition (lithography), pattern transfer (etch-
ing), layer formation (oxidation, deposition, metalization), and layer modification (diffusion,
ion implantation) have to be performed. Hence, during the manufacturing process of a de-
vice, several different configurations (i.e. the composition and geometry) of material layers
develop until the final configuration is reached.

IMOSFET is an abbreviation of “metal oxide field effect transistor”. “n” stands for “with an n-channel”. A more
detailed description of the different MOSFET regions can be found in Section 5.3.1.3.
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Figure 5.2: (a) Sketch of an n-MOSFET. For explanations, see Section 5.3.1.3. (b) Layout
and doping profile of a p-MOSFET. Courtesy of Synopsys Inc.

The main tasks of a process simulation are the computation of these configurations, in
particular the final configuration of the device, the stress and strain distributions inside the
layers and across their interfaces, and the doping profile of the device (i.e. the distribution of
electrons and holes within the device). The final shape and doping profile for an exemplary
MOSFET are depicted in Figure 5.2(b). Such results serve as input for a device simulation.

As indicated in Figure 5.1, two problem classes play an important role in nearly all steps
of a process simulation, namely the stress analysis and the simulation of reaction-diffusion
processes. The corresponding models and their efficient numerical treatment are topics of
Section 5.2.

Device Simulation A device simulation takes the above-mentioned results of a process
simulation for a particular device as input and computes its electrodynamic properties. That
means, based on the geometry and the doping profile, local functions including the electro-
dynamic potential and electron and hole concentrations are computed for each relevant bias
applied to the contacts of the device. For this purpose, a series of drift-diffusion systems is
solved. A detailed description of these systems can be found in Section 5.3. In particular, the
difficulties in their numerical treatment will be discussed. The systems are strongly coupled,
highly nonlinear and usually very ill-conditioned, and the efficient solution of the arising
linear systems by means of iterative solvers is a great challenge.

From the local functions computed, the net currents of the device are determined for each
bias applied, resulting in so-called IV-characteristic¥hese are of particular importance
for industrial purposes since they determine the behavior of a device within a circuit to a
large extent. For instance in case of a transistor, the IV-characteristics yield information on
its switching behavior. Hence, device simulations have to be performed for each relevant
semiconductor device before the design and simulation of whole circuits can take place.

2«)y" stands for current-voltage (or current-bias) characteristics!
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Circuit Design Having a specific application in mind, engineers decide on the components
of a suitable circuit and its principal layout. The computation of an optimal placement of all
devices and their interconnects within a three-dimensional structure which can be fabricated
on a wafer is the objective of CATIools for (up to) ULSt layout design.

Remark 5.2 In[71, 65], the application of AMG to certain two-dimensional placement prob-
lems in VLSI layout design is considered. The arising matrices are similar to a system con-
sisting of two discrete Laplacians (with some additional algebraic constraints). In [65], the
two parts are decoupled, in [71] they may be weakly coupled. In the first case, VAMG (with

a suitable treatment of the constraints) can be applied, in the second case a straightforward
UAMG approach yields an efficient solver.

Circuit Simulation Assuming a layout of a particular circuit to be given and its electro-
dynamic properties (and maybe other properties such as heat distributions) for each device
involved to be computed, a simulation of the whole circuit can be performed. Circuit sim-
ulation aims at the validation of the layout design, i.e. answering the question “Does the
manufactured circuit work as it has been designed to?”. Time-dependent, nonlinear systems
of differential-algebraic equations have to be solved.

Remark 5.3 AMG is able to efficiently solve certain subclasses of matrices arising in circuit
simulation. However, these problems are not in the scope of this thesis.

5.2 Process Simulation

Two principal classes of PDE systems are involved in process simulatitime first class
describes the mechanical deformation of fabricated multi-layer material structures. The cor-
respondingstress governing equationsiccount for the distribution of the stresses and strains
for the constellations of material layers arising during the manufacturing process of a device.
Systems of stress governing equations are essential for the analysis of native film growing
processes (such as thermal oxidation and nitridation) as well as the analysis of mechanical
properties of the wafer after deposition and etching processes.

The second class of PDE systems models the redistribution of dopants and point defects
in thermal processes (for example, an annealing step after an implantation) and requires the
solution of multi-speciegeaction-diffusion systems Simulations of reaction-diffusion pro-
cesses are of major importance for determining the final doping profile of the device, and
their results are therefore an important input for a subsequent device simulation, as already
pointed out.

We will see in the following chapters that both stress systems and reaction-diffusion sys-
tems - or at least important parts of them - exhibit an “elliptic nature” and are ill-conditioned.

3CAD = computer aided design.

4LSI = large scale integration. An integrated circuit that uses very-large-scale integration (VLSI) contains
100,000 up to 1,000,000 transistors, an integrated circuit that uses ultra-large-scale integration (ULSI) more than
one million transistors.

5A general survey on semiconductor process modeling can be found in [42], for example.
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Whereas this makes them critical for the application of classical, one-level iterative solvers,
hierarchical approaches provide a possibility to speed up the computations. We will discuss
suitable AMG approaches for these problem classes in Sections 5.2.1 and 5.2.2, respectively.
In particular, we will demonstrate that efficient methods can be obtained by choosing an
unknown-based strategy for stress governing equations and a point-based strategy with a
distance-based primary matrix for reaction-diffusion equations.

For stress simulation, we concentrate on an analysis of ill-conditioning and convergence
based on eigenvalue calculations. This is possible since the matrices investigated here are
rather small and, hence, allow for accurate eigenvalue computations. For reaction-diffusion
systems, the focus lies on the performance of SAMG compared with iterative one-level
solvers used in a commercial process simulator. For this purpose, a typical simulation run
with about 200 matrix solves for a 3D test layout is considered.

5.2.1 Stress Simulation

After a description of the system of stress governing equations in the following Section
5.2.1.1 and our test cases (Section 5.2.1.2), we will characterize the matrices stemming from
such systems (Section 5.2.1.3) and discuss their efficient solution by means of a suitable
AMG approach (Section 5.2.1.4). Numerical results for two selected problem classes are
presented and discussed in Section 5.2.1.5. In particular, results on the efficiency and robust-
ness of AMG in comparison with classical one-level linear solvers are presented.

5.2.1.1 Governing Equations
The stress analysis in process simulation is essentially based on the momentum equation
—V:.04+Vp=f in Q (5.1)

where(? is a bounded domain with bounddry o4 is the symmetric deviatoric stress tensor,
p is the mean pressure afids the body force. The boundary conditions are given by

(—pI+o04) - n=g on T, (5.2)
u=h on T, (5.3)

whereg is the surface traction of the boundary segmigntC I', h is the displacement of
the boundary segmefit, c ' (I'y NI’y = (), n is the outward unit normal vector on the
boundary and is the identity tensor.

Mechanical properties of the materials involved in the semiconductor fabrication vary
from purely elastic solids to viscous fluids. Silicon and poly-silicon are assumed to be elastic
materials whereas nitrid&€is IV, and oxideSiO, are assumed to be viscoelastic compress-
ible fluids. The mechanical properties are quite accurately modeled with the constitutive
relationship of the Maxwell viscoelasticity (cf. [83]). The Maxwell viscoelasticity is com-
monly implemented in process simulation in its incremental form based on the constitutive
relationships of linear elasticity

oqa = 2Gog % (Vu+ (Vu)T) — % (V-u)Il in Q (5.4)
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p=-KV-u in Q (5.5)

where the viscoelastic material properties are introduced by an effective shear modulus (ef-
fective rigidity) Geg given by

Gogt = GA% (1 — exp <A7t)> . (5.6)

Here,u is the incremental displacement vect6r,> 0 and K > 0 are the shear and bulk
moduli (rigidity and compressibility, respectively)\t is the time step size, and is the
Maxwellian relaxation time defined as= V/G, whereV is the material viscosityG and
K are assumed to be known constants.

G.g provides a continuous modeling of the mechanical behavior of a material from purely
elastic deformation to viscous flow. Namely, far< V it reduces to Hooke’s law for elastic-
ity (Gog = G) while for V' <« G, we obtain Newton'’s law for viscous fluids. However, note
that only the incremental deviatoric stress component exhibits stress relaxation, accounted for
by G.s, while the incremental dilatational stress component is assumed to be purely elastic
in this model.

In general,u is a vector of three scalar-valued functions, namely the displacements in
x-, y- andz-direction, in the following denoted by, us andug, respectively. By inserting
equations (5.4) and (5.5) into (5.1), and by assuming the full elastiacéase- G, we arrive
at the classical Lamequations (3.66). The parametéts, A, i from (3.66) and (3.68) are
related toG and K as follows:

E 4G G

+v) 3 +K=2u+ X\, 3+K—/¢+)\. (5.7)
For all test examples investigated here, the stress analysis is based on a plane-strain formu-
lation (3.67). Hence, the following PDE system has to be solved for the unknewasd
Ug:

G:M:

(5.8)

_ (% + K) UL gz — GUL yy — (% + K) U2, 2y 3
_GUQ,MU_ (%—’—K) U2,yy — (§+K) Ul,zy |: f2 :|

Also the boundary conditions can be formulated in terms ofsthe:s (andus in 3D).

Table 5.1 gives valuédor E andv, reported in [83], and resulting and . for the layer
materials discussed here. In the viscoelastic case (oxide and nitride), one has to be aware
of the fact that the parametét has to be replaced by the functichg = Ger (G, V, At)
defined in (5.6).V is temperature- and material-dependeartd decreases, for instance, for
the oxid€ from 9e5 GPa s at 80CC to 4e3 GPa s at 110CC. Values for nitride are (a bit)
higher. SinceG = pu is (considerably) smaller thavi here, we arrive at &.¢ ~ G SO
that, in principle, the computed values oy can be used for the following discussions of
numerical properties of the arising matrices.

8Throughout this chapter, values for physical constants are given in basic Sl units (used are the following five
out of seven: A,K,kg,m,s) or typical derived Sl units (for example: 1 C = 1&€; = (x + 273.15) K, 1L Pa=1kg
m-1s 2, 1V=1kgn? s 3A).

for concrete values, see [83].

8in the “wet processing” case. Values for the “dry processing” case are approximately 10 times higher.
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material E [GPa] v A[GPa] pu[GPa] p+A[GPa] 2u+A[GPa] i~

Si04 660 0.17 145.3 282.1 427.4 709.4 0.40
Si3Ny 3890 0.30 2244.2 1496.2 3740.4 5236.5 0.29
St and polySi 1870 0.28 929.7 730.5 1660.2 2390.6 0.31

Table 5.1: Material constanfs, v from [83] and resulting\, u etc.

5.2.1.2 Test Cases

The test problems for the numerical experiments have been generated by the process simula-
tor FLOOPS [50]. For several material systems, stress simulations have been performed and
typical global stiffness matrices been extracted. To be more specific, we have considered two

general classes of problems very relevant for the manufacturing process:

e The first one corresponds to the “single full integration stress solving step” in the sim-
ulation of the “sealed interface local oxidation” (SILO) process. Originally, SILO is
an evolutionary problem on a time-dependent dongaia Q(¢). To be more specific,
during this oxidation process, th&0O,-layer is permanently growing at the expense
of the silicon layer. This results in a permanent change of the layer topology and, in
particular, moving layer interfaces. SinceS&), molecule needs considerable more
space than & atom, stresses and strains emerge in particular at the layer interfaces,
resulting in material displacements. Due to the tight coupling of the two processes ox-
idation and displacement of material, they have to be solved in a coupled way, usually
by an “incremental approach” We consider one particular stress analysis step here.
The underlying grid structure of one of the two SILO examples chosen is shown in
Figure 5.17(a).

e The second class of simulation examples, DEPO, is related to the stress distributions
in multilayer material regions after thin film deposition processes. Origins of the stress
are intrinsic stress distributions in the material films deposited. In order to test differ-
ent problem scales, one particular DEPO problem, containing four different material
layers, is formulated with four differently refined grids. Fig. 5.17(b) shows one of the
corresponding grid structures. Inside and in the neighborhood of the very thin poly-
Si layer contained in the concrete DEPO class chosen, the stresses are largest. This
demands a very fine discretization grid in and around this layer.

As common for process simulators as, for instance, FLOOPS [50], the system of stress gov-
erning equations is discretized using standard piecewise linear finite elements on a triangu-
lation of the domairf2. Usually, an unstructured grid is employed, see Fig. 5.17. Table 5.2
compiles data on the magnitude of the six arising grids and mattices

5.2.1.3 Characterization of the Arising Matrices

Important numerical properties of the matricésarising for the plane-strain problem (5.8)
to be solved have already been discussed in Section 3.3.3.2. From there we know that the

9For more details and an illustration of a SILO process, see [83], for instance.
101t was only possible to test rather small examples with less than 25.000 variables. This is because the version of
FLOOPS used for the tests did not allow for a finer discretization of the test cases.
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example layers Ny Ty na
SILO1 5 716 1432 15912
SILO2 5 905 1810 23079
DEPO1 4 528 1056 13577
DEPO2 4 4477 8954 121868
DEPO3 4 8418 16836 230896
DEPO4 4 10897 21794 299593

Table 5.2: Description of the test matrices.

matricesA are ill-conditioned and, hence, classical one-level solvers face problems in solving
the matrices efficiently. For instance, the lafdex/u or the smallerp;,, the less efficient
they are. We recall thatp;, is defined as the number of Dirichlet variables divided by the
total number of boundary variables.

UAMG is a good preconditioner for linear elasticity matrices on appropriate FE grids if
the raterp;, is large enough. Regarding the two problems classes SILO and DEPO, quite
a large part of the boundary is fixed by Dirichlet conditions. To be more specific, for all
test cases considered herg;, is between 0.5 and 0.6 so that we expect the convergence of
UAMG to be only a bit worse than for the full Dirichlet case,;, = 1.

In both problem classes, SILO and DEPO, we have to deal with at least one nitride layer,
at least one oxide layer and a silicon layer. The DEPO class contains an addition&l; poly-
layer. From Table 5.1 it can be seen that, for all four layers, far from the critical value
0.5. Therefore, the material properties lead to only a slight anisotropy of the two PDEs.

However, the parameters of neighboring layers can be quite different. This is particularly
true for the oxide compared to the nitride, since here the valuds, af . of the nitride
are approximately one order of magnitude larger than those of the oxide (see Table 5.1).
Hence, especially the SILO2 example (see Fig. 5.17(a)) suffers from this parameter “jump”
and, physically interpreted, large stresses around its two oxide-nitride interfaces can occur.
Together with the fact that the mesh around these interfaces is not particularly refined (see
Fig. 5.17(a)), this might explain to a large extent the fact that SILO2 has by far the worst
condition number her& (see Table 5.3).

