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Vorwort des Institutsleiters

Die Simulation der Eigenschaften von Materialien und der Dynamik von Systemen spielt
für die Industrie bei der Entwicklung neuer Prozesse und Produkte bereits heute eine ent-
scheidende und nach wie vor wachsende Rolle. Dies zeigt sich etwa in so unterschiedlichen
Bereichen wie der Mikrochip-Produktion, derÖlförderung oder dem Flugzeugbau. Durch Si-
mulationen lassen sich zwar teure Experimente und Prototypen in der Regel nicht vollständig
ersetzen, jedoch erm̈oglichen sie, prinzipielle Designentscheidungen schneller und sicherer
zu fällen und so Entwicklungszeit und -kosten zu reduzieren. Dies kann zu entscheidenden
Wettbewerbsvorteilen führen.

Oftmals liegen stark gekoppelte Systeme partieller Differentialgleichungen (Systeme von
PDGln.) den Simulationen zu Grunde. Die bei ihrer numerischen Lösung auftretenden großen
dünnbesetzten Gleichungssysteme verbrauchen häufig den gr̈oßten Teil der Gesamtrechenzeit
einer Simulation. Daher ist die Entwicklung schneller Löser f̈ur diese Gleichungssysteme
meist von gr̈oßter praktischer Bedeutung. Standardlöser sind aber nicht effizient genug für
sehr große Matrizen. Ihr Rechenaufwand skaliert für viele wichtige Anwendungen nicht mit
der Anzahl der Variablen des Gleichungssystems.

Für viele in der Praxis relevante Problemklassen stellen algebraische Mehrgitterverfahren
(AMG) robuste und effizienteskalierbareLöser (oder Vorkonditionierer) dar. Allerdings kann
AMG ohne umfassende Erweiterungen stark gekoppelte Systeme von PDGln. nicht effizient
lösen. F̈ur viele wichtige Systeme von PDGln. wurden bisher noch keine geeigneten AMG-
Verfahren entwickelt.̈Uberdies fehlte bisher ein Löser-Softwarepaket, welches industriellen
Anspr̈uchen gen̈ugt.

Diese Dissertation liefert hierzu wichtige Beiträge. Sie entstand am Fraunhofer-Institut
für Algorithmen und Wissenschaftliches Rechnen (SCAI) in der Abteilung “Numerische
Software” sowie am Mathematischen Institut der Universität zu Köln. Das Fraunhofer-Institut
SCAI zeichnet sich durch einëuber zwanzigj̈ahrige Expertise auf dem Gebiet der geometri-
schen und algebraischen Mehrgitterverfahren aus. Insbesondere wurde hier die ersteöffent-
lich verfügbare algebraische Mehrgitter-Software (AMG1R5) entwickelt, welche weltweit
verbreitet und - obwohl längst veraltet und nicht für sehr große Gleichungssysteme entwickelt
- auch heute noch tausendfach im Einsatz ist. Das Institut hatüberdies in den letzten Jahren
eine neue AMG-Software, die Löserbibliothek “SAMG” entwickelt, welche ganz auf die An-
spr̈uche der Industrie ausgerichtet ist.

Ein Hauptbeitrag der vorliegenden Dissertation ist die Erweiterung von SAMG zur hoch-
effizienten numerischen Lösung praktisch relevanter, diskreter Systeme von PDGln. Insbe-
sondere f̈ur drei wichtige Anwendungsklassen aus der industriellen Halbleitersimulation,
die große numerische Herausforderungen darstellen, werden effiziente AMG-Verfahren ent-
wickelt. Zwei der drei Klassen wurden bisher noch nicht erfolgreich mit AMG-Verfahren
behandelt. Dank der im Rahmen der Dissertation realisierten Erweiterungen ist SAMG be-
reits heute f̈ur viele Systeme von PDGln. den industriellen Anforderungen gewachsen und
bei Kunden im Einsatz.

Ulrich Trottenberg
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Abstract

The numerical solution of strongly coupled systems of partial differential equations (PDE
systems) is commonplace in many simulation codes. Typically, large sparse matrix equations
arise in the corresponding simulation runs. A serious bottleneck in performing realistic, large-
scale simulations is the speed by which these matrix equations can be solved. If they exceed a
certain size, they can no longer be solved efficiently with standard numerical solvers, simply
because these solvers are not scalable.