As indicated above, the very thin polyilayer in the DEPO structure causes large stresses
and could numerically be an origin of ill-conditioning, although pétyandSi have the same
E andv values. However, the DEPO meshes are refined in and around this layer (see Figs.
5.3 and 5.17(b)) so that the effect is lessened, and the condition number of the DEPO matrices
is rather high but considerably lower than for SILO2 (see Table 5.3). The coarsening structure
produced by UAMG(std) for DEPO2 is shown in Fig. 5.3. Also an enlargement of the area
“between” the nitride and oxide and around the critical thin pgiylayer is shown there. As
can be seen from Table 5.4, the coarsening is equally fast in all four material layers so that,
in particular, the critical thin polysi layer is not “neglected” but handled as the other layers.

We have computed the strength of unknown cross-couplings as descrilpéd by —1),

UThis is equivalent to growing, approaching.5 from below.

12In contrast to SILO2, SILOL1 is refined at the interfaces. The overall discretization grid of SILO1 is, however,
rather course.
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example n. conds p(AATT)  p(ATTAL) Pu pt P11 P22

(3.67),v=0.20 2046 1382 2.23 1.55 3.46 0.20 0.07 0.03
(3.67),v=0.33 2046 1978 2.59 1.61 418 0.26 0.06 0.06
(3.67),v=0.45 2046 5322 5.50 1.82 10.01 0.60 0.05 0.05
DEPO1 1056 4091 3.62 1.72 6.25 0.69 0.62 0.26
SILO1 1432 2137 2.63 1.62 427 025 0.15 0.04
SILO2 1810 49675 4.67 1.79 8.34 057 044 0.48

Table 5.3: p, and asymptotic convergence rates (i.e. spectral radii of the corresponding iter-
ation matrices)p; = p[GS-UAMG(stdYA)], p11 = p[GS-VAMG(stdY A1 1})], p22 = p[GS-
VAMG(std)(A}2,21)] for (3.67) with three different and the three smallest stress matrices. Remark 4.25
explains how the iteration matricdd have been computed. All eigenvalue computations have been
performed with LAPACK’s [1] direct eigensolver.

layer nodes cg;1 ¢y
oxide 1013 155 1.49
nitride 799 154 149
poly-Si 587 1.56 1.47
silicon 2424 155 1.51
intotal 4477  ¢,=1.52

Table 5.4:Grid complexities for the DEPO2 example. For the current layer: nodes = number of nodes
in layer including layer boundary nodes,,, = grid complexity w.r.t. thea-th unknown.

p(A71A,) andp, (3.65), in order to show that the matrices are indeed not too strongly
coupled for UAMG to work, and that they have properties similar to the plane-strain problem
(3.67) (see Section 3.3.3.2) on standard grids with a standard FE discretization. Table 5.3
shows these values for the three smallest stress examples, and for model (3.67) on the unit
square, discretized using bilinear finite elements= 1/32, with Dirichlet conditions on

two sides of the unit square and with three differentThe values for the stress matrices

are indeed comparable with the ones for the linear elasticity models - this is also true for
SILO2, by far the most ill-conditioned matrix here - so that UAMG should exhibit a similar
convergence behavior. In particular, we expect UAMG to be a more efficient preconditioner
than classical one-level solvers. However, since the SILO and DEPO problems exhibit only
a slight anisotropy, we also expect PAMG to show similar convergence properties here. That
these expectations hold is demonstrated below.

5.2.1.4 Efficient AMG Approaches

As mentioned in Section 3.3.3.2 and Remark 3.31, unknown-based as well as certain point-
based AMG approaches with block-interpolation have been investigated in the literature for
linear elasticity problems. We have thus tested both UAMG as well as PAMG variants with
GS'3 as well as ILU(0) for smoothing. We have also compared standard coarsening with

Bwhich means UGS for UAMG and BGS for PAMG.
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Figure 5.3: Coarsening for the x-displacement in case of the DEPO2 problem. (a) Full grid
without FE edges, (b) enlargement of the critical area, with FE edges.

Al-coarsening. In addition and according to the following Remark 5.4, we have tested, for
UAMG, both the block-Galerkin and the full-Galerkin variant.

Remark 5.4 In [56], AMG1RS5 [71] as a block-diagonal preconditioner for BiCGstab or
GMRes has been investigated for stress governing equations. This approach corfésponds
to block-UAMG, that is an unknown-based AMG approach with block-Galerkin coarse level
operators (3.57). The deterioration of convergence usually caused by using block-UAMG
instead of full-FUAMG is often compensated by the reduction of computational work and also
memory requirements of the setup phase and each cycle. That this also holds for SAMG
applied to our test cases will be demonstrated below. A

Table 5.3 also gives the spectral ragdiof the iteration matrices, that is the asymptotic
convergence rates, of GS-UAMG(std) appliedtas well as its two diagonal blocks,, ),

n = 1,2. These asymptotic convergence rates show that stand-alone UAMG converges
with “acceptable®® but varying rates. The convergence of UAMG applied4tés always
worse, sometimes considerably, than that of VAMG applied taAfhe,;. However, for the

SILO and DEPO matrices, the performance of VAMG for the ,,; (the maximum of(GS-
VAMG(std))(A[,,])) is not too far from UAMG's behavior.

As a generally expected trend, for comparable problem sjzes, increasing withp,,,
though this does not hold strictly, most probably due to the different properties of the materi-
als and grids. Nevertheless, two well-separated “levels” can be observed for the six matrices
listed in Table 5.3: very roughly; € [0.2,0.3] corresponds tp,, € [3, 5], andp; € [0.5,0.7]

1pesides the fact, that in [56] also (Gauss-Seidel) smoothing is performed separately for each unknown, i.e. GS
is applied to thed,, ,,;, whereas we use UGS smoothing.
15for a stand-alone AMG variant. Acceleration is discussed below.
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to p, € [6,10] here. Itis subject to further investigations whether such “level formation” can
also be found in more general situations.

preconditioner bd it ARF c4 c¢cp time Mot Cprec  SP-
ILU(0)-UAMG(std) 17 025 23 00 1.53 1944 238 18
ILU(0)-UAMG(std) Xx 23 03 16 00 153 1482 179 18
ILU(0)-PAMG(ns,std,t,P) 20 028 18 21 150 1995 245 18
ILU(0)-UAMG(agg) 32 048 12 00 159 1133 134 17
ILU(0)-UAMG(agg) x 32 048 11 00 141 1049 123 19
ILU(0)-PAMG(ns,agg,t,P) 33 048 12 13 163 1495 181 1.7
GS-UAMG(std) 21 032 23 00 225 1186 150 1.2
GS-UAMG(std) x 27 039 16 00 225 886 111 1.2
GS-PAMG(ns,std,t,P) 24 034 18 21 194 1355 154 14
GS-UAMG(agg) 42 058 1.2 00 228 6.73 0.77 1.2
GS-UAMG(agg) Xx 46 058 11 00 234 6.30 068 1.2
GS-PAMG(ns,agg,t,P) 45 059 12 13 231 1039 118 1.2

Table 5.5: Results for the DEPO4 example. Accelerator always BiCGstab. bd: block-
diagonal Galerkin, it.: number of BiCGstab-cycles, time: wall-clock time [sec),; m
[MBytes]: total memory needed, sp.: speed-up compared with fastest one-level solver.

For the larger matrices, namely DEPO2-4, stand-alone AMG variants stall or diverge
after a few iterations. Eigenvalue distributions for the iteration matrices of GS-UAMG(std)
and ILU(0)-UAMG(std) applied to the SILO2 matrix (see Figs. 4.7 (a) and (b), respectively),
show that only a few eigenvalues are between 0.25 and 0.57 (UGS smoothing) or are even
larger than 1 (ILU smoothing), preventing AMG stand-alone from being more efficient. We
can assume a “similar picture” also for the other matrices. Hence, acceléfaydBiCGstab
or GMRes should considerably enhance the convergence. Indeed, this is always the case
as can exemplarily be seen for DEPO4 in Table 5.5 where results for the different AMG
variants mentioned above, accelerated by BiCGétatve collected: each of the accelerated
approaches shows a reasonable ARF whereas stand-alone GS-UAMG(std) stalls after a few
iterations.

As expected, UAMG- and PAMG-preconditioned BiCGstab yield similar convergence
rates here, but due to the facts that PAMG's setup phase is more expensive and PAMG needs
more memory, UAMG is the more efficient preconditioner. In all cases, approaches with
standard coarsening yield a smaller, better ARF but are not faster than the corresponding
variants with aggressive coarsening which are clearly preferable overall. Whereas ILU(0)-
UAMG diverges (see Fig. 4.7(b)), ILU(O) smoothing helps improving pheconditioning
properties considerably so that its use also pays in total computational time here. However,
the memory requirements are of course higher as for the GS variants. The qualitative results
for the other five examples are basically the same. Aninteresting result is that the block-AMG
variants are more efficient than the corresponding full-AMG variants, confirming Remark 5.4.

18Note that the matrices are asymmetric due to the boundary conditions.

17For the matrices considered, BiCGstab has turned out to be a more efficient accelerator for AMG than
GMResk).
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Remark 5.5 For all six test cases, it has turned out that PAMG variants with B-, MU- or
SU-interpolation, a norm-based or distance-baBembnverge with very similar ARFs here.
This indicates that, for “real-life” grids, PAMG approaches even with block-interpolation do
not tackle the rotational rigid body modes better than UAMG (as sometimes hoped in the

literature). A
one-level solver it. ARF time  Mat Mot
ILUT(3;0.005)-BiCGstab > 500 (stag)

ILUT(9;0.005)-BiCGstab 135 0.84 2.7 3.9 101

ILUT(9;0.005)-GMRes(4) >500 098 >53 39 107
ILUT(9;0.005)-GMRes(20) >500 0.96 >59 39 16.1

Table 5.6: Results for the DEPO4 example. Fastest one-level solver (ILUT(9;0.005)-
BiCGstab) and best GMRes-solvers. it.: number of cycles, time: wall-clock time [sec],
Muat: Memory [MBytes] needed for original matrix, my: total memory needed. “stag”
means stagnation of the approach. Note that the overall speed depends only very slightly on
Tdroptol NETE.

5.2.1.5 Comparison with One-Level Solvers

Among the iterative one-level methods implemented in SAMG, ILUT(9;5e-3)-preconditioned
BiCGstab has turned out to be the fastest one-level solver. Corresponding results for the
DEPO4 example are shown in Table 5.6. Hence, our yardstick for comparisons with UAMG-
BiCGstab approaches is ILUT(9;5e-3)-BiCGstab.

Figs. 5.4 and 5.5 show comparisons of the fastest AMG approach, ILU(0)-UAMG(std),
with the best one-level solver, ILUT(9;5e-3)-BiCGstab. In addition, the performance of GS-
UAMG(std) is shown. The results clearly demonstrate that UAMG-BiCGstab reduces both
residuals and errors quickly and much more stable than ILUT(9;5e-3)-BiCGstab. Whereas
the classical iterative solvers become inefficient or even stagnating with increasing problem
size, in case of AMG-preconditioned BiCGstab and also GMRes(20) the ARFs are bounded
from above by a constant substantially smaller than 1, and the computing times are (nearly)
proportional to the number of variables. Therefore, they are efficient preconditioners and
exhibit a nearly optimal behavior here. Even for DEPO4, the largest matrix in the set, but in
absolute terms rather small, already a speedup of nearly 2 has been achieved in comparison
with classical one-level solvers. It can be expected that the speedup considerably grows with
increasing problem size.

5.2.2 Reaction-Diffusion Processes

Reaction-diffusion processéplay a key role in layer modification steps such as oxidation,
nitridation, silicidation, ion implantation and the like (cf. Fig. 5.1), and in thermal annealing

Bmore precisely, drift-diffusion-reaction processes.
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Figure 5.4: Reduction of (a) residuals and (b) errors for DEPOA4.

steps following the aforementioned steps. We restrict the subsequent discussions to thermal
annealing steps which do alter the constitution but do not alter the shape of the layers.

According to [37, 36], the present understanding of reaction-diffusion processes of do-
pants and point defects in silicon is as follows. The interaction of substitutional dépants
and silicon point defect8is believed to be the elementary physical process that causes dopant
redistribution. Dopants on lattice sites and silicon interstitials or vacancies react with each
other. The created dopant-point defect pairs are assumed to diffuse, resulting in dopant re-
distribution. A large number of ionization and other chemical reactions is assumed to occur
at the same time, involving both dopants and point defects. Usually, the electrical processes
(charge transport and generation and ionization reactions) are assumed to be very fast in com-
parison with the chemical reactions and dopant transport phenomena so that equilibrium for
the electronic reactions is assumed for process simulation runs.

The task of reaction-diffusion simulations is then to determine the concentration of each
relevant species as a function of space, time and outer process conditions. The most important
species which have to be treated are substitutional and interstitial impurities, intrinsic silicon
point defects (interstitials and vacancies) in various charge states, impurity-point defect pairs
in various charge states and immobile configurations of dopants and point defects.

19popantsare species (atoms, ions, clusters) different from the basic wafer material (e.g. silicon). Examples are
atoms of the third or fifth group of the periodic table as boron or phosphorus, respectively.
20silicon point defectsare interstitial silicon atoms or vacancies in the silicon crystal lattice.
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Figure 5.5: (a) Average residual reduction rates and (b) computing times for the 6 examples
and 4 different solvers.

5.2.2.1 System of Reaction-Diffusion Equations

A system of reaction-diffusion equations consists of a sequence of balance equations of the
form (see [37, 36])
oC;
ot

where theJ; denote (diffusion and field driven) fluxes given by

+V-J;=R; (i=1,...,N) (5.9)

q
J; <vc +5.7C w) (5.10)

q denotes the elementary chardeg; the Boltzmann constant, the absolute temperature,

1 the electrostatic potential, amd the number of species with a magnitude of about 30 to
40 typically. For thei-th species(; denotes the concentratioR; = R;(C1,...,Cx) the
reaction term, and; the diffusivity. The reaction termg; are polynomials irCy,...,Cx

where the powers of th€; are determined by stoichiometry, and the coefficients correspond
to the reaction rates. The latter are constants dependirig amd considered as known in

the scope of the “direct problem” which is posed here. Note, however, that most of them are
subject to “inverse problems”, that is parameter extraction problems.



168 Chapter 5 Industrial Applications

>

Sio,

Silicon &
Dopands

(a) (b)
Figure 5.6: (a) Layout and (b) grid of a 3D test example v#ity, on top of the wafer.

After inserting (5.10) into (5.9) for each the PDE system consists of equations.
By employing some equilibrium assumptions, a reduction to a system of typically 3 to 6
equations of a form similar to (5.9) can be performed (see [37]). To be more specific, the
substitutions can be performed so that we end up with a systein BDESs each of which of
the form

op; < =
i (Z Qikwk> =R, (i=1,...,n,) . (5.11)
k=1
Theu,,...,u,, serve as unknowns of the reduced system. Among typical examples are the

total concentration of interstitialdy,, the total concentration of vacanciés,;, and con-
centrations of impurity dopants such as arsenic, boron or phosphByusd R; are poly-
nomials inuq, ..., u,,, the Q;; rational expressions in these unknowns. Initial conditions

for the system (5.11) are obtained from an initial distribution of dopants which is obtained
as output from a simulation of the previous process step. For the poténtal additional
Poisson equation can be solved, which could be coupled to the above system. We have only
investigated the typical, uncoupled case.

5.2.2.2 Discretization

In common process simulators, such as DIOS being part of the GENESISe suite [39], the
discretization of the time-dependent, nonlinear PDE system to be solved is performed as
follows. An implicit approach is chosen for the time discretization. The spatial discretization
is performed by the so-called “box method”on Delaunay grids (cf. [36] and Section 5.3.1.5),
and the resulting nonlinear system is linearized by a modified Newton(-Raphson) method.
ILU-preconditioned BiCGstab or GMRes are commonly used as solvers for the resulting
linear systems. More precisely, modified ILUT or ILU(0) preconditioners are employed.
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Since for each time step a nonlinear system and for each nonlinear system a series of
linear systems has to be solved, we end up with a large series of linear systems to be solved in
each reaction-diffusion simulation. Normally, the smaller the time step, the better converges
the Newton iteration and the smaller the condition numbers of the corresponding matrices.
In DIOS, a run-time evaluation of the necessary number of linear and nonlinear iterations is
used for adaptation of the time step.

5.2.2.3 Exemplary Test Case

For the tests, the SAMG library has been integrated into DIOS. The performance of SAMG
has then been investigated for the simulation of an annealing step after an ion implantation
step for the 3D model shown in Fig. 5.6. The model consists of a silicon layer with a small
silicon oxide layer on top and an inert gasedusphase as ambient. Therefore, no additional
materiaf® can enter the layer system. In the annealing process, only the already available
silicon point defects and the implanted dopants arsenic and boron react with each other. In
the concrete simulation considered, the temperature, starting fronC7B0ncreased in each

time step and reaches 925 finally.

The physical unknowns to be determined by the simulation are the total concentrations
of interstitials (;,:), vacancies(;,;), and the dopants arsenid{;,;) and boron B;,;). The
Delaunay grids used for the simulation contain approximately 181 500 tetrahedra, 38 500
pyramids (with a base of four sides), 2 500 bricks apd61 319 points. The arising matrices
haven,=245276 rows and 4 € [7028004, 7046 780] nonzero matrix entries.

5.2.2.4 Reaction Front and Matrix Properties

Of particular interest are the concentration profiles in and nearetietion front a narrow
region, moving from the “implantation surface” of the wafer towards the interior, where fast
reactions occur due to large concentration gradients (see [61] for example). Hence, for each
unknownu,,, there exists a subdomain with strong variations in space and time, whereas on
the complementary subdomain only small changes are observed. Although these “subdo-
mains of strong variations” do not coincide for the individual functions, they all lie inside one
narrow reaction front for all applications we have in mind here. For our example (see Fig
5.6), the “implantation surface” is the part on top of the silicon layer which is not covered
by the oxide layer. From this surface, the reaction front is moving downwards, in normal
direction to the surface, and is more and more spreading out sideways under the oxide layer.

The large concentration gradients inside the reaction front are reflected on matrix level
in the magnitude of off-diagonal entries: inside the reaction front, the reaction terms cause
very large positive or negative off-diagonal entries in the corresponding rows of the matrices
A. Hence, even for reasonable time steps, the matrices become ill-conditioned, leading to
serious problems for the standard, one-level iterative solvers used in process simulators. It
can be observed that these solvers become less efficient or even stagnate in an unpredictable
way. The difficulties often increase during later time steps of a simulation. For our exemplary
test case, this is demonstrated in Section 5.2.2.6.

2Yor instance, oxygen, if present, would enlarge the silicon oxide layer.
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The individual PDEs (5.11) in the stationary case are “harmless” diffusion equéations
the total absence of the reaction frofdutside the reaction front, the concentrations change
only slowly so that a relatively “harmless” diffusion-dominated system remains to be solved.
The reaction terms, however, destroy the dominance of the diffusion terms locally inside the
reaction front due to the large concentration gradients. As a res$wnd their submatri-
ces Ay, ,, are far from being M-matrices and, hence, VAMG or a straightforward UAMG
approach do not make sense here.

5.2.2.5 Efficient AMG Approaches

Numerical experiments have shown that, by introducing a very simple modification of AMG's
coarsening process, one can make UAMG often work again. The only problem for UAMG is
the narrow reaction front corresponding to just a small amount of matrix rows compared with
n,. Therefore, it is tempting to simply not coarsen at all inside this front. To demonstrate
this, we have forced all those variablesto stay in the coarse levels, whose corresponding
rows strongly violate diagonal dominance,

Z lai;| > oviolaii| - (5.12)
J#i

Depending on the threshold parametgf, > 1, the resulting UAMG approach, employed as

a preconditioner, often converges quite reasonably. However, the chai¢g &f crucial and
matrix-dependent, and the above criterion is not always suitable for reliably distinguishing
the reaction-dominant from the slow-diffusion part. This is because violation of diagonal
dominance can also be due to the Laplacian-type unknown cross-couplings which are also
contained in the matrix. Numerical tests reported in the next section will confirm that this
modified UAMG approach is not robust enough for a use in practice.

The reaction-diffusion matrices considered here and the RD models discussed in the pre-
ceding chapters (see Sections 3.1.3.2, 3.4.1.2 and 4.6 and Examples 3.4 and 3.11) have some
important properties in common. Similarly as for the RD models, the fact that the dominance
of diffusion is “only disturbed” due to reaction terms can be exploited in order to define
efficient PAMG approaches. As can be seen in Fig. 5.7(a), the underlying grids are adap-
tively refined in the reaction front. Since, for the problem considered, anisotropies are due
to non-uniform grid spacings only, a primary matrix based on distances yields an appropriate
coarsening for the underlying diffusion problem, as has been discussed in Section 3.4.2.4.
Fig. 5.7(b) depicts a typical coarse level created by distance-based coarsening.

It is promising now to use an accelerated PAMG approach in order to address all distur-
bances caused by the reaction terms. Similarly as for the RD models, BGS (or ILU) smooth-
ing helps to handle the large unknown cross-couplings. However, an important difference to
the RD models is that these couplings also occur outsidd thg). As has heuristically been
explained in 3.11, a distance-based primary matrix together with an MU-interpolation with
weights also based on distances makes PAMG an efficient preconditioner here. Numerical re-
sults, presented in Section 5.2.2.6, show that the proposed method treats the “pure” diffusion
outside the reaction front as well as the fast reactions inside properly.
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Figure 5.7: (a) Part of a 2D cross section of the 3D grid of Fig. 5.6 which is adaptively refined
near an edge of the interface oxide/wafer. Apparently missing edges are due to the fact that
3D elements have been cut. (b) Finest and, depicted by filled black boxes, the next coarser
level for the grid on the left.

Since, particularly due to the Newton process, series of similar matrices have to be solved,
it is feasible to reuse parts of SAMG'’s settf Therefore, a control mechanism has been
integrated into the DIOS-SAMG interface. It performs a full setup at the beginning of a new
Newton process. For the following matrices belonging to the same nonlinear problem, the
level hierarchy is reused, and only the Galerkin operators are calculated from scratch. The
control mechanism also checks if convergence problems arise. However, for the simulation
run with the test case described above, no problems occur. Numerical results illustrating the
effectiveness of the proposed overall approach are discussed in the next Section 5.2.2.6. Let's
make a remark first.

Remark 5.6 It should be mentioned that in the past also geometric multigrid methods have
been developed for certain problems involving diffusion processes. For instance, nonlinear
geometric multigrid methods (FAS) with adaptive multilevel grid selection strategies for cer-
tain diffusion-oxidation evolution processes are the topic of [41]. Since the extension of such
geometric multigrid techniques to the descrilbedctiondiffusion problems omnstructured

grids is not straightforward, if feasible at all, they are not discussed here. A

5.2.2.6 Numerical Results

We now demonstrate for the test case described in Section 5.2.2.3 that SAMG outperforms
standard iterative preconditioners with respect to both stability of the convergence as well as

22Thjs belongs to SAMG's features, see Section 4.1.1.
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computing time. For this purpose, we investigate the performance for both the solution of
single matrices and the whole DIOS simulation run.

Efficiency of AMG for Individual Matrices  We start with investigations for individual
matrices. They have been extracted from the simulation run performed with DIOS’ standard
iterative solver, an ILU(T)-GMRes method with certain parameter adaptations dynamically
reacting on the solver performance during the run. DIOS usi&s-4 as a default. Results

are discussed in detail now for two matrices:

e A.q1 denotes the first matrix arising in the Newton process for time).004 (752.4C).
e A.qo denotes the last matrix of the Newton process for tiree0.058 (785.0°C).
Whereas the DIOS solver needs 24 iterations4gy; to reache=1e-4, it needs 104 fofl 4.

Remark 5.7 It does not make sense to choose matrices from late time sg#pse the con-
crete linear solver chosen has a large impact on all matrices evolving in the current Newton
process and also all Newton processes for subsequent time steps. A

preconditioner Cq cp CA  Cprec Mot Cot time
ILU(0)-UAMG(agg) 1.21 0 144 158 28363 326 217
ILU(0)-UAMG(std) 1.61 0 3.07 318 55766 6.42 381
UGS-UAMG(agg) 1.21 0 144 090 163.77 1.88 (stag)
UGS-UAMG(std) 1.61 0 3.07 222 38439 4.42 108.8
ILU(0)-PAMGgrp(agg) 1.36 1.69 1.68 1.93 34549 3.97 228
ILU(0)-PAMGgp(std) 1.86 3.13 3.23 3.63 638.72 7.35 39.2
BGS-PAMGrp(agg) 136 169 168 1.18 20458 235 31.0
BGS-PAMGzp(std) 1.86 3.13 3.23 240 41447 477 440
ILU(0) 1 0 1 1 18498 210 31.1

Table 5.7:Complexities and timings for thd, 4> example.o.i,=1.2 for UAMG. Accelerator always
BiCGstab. m.: = overall memory requirements [MBytes] including me#) = memory needed for
finest-level matrix = 86.93 MByteg;.: = Myot/men(A), time = wall-clock time for whole run. “stag”
means stagnation of the approach. In particular for comparing timings, see explanations in the text!

Corresponding to a general experience, also here the AMG approaches achieve their best
performance in terms of computational time when used as preconditioners. It has turned out
that the performance of both BiCGstab and GMRes(20) is comparable here. This is also
true when used with ILU(0) or ILUT preconditioning. However, since BiCGstab needs less
memory, this accelerator is more efficient and is thus chosen for the following tests.
Regarding PAMG variants, approaches with a norm-baexhd scaling of interpola-
tion (see Section 4.3.1.5) work sometimes, but they are less stable than approaches with a
distance-base®. Whereas approaches with a block-interpolation often diverge here, and
approaches with an SU-interpolation show an inconsistent behavior, MU-interpolation with
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Figure 5.8: (a) Dependence of UAMG’s and PAMG'’s convergence behaviet;grfor the
A.q1 example. (b) Error histories of several solvers for thg, example. BiCGstab with 1:
ILU(0)-PAMGgrp(agg), 3: BGS-PAMGp(agg), 5: ILU(0), 6: ILUT(3), 7: ILUT(5).

weights based on distances has been found to be rébd&terefore, among the point-based
approaches, PAMG(distMU,dist) is the most robust solver and preconditioner. In the fol-
lowing, we refer to this approach #AMGrp(-). Both ILU(0) and BGS yield efficient
smoothers for this approach. ILU(0), however, needs much more memory. As can be seen in
Table 5.7 for matrixA, 2, aggressive coarsening considerably reduces memory requirements
and often also the overall computing time compared to the respective variant with standard
coarsening.

Exemplarily for matrixA,q1, convergence rates of UAMG(std) and PAM® as func-
tions of oy, (5.12) are depicted in Fig. 5.8(a). Obviously, the choicegf is very crucial
for UAMG. Whereas PAMGp’s performance is stable for afl,;, even without BiCGstab,
UAMG in the stand-alone version converges only in a small intervall. BiCGstab is able to
improve UAMG's convergence, however, the convergence quickly deteriorates with increas-
ing ovio. Unfortunately, with decreasing,;,, the complexity* and thus the computing time
suffers considerably. Qualitatively the same trends are obtained with ILU(0)-smoothing.

23In contrast to this, an interpolation with coordinates-based weights does not help impdMing’s perfor-
mance.
24For very smallr;, too many variables are forced inta
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Figure 5.9: (a) Residual and (b) error histories for thg, example. Preconditioners 1,3,5
as in Fig. 5.8(b), 2: ILU(0)-PAMGp(std), 4: BGS-PAMG(std).

UAMG(-BiCGstab)’'s performance strongly depends on bethh and the concrete ma-
trix. For instance, whereas the optirftab,;, for A,q; is 1.5, itis 1.2 forA,q». Moreover,
for A.q4o for instance, UGS-UAMG(std)-BiCGstab is slow and UGS-UAMG(agg)-BiCGstab
even stagnates for this matrix (see Table 5.7). In contrast to this, RAVEBCGstab with
both BGS and ILU(0) shows qualitatively the same stable behavior for all matrices tested.
Regarding computing times, ILU(0)-UAMG-BiICGstab for the optimal, is a bit faster
than ILU(0)-PAMGzp-BiCGstab for the two matriced,q; and A.q» (see Table 5.7). How-
ever, for only nearly-optimat.;,, the speed of ILU(0)-UAMG-BiCGstab considerably de-
teriorates due to either a higher complexity or a worse convergence so that gkl
proaches outperform UAMG then. In particular, PAM& BiCGstab with aggressive coars-
ening and BGS-smoothing leads to a cheap and quite fast variant, whereas the same approact
but with ILU(0) smoothing needs more memory but needs considerably less overall comput-
ing time.

Comparison with One-Level Solvers In the following, we present a comparison of the
four PAMGrp-BiCGstab variants mentioned above with classical one-level solvers. For
all matrices tested, the performance of the PAMEBICGstab variants and of ILU(0)-

25in terms of the convergence of the stand-alone ILU(0)-UAMG(std) approach.
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Figure 5.10: Comparison of ARFs: (a) DIOS’ standard solver and SAMG, (b) SAMG only.
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BiCGstab essentially lies in the “range” defined by Figs. 5.8(b) and 5.9. That is, the results
for the other matrices tested correspond to 5.8(b) or 5.9 or lie somewhere in between. It
can be seen that all PAM{,-BiCGstab variants tested here converge much faster than the
ILU(T)-preconditioned onés.

Fig. 5.9 indicate¥ a typical behavior: It is a general observation that ILU(0)-BiCGstab
does typically not reduce errors and residuals simultaneously. The error reduction is behind,
in particular if only a residual reduction efle-4, say, is demanded, which is the default in
DIOS. In contrast to this, PAMgn-BiCGstab reduces residuals and errors nearly “simulta-
neously”.

Complexities, total memory requirements and total timings for different AMG approaches
and ILU(O) are shown in Table 5.7. The PAMG-BiCGstab variants with aggressive coars-
ening show reasonable complexities. In particular, we hgye < 2 here, that is, both
variants need only less than twice more memory than ILE{OBoth variants are faster than
or as fast as ILU(0)-BiCGstab. Note that here the time required to regsaualsis mea-

26|LUT-BiCGstab does not always converge. Interestingly, if it converges, the larger thddgvef fill-in, the
worse the convergence of ILUTK(;)-BiCGstab - at least for small fill-ins. ILU(0) has turned out to be both the best
one-level preconditioner as well as the best smoother for PAM@ terms of convergence rates.

2Teven if Fig. 5.9 is still rather advantageous for ILU(0)-BiCGstab here. For matrices arising at later time steps
we can expect ILU(0)-BiCGstab to perform worse, see also Fig. 5.10.

28Recall from Table 4.1 that,rec < 2 has also been obtained for our model problems.
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Figure 5.11: Total wall-clock computing time before computations for the current simulation
time step have startagersussimulation time step for the 3D reaction-diffusion example.

solver SAMG DIOS
number of time step reductions 0 5
number of nonlinear solvey,, 23 41
number of linear solved/;, 170 239
ratio Nis /N, 7.39 5.83
number of new matrix structures 25 37
total computing time [sec] 9242.1 18907.4
ratio of computing times 1 2.05

Table 5.8: Results of a DIOS simulation run for the 3D reaction-diffusion example. Shown
are performance data of the SAMG solver chosen, BGS-PAM@gQg)-BiCGstab, and the
standard iterative DIOS solver, respectively.

sured. However, as mentioned above, DIOS stops a linear solve step if the residual is reduced
by e=1e-4. As can be seen in Fig. 5.9 fdr4,, ILU(0)-BiCGstab has then reduced the error

by approximately 5e-2 only, whereas the PAMN63BiCGstab variants have reduced the er-

ror by approximately 5e-4. Therefore, even if ILU(0)-BiCGstab is seemingly not slower than
BGS-PAMGrp(agg)-BiCGstab and needs a bit less memory, BGS-PANMI@gg)-BiCGstab

is more favorable due to the much betégror reduction. In summary, the PAM¢ (agg)-
BiCGstab approaches are clearly the favorable choices here. BGS-RA(@Gy)-BiCGstab

is a good compromise of error reduction, speed and memory requirements.

Results of the Full DIOS Simulation Run The behavior described for single matrices is
typical for a whole simulation: PAMgp-BiCGstab yields stable and superior convergence
rates for residualanderrors in all Newton iterations faachtime step. The PAMGp(agg)-
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BiCGstab variants are fast@rmore robust, and thus considerably more efficient than ILU(0)-
or ILUT-preconditioned one-level solvers. This is true even if only the slower, but less
memory-consuming of both favorable PAMG(agg)-BiCGstab approaches is chosen, name-
ly the one with BGS smoothing. This is shown for the full DIOS simulation run now.

In Table 5.8 and Figs. 5.10 and 5.11, the performance of DIOS’s original run is com-
pared with a run where BGS-PAMG (agg)-BiCGstab has been chosen as the linear solver
for all matrices. The following conclusions can be drawn. Whereas in the original DIOS
run 5 time-step rejections occur, each of which with a complete remeshing step, this does
not happen when SAMG is chosen. Due to this and its generally better error-reduction prop-
erties, SAMG reduces the number of nonlinear iterations considerably. Since the average
number of linear solves necessary per nonlinear step is just a bit higher for SAMG than for
the DIOS solver, the total number of linear solves necessary is substantially reduced when
using SAMG. Also the number of new matrix structures which have to be set up by DIOS is
reduced. Altogether, these results demonstrate clearly that SAMG stabilizes the whole sim-
ulation. Whereas the performance of the DIOS solver substantially degrades in later steps of
the simulation, SAMG’s performance improves. As a consequence, SAMG clearly outper-
forms the DIOS solver in the second half of the simulation run, as can be seen, in particular,
in Fig. 5.11. In total, SAMG performs the full simulation more than twice as fast as the DIOS
solver.

5.3 Device Simulation

Semiconductor device simulation aims at the computation of the electrodynamic behavior
of a self-contained semiconductor device under various operating conditions. These can be,
for example, different voltages applied to contacts of the device. The results of a device
simulation are time- and spatially dependent functions as well as net quantities. The former
are the electrostatic potential, the concentration of electrons and holes (and, depending on
these three functions, the electron and hole current densities), and - if not assumed to be an
input to the simulator - the device temperature distribution. The latter are typaaignt-
voltage characteristic§lV-characteristicg®).

There exists an extended hierarchy of semiconductor models, ranging from quasi-hydro-
dynamic to kinetic and classical to quantum models. In [43] in form of a survey and in [55]
in more detail, a hierarchy of the most important models is presented and discussed. On
the highest level in this hierarchy are the kinetic models, i.e. the semi-classical semicon-
ductor Boltzmann equation and the quantum Boltzmann equation. The numerical simulation
of Boltzmann systems has been carried out by Monte-Carlo or deterministic particle meth-
ods. Since they are very expensive, simpler fluid dynamical models have been derived, one of
them being the hydrodynamic equations. The quasi-hydrodynamic models range from (quan-
tum) hydrodynamic and Schroedinger-Poisson over (quantum) energy-transport to (quantum)
drift-diffusion models, which is the lowest level considered here.

The simplest quasi-hydrodynamic model is the standard drift-diffusion system. Com-
pared with higher dimensional, more involved models, it provides less accurate local poten-

2%f not only the residual reduction but also the error reduction is taken into account, as explained above.
30see Section 5.3.2.4 for an example.
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tials and concentrations, but often predicts (current densities and) net quantities similarly re-
liably with much less computational effort. Although the local potentials and concentrations
would give a more detailed insight into the functioning of the device considered, engineers
are typically interested in current densities and global IV-charactefkticsthe engineering
environment, the quite complex energy-transport equations are used mainly to compute data
for model parameters in the drift-diffusion equations, whereas the simpler, “cheaper” drift-
diffusion systems are commonly used to determine current densities and IV-characteristics.

It should be pointed out that, with increasing miniaturization of the devices and the use of
novel device structures and other materials instead of silicon, drift-diffusion models reach the
limit of their validity. However, since the microscopic effects not described by them occur
only locally, in some small parts of the device, it might be feasible to use more sophisticated
models also only locally. An example for such an extended model might be the consideration
of quantum mechanical effects only in the channel of a MOSFET. Therefore, drift-diffusion
systems will remain an important tool for investigating the behavior also of the coming gen-
eration of semiconductor devices.

This part of the thesis is concerned with the efficient application of AMG approaches to
the linear systems arising in the numerical solution of drift-diffusion systems for semicon-
ductor devices. The focus lies entirely etationarysimulations since these are typically
performed in an industrial environment.

In the next section, the standard drift-diffusion model for semiconductor device simu-
lation is described. In Section 5.3.2, we discuss properties and the efficient solution of the
arising matrix equations. In particular, we will show that point-based AMG approaches em-
ploying a norm-based primary matrix can yield preconditioners which are more robust and
often more efficient than the standard one-level preconditioners commonly used in (indus-
trial) device simulation.

5.3.1 The Standard Drift-Diffusion Model

In the following, a description of the transient and the stationary drift-diffusion models for
semiconductor devices, the spatial simulation domain and boundary conditions is given. We
then concentrate on aspects with a large impact on the arising systems of linear equations. In
particular, we discuss - in brief - appropriate scalings and the singular perturbation character
of the system, layer behavior and conditioning. Finally, the commonly used discretization
and linearization techniques are outlined. With the exception of Section 5.3.1.1, we consider
the stationary case.

5.3.1.1 The Transient Basic Semiconductor Equations

The standard drift-diffusion model consists of a set of so-caieslc semiconductor equa-
tions They can be derived, for instance, from Maxwell’s equations, several relations ob-
tained from solid-state physics and some further (rather simplified) assumptions. Details on
their derivation are given in [82, 55], for example. The basic semiconductor equations can be

3lto use the latter as input for circuit simulations, for example.
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written as follows:

-V - (esVY)+qn—p—-C)=0 Poisson(-type) equation, (5.13)
q(%rtl -V -J,+qR(,n,p) =0 electron continuity equation, (5.14)
q% +V-Jp+qR,n,p)=0 hole continuity equation, (5.15)
Jn = —=q(unnV¢ — D, Vn) electron current relation, (5.16)
Jp = —q(uppVy + D, Vp) hole current relation. (5.17)

¥ = 9(z,t) denotes the electrostatic potential, ane: n(z,t) andp = p(z,t) the electron
and hole carrier concentrations, respectivelydenotes the independent spatial variables
(usually three-dimensional), artdhe time. J,, andJ, are the densities of the electron and
hole current, respectively, represents the permittivity. ¢ is the elementary charég and

C = C(z) the net impurity concentratidh R = R(i,n,p) denotes the recombination-
generation termy,,, andy,, the mobilities, and),, andD,, the diffusivities. Often, Einstein’s
relations are assumed to hold:

Dyp=Urpn A Dp=Urp, (5.18)

whereUr = kpT/q is the thermal voltage s the Boltzmann constai® andT the device
temperature, which is often treated as a condtgaee below).

There are various models for the mobilities and the recombination-generation. Mobilities
and diffusivities are always positive. In general, they are functions. Typically, we can assume
n, to vary between 50 and 1500 ériv —! s! and ., between 50 and 500 ¢nV ! s7!
for silicon at room temperature. The most basic recombination-generation process, namely
two-particle transition, is described by the Shockley-Read-Hall term,

2

intr , 519
Tll)(n + nim‘ﬂ") + Trlz (p + nintr) ( )

np—n

Rsgpu =

wheret!, andTZI, denote the electron and hole life-times, respectively, iafd. the intrin-

sic carrier concentratidh Three-particle transition is modeled by Auger recombination-
generatioff,
Ray = (C’,‘?Un + C’;‘Up)(np — n?mr) , (5.20)

323 three-dimensional tensor, but usually assumed to be a scalar constant whose approximate value in silicon is
1.594 - 10710 As V=i m~1,

334 =1.6021892 - 1019 As.

34.e. the doping profileC is defined to be the difference of the concentratiops andpg, of the electron and
the hole carriers, respectively, contained in the device after its fabricatior) = ng,(z) — pap ().

35kp = 1.380662 - 10723 V As K1,

36Assuming an ambient temperatureof= 300 K, we obtainUr = 0.025852 V then.

37For silicon at room temperature’, =1e-6 s,-r[jzle-S s, see [54]. The intrinsic carrier concentration is defined
to be the geometric averaggnopo of the carrier concentrations,, po in a semiconductor in equilibrium ¢, ~
9.65 - 109 cm~3 for silicon at room temperature.

Bwith CAU =2.8e-31 crfis~! andCAY =9.9e-32 crfis~! for silicon at room temperature [54].
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and impact ionization, which is extremely significant at high electric fields, by the impact
ionization (or avalanche) generation rate,

In J,
Ry = —anu — apM (5.21)
q q

with some constants,,, «,. If necessary, the three rates are linearly superimposed, that is
R = Rsry + Ray + R;. Often Ry and quite oftenR 4y are neglected. If onlyRsrg or
Rsru + Ray are considered, we WritB = Rgrp, av-

By inserting equations (5.16) and (5.17) into (5.14) and (5.15), respectively, and multiply-
ing the resulting equations ly ¢ we obtain the following set of partial differential equations
of second order which shall be solved forn andp:

=V (V) +qn—p—-C)=0, (5.22)

Z—z +V - (gpnVo — D,Vn)+ R=0, (5.23)
)

ait’ — V- (uppV + D,Vp) + R=0. (5.24)

If thermal effects (for instance, thermal breakdown phenomena) are to be investigated, the
device temperatur& (see (5.18)) cannot be assumed to be a known input to the device
simulator any longer, but has to be computed. For this purpose, the above system is extended

by a heat flow equation:
pc%—:: —H-V-k(T)-VT =0 (5.25)
wherep is the specific mass densitythe specific heat of the materidl the thermal gen-
eration (depending ot,, and.J,,), andk(T") the thermal conductivity (usually modeled as a
rational function ofl"). However, since in most device simulations the device temperature is
assumed to be knowfl'(= 300 K), we will restrict ourselves to the system (5.22)-(5.24).

A detailed description of all physical models and parameters mentioned can be found
in [82, 54, 55] where also mathematical analyses of the models are carried out, and some
results on existence and (non-)uniqueness of solutions are given. We want to note here that
(local) uniqueness of the solution of the drift-diffusion system (5.22)-(5.24) can be proved
if pn,p > 0andR = Rgru, av, that is if avalanche phenomena are excluded, and if
the potentials applied to the device are sufficiently small. However, there are physically
relevant cases where the solution is not unique, a prominent example being the snap-back
phenomenon (hysteresis) in thyristor technology.

5.3.1.2 The Stationary Basic Semiconductor Equations

In general;y), n andp are functions of position: andtime t. Since the mobilities and dif-
fusivities are positive, each of the three equations (5.22)-(5.24) is parabolic (under natural
conditions ony, n, p and R). However, if all potentials which are externally applied to the
device contacts are time-independent, that is if the boundary conditions(&&e also Sec-

tion 5.3.1.3) are time-independent, the problem is reduced to the following set of stationary
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basic semiconductor equations

=V (esVY) +q(n—p—C) =0, (5.26)
V- (unnVtp — D, Vn)+ R=10, (5.27)
V- (—pppVy) — D,Vp) + R=0. (5.28)

Each individual equation is elliptic now (under natural conditiongon, p andR). In [54],
a detailed analysis of the system (5.26)-(5.28) is performed.

Simulations of the stationary case are carried out to investigate steady states of devices
sufficiently long after switching processeSince these are the typically performed simula-
tions in industry, we concentrate only on them in the following.

5.3.1.3 Simulation Domain and Boundary Conditions

The simulation domai2 ¢ IR?, which is normally three-dimensional & 3) and only in

simple cases two-dimensional & 2), consists of two parts), and(,. 2, represents the
union of all material layers where the above-described coupled system of stationary semicon-
ductor equations shall be solved. This is typically the case in the semiconductor layers, in
particular the wafer (often a doped silicon substrafe)is defined as the union of layers for
which itis assumed that (nearly) no charge carrier currents can occur. In particular, insulating
layers belong td2,. In 2, the above system degenerates to Laplace’s equation,

—V (V) =0, (5.29)

wheree, represents the permittivity of the corresponding material layers. In case of a MOS-
FET, Q, represents the gate oxide. Here, the interface betwkeand (), is the semi-
conductor/oxide-interface. The simplified sketch in Figure 5.2(a) depicts different domains,
interfaces and boundaries of an n-MOSFET. Some explanations follow.

An n-domain (or n-region) is defined as a subdomainthfin which C(z) > 0 holds.
Analogously, g>-domain (or p-region) is defined as a subdomain in whi¢f) < 0 holds.

The interface between an n- and an adjacent p-domain is gailfhction. The junction is
called abrupt ifC exhibits a jump across the interface.

The n- and p-domains determine the electrical behavior of the device to a large extent
since they form local diodes at the pn-junctions. For instance in case of an n-MOSFET, a
p-domain is located between two n-domains as shown in Fig. 5.2(a). Hence, two diodes (or a
triode “NPN”) are formed in such a way that a current cannot flow from one n-domain to the
other. However, under appropriate conditions on the bias applied to the contacts of the device,
a new n-domain connecting the two other n-domains is formed inside the p-domain. This n-
domain is called @hannel since it allows electrons to move from one (original) n-domain
to the other. Basically, by means of the bias applied to gate/bulk, the “height” (measured
perpendicular to the, /Q,-interface) of the channel is determined.

The boundary of2 can be split into two disjoint part&2 = 99, U 99,. 99, represents
those parts 0b<) which correspond to real “physical” boundary segments, that is interfaces
with insulating material and contact®s2, consists of artificial boundary segments, which
are introduced, for example, to reduce the simulation domain by cutting off the “bottom” part
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of the bulk as much as possible - the wafer is rather thick -, and to obtain a “self-contained”
device, that is to separate it from adjacent devices if it is is embedded in an integrated circuit,
for instance.

Different types of boundary and interface conditions are prescribed on different parts of
o) and the interfaces betweél, and(,. Details can be found in [82], for instance. We
want to mention only the conditions usually employed:

¢ Dirichlet conditions are defined on the partsa§?, corresponding to purely voltage-
controlled Ohmic contacts (for example, the source and drain contacts of a transistor).

e For voltage-driven Schottky contagtsa highly simplified model is often used, result-
ing in a Dirichlet condition for) and Neumann boundary conditions f@f and .J,,
which can be transformed into mixed boundary conditionsrf@nd p, or Dirichlet
conditions forn andp, too.

e On artificial and insulating boundaries, homogeneous Neumann boundary conditions
for ¢, J,, and.J, are usually prescribed.

e On the interfaces betweél, and(?,, (homogeneous) Neumann conditions fgrand
Jp and a Neumann condition fegy — ¢, are assumed.

5.3.1.4 Scaling, Layer Behavior and Conditioning

Sincey, n andp are very different in magnitude and show a strongly different behavior, these
three physical functions as well as the three equations should be scaled appropriately to allow
for a structural analysis and an efficient numerical solution. Different scalings have been
described in the literature and are used in simulation packages. One standard set of scaling
factors was introduced by DeMari [20]. The factors are summarized in Table 5.9. The scaled
system reads

—AYp+(n—p—-C)=0, (5.30)
V- (nnVe — pnVn) + R =0, (5.31)
V- (=pppViyp — ppVp) + R=0. (5.32)

All quantities are scaled hef¥, the equations live on the correspondingly scaled domain
Qscal, and the differential operators are taken with respect to the scaled independent vari-
ables. From a mathematical point of view, this scaling is unsatisfactory because the physical
functions are still very different in magnitude. In spite of this, DeMari-type scalings are
frequently used even today.

A “singular perturbation scaling” (Table 5.9) which has been regarded as being more
appropriate for theoretical and numerical analysis was introduced byévasdt al. and
further investigated by Markowich, Selberherr et al. (see [82, 54] and the references given
therein).

39The metal/semiconductor junction which is used, for example, as the MESFET (metal-semiconductor transistor)
gate is called a Schottky(-barrier) contact. For more details, see [93].
4Obut denoted by the same symbols as before in order to simplify the notation.
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quantity | symbol DeMari factor symbol  SPS factor

¢ wm kBT/q wO k‘BT/q

n,p, C | Cp Nintr Co max{|C(z)],z € Q}

x T eskpT/(q*nintr) | o max{|z —y|,z,y € Q}

D,, D, | Dy, 1cnPs! Dy max{ (D, (z), Dy(z)),z € Q}
Hn,y Hp Dm/wm DO/¢O

R DmCm/xfn DOCO/I’(Q)

t 22, /Dy, a3/ Do

Table 5.9: DeMari scaling factors and “singular perturbation scaling” (SPS) factors.

The scaling factors can be very different in size compared with the DeMari factors. For
example, the scaling factor far, p, C is approximately 10, foR approximately 12 magni-
tudes larger than the corresponding DeMari factors (for a standard situation as described in
[82]). The scaled system now reads

NAYy—(n—p—C)=0, (5.33)
V- (unnVe — pnVn) + R=10 , (5.34)
V- (=pppVip — ppVp) + R=10 (5.35)

with A2 = % denoting the squared scaled minimal normed Debye length of the device
0

which is a very small parameter in practiteThe scaled continuity equations are formally
identical to the ones obtained by DeMari scaling. Of course, howevet, p are scaled by

the “singular perturbation scaling” factors now and again denoted by the same symbols as
before. In Poisson’s equation, the very small factdrappears in front of the second-order
derivatives, the highest ones here. Therefore, this scaling shovssnigpglar perturbation
characterof the system and allows for a more rigorous mathematical analysis via a singular
perturbation approach with? being thesingular perturbation parametern the following,

we summarize important results of this analysis, as performed in [54], for instanizg;esn
behaviorandconditioning We start with statements on the occurrence of ldyers

The “transition” interval within which a solution/(, n or p) is not approximated to order

O()) by the solution of the correspondingduced probleri? is called a (zeroth-ordefyer.
Typically we have\ < 1 and\ =~ ¢ with 62 := ”C—O” Then the solutions of the stationary
device problem (under “moderate injection”, see [82]) exhibit the following features:

e There are thin layer strips at (abrupt) pn-junctions, Schottky contacts and semicon-
ductor/oxide interfaces. Within these layets,n andp and generally the tangential
components of,, and.J, are rapidly varying functions.

4IX2 is smaller tharl0—7:
5 kpTes - 1.4-10723.300-1.6-10-10

max |z — y|?¢2 max |C(z)| "~ 1.62.10-38 max |z — y|? max |C(z)]

42The term “layer” in the context of “layer behavior” is to be distinguished from “material layer”!
43The reduced problem emerges by settha® in the system (5.33)-(5.35) with boundary conditions.
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¢ Outside the junction-, Schottky contact- and semiconductor/oxide-interface-layers, the
solutionsy, n, p, J,, and.J, are moderately varying functions.

e Zeroth-order layers do not occur at Ohmic contacts and insulating boundary segments.

Remark 5.8 It should be pointed out that these features reflect the device physics correctly:
so-called depletion layers occur at pn-junctions and Schottky contacts, and inversion layers
at semiconductor/oxide-interfaces. A

Singular perturbation analysis can also be used to investigattiditioning of the semi-
conductor equations. A physical problemviell-conditioned (ill-conditioned) if small
changes of the data cause small (large) changes of the solutions. The data are here the doping
profile C', the recombination-generation raeand the boundary conditions. The following
statements on the conditioning of the stationary semiconductor equations (including appro-
priate boundary conditions) can be obtained if the system is sufficiently close to thermal
equilibrium:

e Poisson’s equation (5.33) is well-conditioned (with respeaet)oat least for a moder-
ate bias applied, independent of the singular perturbation parametet the doping
profile C.

e Both continuity equations (5.34) and (5.35) are well-conditioned (referringdop,
respectively) independent 6fif every p- and n-domain has an Ohmic contact.

e If an n- or p-domain has no (Ohmic) contact, the continuity equation for the majority
carrier concentration of this region is ill-conditioned. The errors can be amplified by a
factor of the magnitud®(5—*) and, therefore, domains without contacts can produce
great numerical difficulties in computing carrier concentrations. Such domains are
calledfloating regions

Example 5.1 In case of a MOSFET, source and drain (both n- or both p-domains) always
have Ohmic contacts. If the domain in which the channel is foffhads an Ohmic con-

tact, too, the full system can be expected to be well-conditioned (sufficiently close to thermal
equilibrium). However, if the “channel domain” is not contacted, i.e. if it is a floating region,
the continuity equation corresponding to the majority carrier concentration is ill-conditioned.
Such floating channel regions occur, for instance, in devices fabricated by silicon-on-insulator
(SOI) technology (e.g. FINFETSs). Since SOl is one of the standard technologies today, prob-
lematic floating regions occur quite often in device simulation. A

Remark 5.9 Normally, the effect of perturbations on the current densifiesind.J,, is less
dramatic: small perturbations of the data cause only small perturbations of the current den-
sities (at least under “moderate injection”, see [82]), and numerical results for the important
current densities and IV-characteristics can be quite accurate even if the perturbations of the
carrier concentrations are large. A

44This happens in the bulk in case of a “conventional” MOSFET, see Section 5.3.1.3.
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5.3.1.5 Meshing, Discretization and Linearization

While the discretization of the Poisson(-type) equation ((5.26), (5.30) or (5.33), respectively)
is straightforward, the discretization of the continuity equations, which can be characterized
as special diffusion-convection-reaction equations, is crucial for an efficient solution of the
drift-diffusion system. In practice, the whole drift-diffusion system is discretized by the (mid-
perpendicular) Scharfetter-Gummel box method (SG-BM) on boundary Delaunay meshes.
This discretization method is briefly characterized in the following.

A triangulation?7 of a polygonally bounded domaihis aDelaunay triangulation if the
interior of the circumcircle of each eleméfitof the triangulation does not contain mesh ver-
tices. Furthermore, a 2D Delaunay m&sis boundary Delaunay (box-method-conforming
Delaunay if we have, for each boundary edge< /2 wherea is the opposite angle in the
element?” this edge belongs to. The boundary requirements in 3D are formulated in terms of
circumcircles for the boundary edges and faces in an analogous way.

The Delaunay mesh serves apramary mesh from which asecondary(or dual) mesh
of Voronoi boxesis derived. Given a Delaunay mesh with verticgs the Voronoi box
Vi, associated to an;, is bounded by the mid-perpendicular planes associated to each edge
ex; between vertices;, andx;. The aforementioned Delaunay conditions on the mesh and
its boundary then guarantee that the (open domamsjo not overlap and are completely
contained in the domain.

The BM on a Delaunay mesh is nothing else than a finite volume approach (see [74], for
instance). In the 2D case, it can also be interpreted as a disturbed FE method with piecewise
linear trial functions on the primary grid and piecewise constant test functions on the boxes.
In 3D, however, the BM and a standard FE discretization can exhibit drastically different
properties as shown in [47]. The comparison of these discretizations presented there for dif-
fusion simulation on 3D Delaunay meshes strongly advocates the use of the FV discretization
since it is stabl#. As a consequence, the solution does not contain any nonphysical negative
concentrations.

The discretization of the continuity equations needs special care in order to gain stability.
For this purpose, the so-called Scharfetter-Gummel discretization approach [77, 54] has been
developed. Thecharfetter-Gummel box method (SG-BM)can be outlined as follows.

We start with the assumption that, along mesh edges, the mobjlitiesd ., are constant,

and the electrostatic potentialbehaves as a linear function. Approximations/gfand.J,

can then be obtained by solving a one-dimensional boundary value problem. This leads to
an exponentially-fitted scheme for the current relations. The emerging approximations of
the edge current densities are employed to obtain the final discretization of the continuity
equations. For more details on the SG-BM, see [44], for instance. Inside the damairat

is ignoring boundaries and interfaces, the resulting discretized system reads

(Fyp, Fp, F))T =0 (5.36)

45n the following, we only consider triangles or tetrahedrons, respectively. See also Remark 5.10.
46j.e. it fulfills a discrete maximum principle since the matrix corresponding to the BM-discretized stationary
diffusion equation is a Stieltjes matrix, see Theorem 5.1 below.
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(5.37)
(5.38)

(5.39)

whereB denotes the Bernoulli function,

B(0):=1 and, forx #0, B(z):= (5.40)

x €]0;1] forz >0
exp(z) =1 |~ —z+1 forz <0,
7; the set of all element$’ with vertexxy, [(7,) the set of vertice$ of 7;, connected ta;

by an edge}, ; r the sum of the volumes of the partsf which belong to an elemerit
having bothz;, andz; as vertices, ansl; ; 7 the volume of the faced;, ;  which the Voronoi
cellsV;, andV; share. For modifications in order to avoid negatiye r, see Remark 5.13.
The valuesy, i 7, tin:k1. 7 pik, 7 @NA Ry 7 are suitable element-edge approximations of
the corresponding functiors,,, 11, and R, respectively, on the edgg;.

Remark 5.10 In practice, mixed-element meshes are used as simulation meshes. In 2D,
they consist of triangles and rectangles, in 3D, of prisms and pyramids with bases of three or
four sides. If the simulation domaif is split by inner interfaces (see Section 5.3.1.3) into
several domains, the mesh for each of these domains has to be boundary Delaunay. While
the construction of boundary Delaunay meshes can automatically be performed in 2D, it is
problematic in 3D. A

Main advantages of the SG-BM are that the discretization is $taabel that it inherits
the so-calledocal dissipativity a physically important property, of the continuous system
(see [28]) in case of? = Rsru, v, for instance. However, the stability is paid for by a loss
of convergence ordét. No higher-order equivalents of the SG-BM are known.

47formulated for the system (5.26)-(5.28), analogous for (5.30)-(5.32) and (5.33)-(5.35).

“Bsince, linearized, it fulfills a discrete maximum principle, i.e. the M-matrix property, see Theorem 5.1 below.

4SResults in [57], for instance, indicate a convergence order of ally? for a mesh-dependent norm and an
e-dependent constant
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This highly nonlinear discrete system is linearized by a (modified) Newton(-Raphson)
method®. Necessary for the Newton method is the solution of linear systems where the
arising matricesA correspond to Jacobians of the above nonlinear system (5.36). We call
these Jacobian4 drift-diffusion matrices . In the following, we always assume the physical
unknowns of the linear systems to be solved ordered,as= ¢, us := n,us := p. The
principal form of A, corresponding to this ordering, is then shown in Table 5.10. We use the
following abbreviations:

Sk, T
Kokt = nsk,1,T |

Sk1T
A A— . — . thdt)
’ KP,kJ = Hpsk,l,T
xp — ] |

T — x|

Since the discretized and linearized systems inherit the layer behavior and conditioning of the

e} o el

9(g) 9(ny) 9(pr)
B E) B
sy (L # K) 3y U7 K) e (L #K)
(Fy)r >N enur ikiTT >3 Viar >3 Vieur
|z —]
Ty U(T}) Ty U(Ty) Ty U(T})
Sk,1,T

TERLT Tz ]

(Fn)s 22 (K [nkB/(wk_wl) > X {Vk,z,T% DY Vk,z,Taa(Izj:)

T UT) Ty U(Tk) T U(Tk)

+uB (Y1 — r)] + Vk,l,T%} + Ko k1 B(r — d)z)}

Kk, [—Tka/(l/)k — ) —Kpn k1 B(Yx — Y1) Vk,l,T%
—mB' (Y1 — )] + Vk,z,T% +Vk,l,T%
(F)e || &2 |Kpwa[-peB'@i—v) | XX Viarandy | & 2 {Vk,l;T%
Ty (Tx) Ty (T) Ty U(Ti)
—piB' (Yr — )] + Vk,l,T% +Kp k1B — ﬁ)k)}
Kp ki [prB' (W0 — ¥r) Vk,l,T% —Kp 1 B(Yr — 1)
+pB (Y — )] + Vi r oty Vi oy

Table 5.10: Jacobian of the discrete drift-diffusion system (5.36). Replacd&amh R, ; 7.

original equations, we have to expect layer behavior near pn-junctions, Schottky contacts and
semiconductor/oxide interfaces and ill-conditioned continuity equations in floating regions.
As shown in [2], even for simple diode examples which do not face critical regions, the
condition numbers are quite high. Moreover, because of the fact that the original system
(5.26)-(5.28) is usually scaled “only” by DeMari factors, n, p and their discrete analogs

50usually with a damping strategy, see [92], for instance. See also Remark 5.11 for an alternative method.
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are still very different in magnitude. This leads, in particular, to large differences in the
magnitude of the matrix entries. As the diagonal entries can vary several orders of magnitude
among each other, so can the off-diagonal entries, both among each other and compared to
the respective diagonal entries. Due to all these reasons, the arising drift-diffusion matrices
are very ill-conditioned and often nearly singular even if the underlying problem is far from

a possibly-existing bifurcation point. As a consequence, this leads to great difficulties in
solving the matrix equations efficiently.

In commercial device simulators, the sequence of drift-diffusion matrix equations is solved
by iterativé® one-level methods, usually by an ILU- or ILUT-preconditioned CGS or BiCGstab.
More precisely, some modified ILU(0)-approach is used in TAURUS [92] by Synopsys Inc.
However, due to the above-mentioned properties of the matrices, iterative one-level solvers
often exhibit an unsatisfactory performance.

5.3.2 Efficient Solution of the Linear Systems

In this section, it is demonstrated that one of SAMG's point-based AMG approaches with a
norm-based primary matrix, accelerated by BiCGstab, works more robustly and often more
efficiently for large drift-diffusion matrices than the standard one-level solvers commonly
used in device simulation.

We start with deriving more numerical properties of the arising matrices. Based on the
statements obtained in Sections 5.3.1.5 and 5.3.2.1, we discuss in Section 5.3.2.2 why VAMG
and UAMG approaches do not work for drift-diffusion matrices whereas certain PAMG ap-
proaches are reasonable candidates. Section 5.3.2.2 also explains the concrete PAMG ap-
proach of our framework which has been turned out to be a suitable preconditioner. In Section
5.3.2.3, the exemplary devices and the concrete TAURUS simulation runs for the numerical
tests are described. Numerical results of these simulation runs will be presented in Section
5.3.2.4.

Remark 5.11 By now, linear multigrid methods have been developed only for solving the
three individual partial differential equations arising during a Gummel(-type) iteration. In
Gummel’s approach, an equation foiis solved first, then an equation farand then fomp.

This way, the more expensive Newton approach is replaced by a Gauss-Seidel-type iteration
of solving three single PDEs. The most difficult part there is the solution of discretized
and linearized continuity equations. For example, in [23], a geometric multigrid method
for this type of equation was investigated and successfully applied to some examples on
structured grids. In contrast to this, in this thesis, we are interested in the solution of the
matrix equations arising from the fully coupled approach. This approach is typically used in
modern (commercial) device simulators because it is often more favorable, in particular near
equilibrium, than a Gummel(-type) iteration. A

Remark 5.12 In particular until the early nineties, the application of nonlinear geometric
multigrid methods (full approximation schemes (FAS)) was investigated as a further approach

51if the problem size exceeds the abilities of direct solvers.
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to solve drift-diffusion systems (see the references given in [23]). Such approaches are, how-
ever, difficult to apply (if possible at all) to the more sophisticated models and unstructured
grids used in modern commercial device simulators. A

5.3.2.1 Numerical Properties of the Matrices

According to the different modelling situations in the two pdetsand(, of 2, the drift-
diffusion matricesA consist of two partsA, and A,, which are very different by nature.

On the one hand, the pa#, of A which corresponds to Laplace’s equation o) does

not pose problems. Since the submattix ;; describing the)-to-y> couplings is a Stieltjes
matrix if the mesh is boundary Delaunay (see Theorem 5.1 below), and there are only a few
couplings ton andp, namely across the interfacef, (V)AMG is appropriate forA,,.

On the other hand, the patt, of A which corresponds to the coupled PDE system posed
on €, inherits the very tight coupling of the physical unknowns, in particular reflected by
large entries in the submatricess,,, ,,) (m # n). Properties of these submatrices which are
important with respect to AMG are investigated in more detail now.

We know from Section 5.3.1.5 that the entriesdafare given by Table 5.10 together with
the discrete and linearized analogs of the boundary and interface conditions. For the following
considerations, we restrict ourselves to the interid2 of that means to a discussion of matrix
entries as presented in Table 5.10 - together with Dirichlet boundary conditioa$2on
Defining a matrixB being a:M-matrix if either B or —B is an M-matrix, the following
theorem can be proved.

Theorem 5.1 For linearized SG-BM discretized drift-diffusion systems Witk Rsru, av,

the submatricesly,, ,,, of A, are either diagonal matrices at:M-matrices if the underlying
mesh is boundary Delaunay and of acute &#pdo be more specific, independent from the
concreteR, Ap; 1) is even a weakly diagonally dominant Stielties matrix, ahg, and
A1 3) are diagonal matrices. FOR = Rsru avu, Ajz,3 and Az o are diagonal matrices,
and Az 1), Ap2,2), Aj3,1), and A3 5) are weakly diagonally dominantM-matrices.

Proof. The statements on the diagonal-bloeks ,,) can be found in [54], for instance, which
also points to related literature. We add the proof for the remaiding,, here. Obviously,
Ap ) @and Ay 5 are always diagonal. Assumidy= Rsru, av, We obtain

aRk 8Rk aRk
—_— = =0 forl#4k and ——
o) = o) 7 o)

Hence, all derivatives ok vanish forl # k in case ofR = Rsru av. Obviously,A, 3 and
A3, are diagonal then. For ali, the Bernoulli functionB fulfills

=0 forallk,I .

exp(z) — 1 —zexpzx
(exp(z) —1)?

52\We call a simplicial mesh ddicute typeif all interior angles of all triangles or, respectively, all interior angles
between faces of tetrahedrons are not larger tt)éh(i.e. non-obtuse).

B()>0, B(0)=-, andfore#£0, B(z)= <0,
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If the mesh is of acute type, alf,, ,,; and K, ;. ; are nonnegative. Due to all these facts, we
obtain the following relations inside;

O(Fn)k O(Fn)e _ O(Fn) -y OFn)k _ N~ OFn)k
o0 <00 e ~omn 0 UFY By T2 o o G4
a(Fp)k 8(Fp)k _ 8(Fp)l L 8(Fp)k _ a(Fp)k
o0 >0 o o <0 U Sy T e - 69

ThatAj; 1) and A3 1) areM-matrices follows from Remark 2.14 in Section 2.4.4. H

Remark 5.13 In general, if the grid generator produces obtuse angles>( 7/2), corre-
spondings; ;7 could be negative and the blocKs, ,,,; of A will not be +=M-matrices in the
original SG-BM. In order to obtair-M-matrices again, theompensated box methadthen
used in practice, as described in [79], for instance. A

In many cases, either or p strongly varies in the simulation domain and clearly dominates
the other two physical unknowns. In particuldr, is usually dominated by couplings the
potentialy. To be more specific, either the submatrx, ;) or A3 ;) (of A,), depending

on the majority carrier concentration, contains a significant part of the largest couplings,
measured by absolute value. This can be seen as follows:Feriy;, B(vr — ¢;) is O(1),

and we haveB’ (v, — ¢;) =~ —0.5 (cf. Fig. 5.12) so that the following estimate emerges:

ng + ny

0.
5 <

nkB' (Y, — 1) + mB' (Y1 — ) S

Note that, very roughly,
Virr =O0(ze —2l) | Kkt = paskr, 70(|lxx — 1)) with % € {3, n, p}.

Without restriction of generality, we assume now that the concentratearly dominates
p, i.e.n is several orders of magnitude larger thaiWe then have

NE + Ny
2

ORsRrH, AU

a(n)

as shown in Fig. 5.13. The same is true ¥af; v|0Rsru,av/9(p)|. The dominance be-
comes smaller, the more similarandp are in size.

If we now compare the matrix entries df;, as listed in Table 5.10, we obtain the follow-
ing result: The matrix4, 1, reflecting the couplings of to ¢, clearly dominates the other
Appm,n) in the sense that most often

Vk,l,T‘ ‘ < Kok

a(Fn)k 8(Fn)k 3(Fw)i 0(Fp)k}
() T () T (k) T O(x)

with x € {9, n,p} holds. This means that the entay; in a A(; ;) which couples: to 1

is most often the largest. The argumentation for clearly dominatirsganalogous. These
arguments qualitatively hold also for the discretized and linearized scaled systems (5.30)-
(5.32) and (5.33)-(5.35), respectively, as can exemplary be seen in Fig. 5.18 depicting a

> maX{ 88(52))19
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drift-diffusion matrix (DeMari scaling) arising in the simulation run for the EEPROM test
case described in Section 5.3.2.3 below. For all examples tested so far, forxeitheror

x = p the following statement holds: in around‘8®f the cases, the entry;; in A )
which couples unknowa to ¢/ is largest. That s, eithet, ;) or A3 ;) clearly dominates the
Othel'A[m}n] .

Several consequences arise from this “under-representation” of the diagonal#lpgcks
Obviously, many rows of the drift-diffusion matrices strongly violate diagonal dominance.
The discrete PDE system is strongly coupled in the senseAhat!,, and A;;' A are far
from being the identity matrix®. Last but not least, for the reasons mentioned in Section
5.3.1.5, we often face very ill-conditioned or even nearly singular matrices. All these reasons
complicate an accurate and efficient numerical solution in general.

0.2

0.4

@) (b)
Figure 5.12: Plot of (aB(x) and (b)B’(z) for « € [-10, 10].

5.3.2.2 The AMG Approach Employed

The properties ofd discussed above prevent VAMG and UAMG from being reasonably ap-
plicable here. VAMG- and UAMG-preconditioned approaches usually diverge and are there-
fore not discussed in the remainder. Except of regions with a strong layer behavior, which is
only presentin the drift-diffusion systems, the slightly anisotropic DD models (with moderate
(A, ¢)) and the (DeMari-scaled) drift-diffusion matrices are similar to some extent. Without
restriction of generality, assumingto be the dominating species, both exhibit the same com-
position of--M-submatrices and diagonal submatriegs, ,,; 54, For both,A 1) is the dom-

inating submatrix in the sense discussed above,4ng, can exhibit a slight anisotropy

53j.e. p, is large. Note that, strictly speaking,, defined in (3.65) is a measure for symmetfic> 0) only, but
a largep,, should in general be a good hint that the discrete PDE system is too strongly coupled for UAMG.
S4we neglectd |3 3) and A3 o) since here their entries are zero or very small compared to the others forlarge
55B’ is for regions with moderately varying a moderately varying functionz. andp are moderately varying
functions outside the junction-, Schottky contact- and semiconductor/oxide-interface-layers, see Section 5.3.1.4.
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TR R

(b)
Figure 5.13: Plot of (a)og;o(0Rsrm/d(n)) and (b)log;o(0R v /O(n)).

also in case of the drift-diffusion matrices. Since certain PAMG approaches have been seen
to yield efficient preconditioners for the anisotropic DD models, it seems promising to inves-
tigate their application to drift-diffusion matrices as well.

Indeed, in accordance to the investigations made in Section 3.4.1.2 and Examples 3.2, 3.5

and 3.12 for the DD models, it has turned out that PAMG yields a very robust and efficient
preconditioner if the following components are chosen:

e Smoothing: for some simple matrices which are not too ill-conditioned and which do
not violate diagonal dominance too strongly, BGS can be used for smoothing. Figure
5.14 depicts algebraically smooth error produces by BGS for such a “simple” #evice

In general, however, an often much stronger, but also more expensive ILU smoother
should be employed. For all numerical tests performed so far, ILU(0) has shown a
robust behavior. Thisis in contrast to ILUT which does not work robustly as a smoother
here. If not stated otherwise, results are presented for ILU(0) smoothing.

Coarsening based on a primary matrix based on norms (3.73). Al-coarsening is used
on the first level, standard coarsening else. For all drift-diffusion systems tested so
far, the performance of the resulting approach was neither sensitively influenced by the
concrete choice of the norm nor the concrete choige,pf(see Section 3.4.2, Remark
3.24).

An SU-interpolation with weights being based on the entrieB ofn some cases, an
MU-interpolation with scaling of the weights (see Section 4.3.1.5) has been found to
yield a similar performance.

One step of Jacobi-relaxation of interpolation is applied to the second-to-first-level
interpolation operator since this variant has turned out to improve the robustness and
efficiency of the respective PAMG approach considerably.

56the only one with a two-dimensional grid here.
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1E-10

5E-11

Figure 5.14: STl example: error after 10 BGS smoothing steps.

e Asdiscussed in Section 4.1.1.1, rowsdith zero diagonal entries have to be treated
in a special way in order to avoid possible problems with smoothing and nonpositive
diagonals on coarser levels and to avoid “disturbed” coarsenings. The last row of the
matricesA arising in the last part of the simulation for the EEPROM example (see
next section), has a zero diagonal entry. Here, it has proved to be sufficient simply to
force the corresponding variable to stay on the finest level (FF-variables) and thus to
completely exclude it from the coarsening process.

e For many matrices, some nonpositive diagonal entries occur on coarser levels. They
are handled as described in Appendix A.1.2.2.

e Accelerator: BiCGstab.

Remark 5.14 We have also tried to use one of the unknown-matridgs,; as a primary
matrix. P = A ;) works in some cases, but is not as robust as a norm-dased A

Drift-diffusion matrices provide practically important examples where accelerated AMG ap-
proaches with BGS often diverge but ILU(0) helps PAMG to yield a robust preconditioner.
On the first sight, this might be surprising since BGS works for the DD models (see Section
4.6) whereas ILU(0) often diverges there. However, as discussed in Sections 3.4.1.2 and Sec-
tion 4.6, a more closer look reveals that ILU(0) smoothes the error everywhere except of a
small area and, for the DD models with modergtec), ILU(0)-PAMG(ns;,SU,P)-BiCGstab
converges (however, the same approach with BGS smoothing works better for the DD mod-
els). In case of the drift-diffusion matrices, both BGS and ILU(0) diverge if used stand-alone.
Also in combination with AMG approaches they diverge. However, if ILU(0) as a smoother
for the PAMG approach described above is accelerated by BiCGstab, for instance, conver-
gence is achieved, and the approach is quite efficient.
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Remark 5.15 Block variants of ILU(0) or ILUT approaches can be expected to yield even
better smoothers than the standard, variable-based ILU(0) employed here. Block variants will
be one topic of future research. A

Remark 5.16 Recently, permutations of drift-diffusion matricéswith the aim to enhance

the preconditioning properties of ILU(0) and SPAI variants have been considered in [78].
Presented numerical results indicate that this helps ILU(0) and makes it more stable. The
SPAIl variants with or without permutations df however, have been found to be much more
expensive and less stable preconditioners than ILU(0) for this application®¢lassstead

of permutations as a preprocessing step, the investigation of appropriate pivoting strategies
incorporated into the ILU(Oymootherused in our AMG approach will also be a topic of
future research. A first step has already been taken by incorporating (M)ILUTP smoothing
into SAMG (see Section 4.4). A

5.3.2.3 Description of the Test Cases

We have tested examples from several classes of industrially relevant semiconductor devices.
To be more specific, we have considered

e a shallow trench isolated MOSFESI(STI),

e an electrically erasable programmable read-only memory cell (EEPROM),

¢ a metal-semiconductor transisto(MESFET),

e a FinFET?,

General information about most of these and other types of semiconductor devices can be
found in [93], for instance. A description and analysis of a (particular) FInFET is given in
[38], for example. Table 5.11 shows details on the concrete test cases and dimensions of the
arising matrix problems. Layouts, doping profiles and grids of the STI and the FinFET are
shown in Figs. 3.7 and 5.19.

In device simulators such a TAURUS, a simulation series for a given device consists of
many individual simulations of drift-diffusion systems which differ, for example, in their
respective boundary conditions. More precisely, each simulation run starts with the zero bias
step, a step in which all voltages are set to zero. Afterwards, sdviasatampsare applied
to the device. For instance, Figs. 5.15 and 5.16 show the sequence of bias ramps applied
in case of the EEPROM and the FinFET, respectively. Exemplarily, we briefly explain the
bias ramps for the FInFET: In the first 21 simulation steps (the first ramp), the gate voltage
is gradually increased from 0 to 1V, keeping the drain voltage fixed at 0.05V. During the
next 10 bias steps (the second ramp), the gate voltage is fixed at 1V, and the drain voltage
is increased step by step to a value of 1V. For each individual simulation step, i.e. for each
bias applied, a Newton process is employed to solve the discretized problem, and, within

5"Recently, AMG approaches which incorporate SPAI variants as smoothers and/or in various steps of the setup
phase have been investigated in [13]. So far, it has not been investigated whether SPAI variants are, for instance,
good smoothers also for drift-diffusion matrices.

58MOSFET = metal oxide semiconductor field effect transistor.

59Both source and drain are Schottky contacts.

60FiNFET = a double-gate MOSFET structure in which a thin, fin-shaped body is straddled by the gate forming
two self-aligned channels that run along the sides of the fin.
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Figure 5.15: EEPROM example: bias steps. Figure 5.16: FinFET example: bias steps.

each Newton step, a few matrix solves are necessary. Therefore, during a whole simulation
run, several hundred linear systems have to be solved. In (commercial) simulators such as
TAURUS, sophisticated control mechanisms are integrated to detect and “repair” possibly
occurring difficulties during the linear and nonlinear iterations. In the worst case, this means
a bias step rejection and step size reduction.

In the following, we will present detailed results for two exemplary cases, namely the
EEPROM and the FinFET. The FinFET case represents the simulation of a modern device on
a moderately large grid. Since a FinFET is fabricated on an SOI wafer, numerical difficulties
arise due to the occurring floating region (see also Example 5.1). The EEPROM example,
which is rather small in terms of variables, was chosen because it exhibits an additional diffi-
culty: for the sixth bias ramp, the system is extended by one equation (an algebraic condition)
leading to a row with a zero diagonal. Rows with zero diagonals are likely to produce prob-
lems for all iterative solvers. During the AMG setup phase, this exceptional row is treated
separately as described in Section 5.3.2.2 above. In addition, remarks on the numerical per-
formance will be made for the small STI example and the middle-sized MESFET, which is
very ill-conditioned, in particular due to its Schottky contacts.
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Example dim n, n, Ny i nA

STI 2D 1 7 5516 9212 125516
EEPROM 3D 1 9 10493 15415 310361
MESFET 3D 2 3 14720 28026 476 804
FinNFET 3D 2 5 69092 97530 1443940

Table 5.11: Details on the four examples. dim = spatial dimensigr, number of material
layers inQ2,, n, = number of material layers i1,,.

5.3.2.4 Numerical Results

Generally, to demonstrate the performance of SAMG for a given device, it is not sufficient to
look at its performance in solving just a few selected linear systems arising as part of a whole
simulation. In fact, as explained in Section 5.3.2.3, hundreds of linear systems have to be
solved during a full simulation series, and the properties of the matrices change substantially
depending on the bias step and the progress made in the Newton process. Consequently, to
obtain a clear picture of the benefit of SAMG, one has to consider full simulation series.

In order to demonstrate the robustness and efficiency of the PAMG preconditioner cho-
sen, we have created an interface in TAURUS to the SAMG library, performed tests with
the mentioned PAMG-BiCGstab approach and compared the results with the results of the
corresponding runs with TAURUS's default iterative solver (called “TAURUS solver” in the
following), an ILU-CGS method. In addition, to demonstrate the effects of the coarse-level
corrections, we also compare the performance of PAMG-BiCGstab with that of the corre-
sponding one-level method, i.e. ILU(0)-BiCGstab.

For all examples tested so far, it can be observed that the TAURUS solver does not al-
ways fulfill the prescribed convergence criterion, i.e. a relative residual reduct@:162)
of at least 1e-3, measured in the Euclidean norm, within a maximum number of iterations.
This is depicted exemplarily for the EEPROM and the FIinFET in Figs. 5.20(a) and 5.21(b).
For both the STl and MESFET, the TAURUS solver behaves similarly. In the figlires,
denotes the Euclidean norm of the first apxd|| the Euclidean norm of the last residual. A
value||r.||/||ro]| above the lower line at 1e-3 then means a violation of the criterion, a value
above the upper line at 1e0 means divergence of the TAURUS solver for the current matrix.
Especially in the EEPROM case, the Euclidean norm of the last residual is often more than
10° times larger than the first residual. Note for all graphs that the matrices arising during a
full simulation series are always numbered consecutively.

In contrast to this, PAMG-BiCGstab shows a stable and fast convergence behavior for the
STI, the EEPROM and the FinFET. The convergence criterion is fulfilled for all SAMG runs,
and hence, instead ofr.||/||7o||, average residual reduction factors (ARFs) are depicted
in Figs. 5.20 and 5.21. The performance of PAMG-BiCGstab for the STl is similar to the
FinFET case. The ARFs are usually lower than 0.5 and often much better, and less matrix
solves were necessary during the Newton steps (see Table 5.12), especially in case of the
larger example, i.e. the FinFET.

A comparison of PAMG-BiCGstab with the corresponding one-level solver, ILU(0O)-
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BiCGstab, demonstrates that this drastic improvement of robustness and convergence speed is
to a large extent caused by employing a hierarchy. In contrast to PAMG-BiCGstab, ILU(0)-
BiCGstab exhibits ARFs which are close to or sometimes even larger than 1 (divergence).
Additionally, ILU(0)-BiCGstab needs (much) more matrix solves, even more than ILU-CGS
(see Table 5.12).

Remark 5.17 It should be noted that, in case of the MESFET, the worst case in terms of
conditioning here, PAMG-BICGstab converges but considerably worse than for the other
three examples. In fact, only for a part of the matrices, PAMG-BIiCGstab performs better
than ILU(0)-BiCGstab so that employing a hierarchy only partly helps here. Interestingly,
ILU(0)-BiCGstab performs much better than the TAURUS solver here. A main reason for
the bad performance of the TAURUS solver and the reduced efficiency of PAMG-BICGstab
seems to be the “second half” of the simulation: at a certain point in the bias ramping for
the concrete simulation run, both the TAURUS solver and PAMG-BiCGstab have problems
in solving the concrete nonlinear system. The TAURUS solver faces several step rejections,
whereas in case of the PAMG-BiCGstab just a temporary switching to ILU(0)-BiCGstab
helps to overcome the troubles. The development of better “intelligent” solver-switching

strategies will be subject to future research. A
example approach e fmatrices total SAMG Cprec
STI PAMG-BICGstab 1e-6 260 0.97 0.75 0.93

TAURUS solver le-3 260 0.32 —
EEPROM PAMG-BiCGstab 1e-6 520 3.81 2.19 [1.41,1.44]
TAURUS solver le-3 538 2.38 —
ILU(0)-BiCGstab 1le-6 560 4.31 2.56 1
PAMG-BiCGstab 1e-3 578 3.80 2.02 [1.41,1.44]
ILU(0)-BiCGstab 1e-3 620 4.00 2.06 1
FinFET PAMG-BIiCGstab 1e-3 100 4.27 3.25 [1.66,1.71]
TAURUS solver le-3 157 4.46 —
ILU(0)-BiCGstab  1le-3 216 11.49 9.15 1

¢ with BGS smoothing. For ILU smoothingprec=1.41.

Table 5.12: Timings, number of necessary matrix solves gpd for the drift-diffusion
simulations.c denotes the residual reduction demanded. “total” is the total wall-clock time in
hours needed for the whole simulation run. “SAMG” is the part of “total time” which SAMG
needed to solve the matrices.

Table 5.12 also shows timings amg... for full simulation runs, including meshing and
assembling of the matrices. It should be noted that the test character of TAURUS' interface
to SAMG leads to extra overhead for the transfer of matrix data to SAMG. Whereas for
the smallest example, the STI, the TAURUS solver (and also ILU(0)-BiCGstab) is much
faster than PAMG-BiCGstab and for the “medium-sized” EEPROM example the TAURUS
solver is considerably faster than PAMG-BiCGstab yet, the effort for employing the more
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robust PAMG approach is paid off for the largest example here, the FinFET. In all cases, the
preconditioner’'s complexity,,.. of PAMG is reasonable compared to ILU(0).

Remark 5.18 Recently, the ILU(0) method built into older versions of SAMG, including the
one all tests for the drift-diffusion systems have been performed with, has been considerably
speeded up, in particular for matrices containing more than ten entries per row. Only one
additional vector of lengt,, is needed in the faster variant. Based on timings conducted
for single drift-diffusion matrices, it can be expected that due to the new ILU(0) the above
timings for PAMG-BiCGstab would be reduced by a factod dfd to 1.27. A

One should point out that the test cases are still rather small - and too small to demonstrate
“real” advantages of PAMG over one-level preconditioners in terms of computational speed.
However, since PAMG-BiICGstab clearly shows a robust behavior and considerably faster
performance with increasing problem size, it can be expected that for even larger problems
than the ones presented here the observed trends will be continued. The results clearly indi-
cate that SAMG is often capable of solving the matrix equations more robustly, and we can
expect that PAMG-BiCGstab clearly outperforms the one-level solvers which are commonly
used in commercial device simulators in case of large(r) problem sizes.
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Figure 5.17: The grid structures for (a) the SILO2 example (green=silicon, yellow &
brown=oxide, blue & cyan=nitride). (b) the DEPO2 problem (green=nitride, red=oxide,
blue=polysilicon, cyan=silicon).
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Figure 5.19: Doping profile of the wafer, layout and grid for two of the exemplary devices
(see Table 5.11): (a) the STI, (b) the FinFET. Courtesy of Synopsys Inc.
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Chapter 6

Conclusions and Outlook

In this thesis, a general AMG methodology for PDE systems has been developed, and its the-
ory as well as its practical realization and (industrial) application have been investigated. Our
AMG methodology extends classical AMG by a straightforward unknown- and a particularly
powerful point-based strategy. Concrete approaches differ in the amount of inforhiatgn
employ and in the concrete choice of smoothing, coarsening and interpolation. We summa-
rize the main results and give an outlook on future research.

Unknown-based AMG (UAMG) is certainly the simplest strategy for solving PDE sys-
tems. Nevertheless, it is quite an efficient preconditioner for some practical applications.
Essential conditions for this strategy to work are that smoothing causes the resulting error
to be smooth separately for each unknown and that the unknown cross-couplings are not too
strong in the sense of a smal, a new measure introduced in this thesis. Advantages of this
strategy are that it can easily cope with anisotropies which are different between the differ-
ent unknowns and that unknowns can virtually be distributed arbitrarily across mesh points.
It can efficiently be applied, for instance, to certain linear elasticity problems as has been
demonstrated for applications in industrial semiconductor stress analysis. However, we have
also seen limits of UAMG, for instance for reaction-diffusion models with a large coupling
between the different unknowns, even if this coupling exists only at one point.

As a main contribution of this thesisgegneral framework for point-based approaches
has been introduced, which employs a primary matrix to construct a point-based coarsening.
A necessary condition for point-based AMG (PAMG) to make sense is that the unknowns are
discretized on essentially the same - real or virtual - “grid”, a condition which is often fulfilled
in practice. This strategy is especially well suited for situations in which a point-oriented re-
laxation produces an error which is characterized by the same kind of algebraic smoothness
for each of the unknowns, and in which a primary matfxand an interpolation can be
defined so that both of them reflect the directions of smoothness sufficiently well. Several
possibilities for selecting a primary matrix and for the computation of the final interpolation
weights have been discussed. As a result, our framework contains many degrees of freedom
and thus allows many different concrete PAMG approaches. A special focus has been on
the development of cheap primary matrices and interpolation schemes for practical applica-
tions. Although it seems clear that a suitable AMG approach (based on unknowns or points)
for all types of PDE systems cannot be found, our point-based strategy provides a rich envi-
ronment for defining efficient and robust approaches for a variety of relevant PDE systems.
In general, as for UAMG, efficiency and robustness are drastically increased by applying

1The matrix A, the right-hand-sidé, the variable-to-unknown mapping, the variable-to-point mapping, and
coordinates are thmaximumamount of information employed.
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PAMG not stand-alone, but as a preconditioner. PAMG'’s efficiency has been demonstrated,
in particular, for reaction-diffusion and, with special emphasis, to highly nonlinear, very ill-
conditioned drift-diffusion systems, arising in industrial semiconductor simulation. Whereas
the most efficient point-based preconditioner for the reaction diffusion systems is oriented
on the distances of the grid nodes, the point-based preconditioner for the drift-diffusion sys-
tems is oriented on norms of thi;, ;. That AMG'’s applicability has been extended to such
numerically challenging PDE systems is another main contribution of this thesis.

We have also extended the classiédllG theory for scalar PDEs to both unknown-
and point-based strategies. The theory developed is applicable to essentially (block-)positive
type matrices and certain variations thereof. Not unexpectedly, strong conditions have to be
fulfilled to make the new theorems on two-level convergence applicable. However, as in the
scalar case, the qualitative statements also hold in much more general situations. In particular,
numerical results indeed confirm that SU-interpolation does often not perform worse than
block-interpolation. Moreover, it is considerably cheaper and often even more robust.

The solver library SAMG features, in particular, the realization of our general AMG
methodology. It fulfills the properties listed in the introduction in the following ways. All (ac-
celerated) AMG approaches being part of SAMG are scalable if properly applied. For known
reasons, this cannot be proved rigorously but is observed in practice. The approaches exhibit
reasonable complexiti&sSAMG can easily be plugged into existing simulation codes. It is
a very flexible system for experts. Many different components can be selected for smooth-
ing, coarsening, interpolation, and acceleration. Concrete AMG approaches can typically be
applied as preconditioners to large problem classes without loosing robustness. Therefore,
each concrete overall approach presents a black-box solver for the problem class(es) it can
be applied to. Moreover, SAMG provides a far more efficient behavior for many problem
classes than the standard one-level solvers usually employed in industrial simulation codes.

One topic offuture research will be the investigation of SAMG's applicability to more
problem classes, especially applications in industrial oil reservoir simulation (already in
progress) and Navier-Stokes equations on non-stagtgrits. As indicated in this thesis,
the palette (and maybe number) of primary matrices might have to be extended for some ap-
plications. In the case of Navier-Stokes, for instance, a physically reasonable primary matrix
might be a discrete Laplacian or might arise from a pressure-correction equation. Another
direction of future research will be “stronger” smoothers. In particular for drift-diffusion sys-
tems and oil reservoir simulation, we have just started investigating block-ILU/ILUT variants.
We will also be concerned with the improvement of AMG for structural mechanics. Not only
in this context would an appropriate treatment of (nearly) singular matrices be of high practi-
cal importance. Of particular relevance for industry pagallelizations of SAMG (already
in progress), based on both OpenMP and MPI, as well as “self-learning” SAMG-parameter
optimization algorithms (towards dmtelligent solver” ; currently being investigated).

2Typically, AMG preconditioners employing aggressive coarsening and GS smoothingneed [1.0, 1.5]
times the memory needed for the standard one-level preconditioner ILU(0).

3For staggered grids, an extension of SAMG'’s data structure to allowing overlapping variable-clusters and the
development of suitable AMG operators would be necessary. Whether and how the latter can be achieved, is an open
question.



Appendix A

Auxiliary Results and Additional
Proofs

A.1 Nonpositive Diagonal Entries

As has been proved in Lemma 3.1, if the input mattils symmetric positive definite, so are
the coarser-level matrices, at least up to round-off. We can generalize this even further:

Corollary A.1 Let A, be positive definite, and Ieltf;, have full rank. Thendy is also
positive definite.

Proof. This is an immediate consequence of (2.10) and
(AHUH,UH)E = (IfAh[gvH,vH)E = (AhIZUH,[ZvH)E. A

If Ay, is positive definite, its diagonal entries are positive, and the above Corollary proves that
also the diagonal entries of; are positive then. Practically, however, it might happen that
some coarse-level diagonal entries become (numerically) zero or even negative, in particular,
if A;, positive definite is not strictly fulfilled. Very small coarse-level diagonal entries occur,
for instance, for the drift-diffusion matrices discussed in Section 5.3.2. Besides the technical
problems such exceptional matrix rows produce, AMG’s convergence usually suffers from
their occurrence. Ways to handle or avoid nonpositive diagonals occurring for a coarse-level
matrix Ay the corresponding finer-level matrix of which has only positive diagonal entries
are discussed in the following. In this section, we make the general assumption that

Vi: ab>0. (A1)

A.1.1 Problem Formulation

Let the indices inC' be numbered,, .. ., i. with ¢ := |C| being the number of’-variables.
Recalling the definitions made in Section 2.4.3, we can write

Irc = ( wli) o e )
with, for all i € C, ‘ _

w® = (wi)jer = (w)i)jer
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being thei-th column ofIr¢ (wj; = 0 for all i # P;). Lete be thei-th unit vector (i.e.
thei-th component otZ? being 1, zero the remainder) with lengthThen

ann = (ef)" Anel’
= (e (1) AnLjye!’
= (IreT Ap(Ifyelh)

Due to (2.21), and because the vedtfe!? is thei-th column vector of ¥, = (Irc, Icc)?,

we obtain
o — Irc \ & ([ Arr  Arc Irc \ m
& Icc g Acr Acc Icc !
= al + (N Aprw™ + (e Acrw® + (W) Apcel
and finally
a“ = a“ + Z wmw,(;)a? + Zw(l) a” —&—aﬂ . (A.2)
j,keF JEF

In the following, our aim is to fulfill a condition analogous to (A.1) also fby, i.e.
VieC : ag >0.

Because of (A.2), this is equivalent to

VieC : al+ Z wﬁ-i)w;:)a?k + Z wy)(afj +al)>0. (A.3)

j,kEF jEF

To be more specific, with a giveA;, we want to find conditions ofizc or possibilities to
modify I so that (A.3) is fulfilled.

A.1.2 Different Workarounds
A.1.2.1 Brute-Force Method

Assume that!7 < 0 for ani € C. Due to our general assumption, we know tht> 0.
Therefore, by settlng some or even all interpolatory We|gb§f§ (j € F) to zero, we can

always force alsa!! to become positive. This process is accompanied by a rescaling of the
remaining we|ghts in order to preserve row sums of the interpolation matrix.

However, in extreme cases, all interpolatory weights of a varialdeF' are set to zero
during this elimination process such that the interpolation formula for varjableompletely
destroyed. Moreover, the Galerkin operator which is computed with the remaining, rescaled
interpolatory weights might again have some nonpositive diagonal entries, and the procedure
has to be repeated. Overall, this method is a “brute-force” method to arrive at (A.3) and does
not always work.
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A.1.2.2 A More Sophisticated Method

The following ansatz is used to modify the interpolatory weights as less as possible.
ANSATZ: Try to replace all originalv® by w9 with a positive scaling factof(*) as
close to 1 as possible so that (A.3) is fulfilled.

Two questions arise:
1. Under the assumptions of Section A.1.1, do sfi¢halways exist?
2. If they exist, how can they be computed?

For the remainder of Appendix A.1, we work only with the inequality (A.3) for a fikedC.
With

mi=m® = Z wj(i)w,(j)a?k , = fm ,

J,keEF

) @) h h a0
s:=8" = w;” (az; + ag;) , a:=a;,
jeF

condition A.3 can be reformulated as
a+ fP’m+ fs>0. (A.4)
In the following discussion, keep in mind that> 0.

1. First, the simple case = 0 is discussed.

f>-2 fors >0,
A4 < f<-2 fors <0,
f arbitrary fors =0.
Therefore, in each case, a positifean be found which fulfills (A.4).

2. Now, bemn # 0. DefineD := (5-)*> — <. Then

m’

m f+ﬁ—\@)<f+ﬁ+\/ﬁ)>0 forD >0,

m (f+55)7+ (2 = (52 )2))>o for D < 0.

2m

A4d) <

(a) CaseD > 0andm > 0ands > 0:
A4 & (f>——+vD and f>—— —+vD)or
2m 2m
(f<—i+\/5 and f<—%—\/5)

Because ofi, m,s > 0, VD = /(55)2 — £ < £ and—5% < 0. Therefore,
the right hand S|des of the first two mequalltles are negative, and gaeh0
fulfills the above (full) condition, in particulaf = 1. Hence, (A.3) already holds
without modification of/ g
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(b) CaseD > 0andm > 0 ands < 0:
(Ad) o (f>f%+\@)or(f<f%f\/5)

Both right hand sides of the inequalities are positive because;df > 0 and
VD < L Therefore, a positivg can always be found which fulfills (A.4).

(c) CaseD > 0andm > 0 ands = 0:
not possible because of assumptigh-)? —

(d) CaseD > 0andm < 0:

=D > 0anda,m > 0.

a
m

A4 = (f>—->+VD and f<-— —VD)or
2m 2m
(f<—21+\/D and f>-—— — D)
m 2m
& —i—VD<f<—i+\/D
2m 2m

Because ofn < 0, VD = /(%)% — £ > || Therefore the left hand
side of the inequality forf is negative, the right hand side positive, and each

0< f < -5+ VD fulfills (A. 4).

(e) CaseD < 0: Because of ;2-)? — & = D < 0, the inequalities: — (5%-)* > 0
andm > 0 hold, so that the full |nequal|ty is fulfilled regardless of the choice of
f- In particular,f = 1 works, which means that (A.3) is already fulfilled without
any modification off z¢.

The discussion of all possible cases has shown that always a pgsitase be found which
fulfills (A.4). Depending on the case and the resulting boundg,am f should be chosen
which is as close to 1 as possible in order to assure that the matrix datg inand thereby
the interpolation operataf?, - are not fully destroyed. Always check jf = 1 fulfills the
conditions. If not, proceed as follows.

e If only one bound (besides < f) is given, choose an €]0, 1] and (1 — €) times an
upper bound of1 + ¢) times a lower bound fof, respectively.

o If f < Lorf > U must be fulfilled, take eithef = (1 —¢)Lor f = (1 + €)U
depending on which one is closer to 1.

o If f must be contained in an interdl, U[, take eitherf = (1+¢)Lor f = (1 —¢€)U,
depending on which one is closer to 1, if both values are withifl/[. Otherwise
choosef = (L +U)/2.

To compute a suitablé, the values ofn ands have to be computed. Because in an AMG
code usually firstA;; and therefore the values! are computed, only one of them, or s,
has to be computed from scratch. The other value can be obtainedffoma’ + m + s.

In summary, we can answer both questions, posed above, positively and are therefore able
to scale the columns df-¢ with suitablef(® > 0 in such a way that with this scaledghc
(A.3) is fulfilled.
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A.2 Proof of Lemma 3.9
LemmaA.l Leti,n € IN, v, (I = 1,...,4) vectors inIR"”, W; (I = 1,...,3) (n X n)-

matrices,|| - || for vectors a norm and for matrices the operator norm induced by this vector
norm, andu := >",_, ||W;||]. Then the following inequality holds:

i
E Wi
=1

Proof. First, let = 3_/_, ||[Wi|| = 1. Induction over:
i=1: Because of|]iVy|| = 1:

2 2
<y Wl o2
=1

IWror][* < [[Wal[*[Joa][* < [[Wal] - [Jor]*.
t— i+ 1. Let||W;|| + ||Wit1|| > O (trivial otherwise!). Then

i+1 i—1

2 2

Wivi + Wit1vi41
Wl = Wi+ (Wil + (Wit T o1
2 2 WAl + Wi

1—1 2

Wivi + Wip1vit1
< Sl + (I -+ 75 Lo Tl
=1 k3 i+1

becaus® i—; |[|[Wi|| + (||Wi]| + [[Wis1]]) = 1 (i summands). Obviously,
[loall* = 2[fvil| - [[viral] + [[visa]|* >0
& 2Will ol - (W]l - [Jviall < [IWill - [[Wasal| (il * + [Joisa][*)
= IWivi + Wigrvisa || < Wil *[oil|* + |Wisa] P [lvisa ||
+ Wil Wil (il * 4 [[viea][*)

[[Wiv; + Wi+1vi+1”2

=
[[Wil| + [[Wiga]

Wl [loall® + Wl - ol

Therefore,
1+1 2 1+1

S win|| <D (IWall - lwl?
=1 =1

which proves the lemma for = 1. Now, lety = Zle [[W:|| > 0 be arbitrary. Because of

Wi } 1 o
LAY | Wil =1
m p 12:1 Wl

i

we now obtain
2

<
=1

Wl 2
— || - el
1

which shows

i
g Wi
=1

2 @
<py (Wil -l m
=1
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