Classical algebraic multigrid (AMG) approaches are known to provide robust and ef-
ficient, scalablesolvers or preconditioners for large classes of matrices as those typically
arising fromscalarPDE systems. However, because classical AMG is based on a so-called
variable-based approach which does not distinguish between physical unknowns, extensions
of classical AMG are required to efficiently solvesystemsof PDEs. In general, many impor-
tant types of PDE systems have not been tackled by any AMG approach yet. Moreover, an
“AMG software” suitable for many industrially relevant problems has been missing so far.
This PhD thesis makes the following important contributions.

We develop a general AMG methodology which is suitable for important classes of indus-
trially relevant PDE systems. Our AMG methodology extends classical AMG by a straight-
forward unknown- and a particularly powerful point-based strategy. In particular, a general
concept for point-based approaches is introduced, which employs a primary matrix to con-
struct a point-based coarsening. Several possibilities for selecting a primary matrix and for
constructing the interpolation are discussed from a theoretical and, with special emphasis, a
practical point of view.

We realize our AMG methodology within the product-quality solver library SAMG. In
particular, we demonstrate that, in practice, all (accelerated) AMG approaches being part
of SAMG are scalable if applied to proper classes of applications. Memory requirements
are reasonable compared to the requirements of standard one-level preconditioners such as
ILU(0). SAMG can easily be plugged into existing simulation codes and provides a rich
environment allowing for many different AMG approaches.

We demonstrate the generality and flexibility of the proposed AMG methodology as well
as the efficiency of concrete SAMG approaches for a variety of PDE systems. In particu-
lar, three important classes of applications arising in industrial semiconductor process and
device simulation are discussed, namely stress analysis (linear elasticity problems), reaction-
diffusion and drift-diffusion simulation. Reaction-diffusion and, in particular, drift-diffusion
systems are numerically very challenging applications which have not been solved before by
any AMG approach. For each application, it is shown by means of both heuristical justifica-
tions as well as numerical results that SAMG allows to construct robust and efficient AMG
approaches even for cases, where state-of-the-art one-level solvers employed in standard sim-
ulation codes exhibit bad convergence or even fail.

Key words: algebraic multigrid (AMG), systems of partial differential equations (PDE
systems), unknown-based approach, framework of point-based approaches, semiconductor
process and device simulation, linear elasticity, stress analysis, reaction-diffusion systems,
drift-diffusion systems.
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Zusammenfassung

Die numerische L̈osung stark gekoppelter Systeme partieller Differentialgleichungen (Syste-
me von PDGln.) ist allgegenẅartig in vielen Simulationscodes.Üblicherweise m̈ussen sehr
große d̈unnbesetzte Matrixgleichungen in den entsprechenden Simulationsläufen gel̈ost wer-
den. Die Geschwindigkeit, mit der diese Gleichungen gelöst werden k̈onnen, entscheidet we-
sentlichüber die Gr̈oße und damit Wirklichkeitsn̈ahe der Simulationen. Da Standardlöser
nicht skalieren, sind sie aber nicht effizient für sehr große Matrizen.

Klassische algebraische Mehrgitterverfahren sind bekanntermaßen robuste und effiziente
skalierbareLöser oder Vorkonditionierer für große Matrizenklassen, wie sie typischerweise
von skalarenPDGln. herr̈uhren. Da klassisches AMG auf einem sogenannten variablenba-
sierten Ansatz beruht, welcher nicht zwischen physikalischen Unbekannten unterscheidet,
sind Erweiterungen n̈otig, um auchSystemevon PDGln. effizient l̈osen zu k̈onnen. Generell
sind AMG-Ans̈atze f̈ur viele wichtige Systeme von PDGln. noch nicht erfolgreich gewesen.
Überdies fehlte bisher eine “AMG-Software”, die sich für viele industriell relevante Probleme
eignet. Diese Dissertation liefert folgende wichtige Beiträge.

Wir entwickeln eine generelle AMG-Methodologie, die sich auf viele relevante Syste-
me von PDGln. anwenden lässt. Unsere Methodologie erweitert klassisches AMG durch ei-
ne naheliegende unbekannten- sowie eine besonders wirkungsvolle punktbasierte Strategie.
Insbesondere wird ein generelles Konzept für punktbasierte Ans̈atze eingef̈uhrt, welches ei-
ne prim̈are Matrix zur Konstruktion einer punktbasierten Vergröberung verwendet. Mehrere
Möglichkeiten f̈ur die Auswahl der prim̈aren Matrix und der Interpolation werden sowohl
von einem theoretischen als auch - schwerpunktsmäßig - einem praktischen Standpunkt dis-
kutiert.

Wir realisieren unsere AMG-Methodologie in der marktreifen Löserbibliothek SAMG.
Insbesondere demonstrieren wir, dass in der Praxis alle (beschleunigten) AMG-Verfahren für
geeignete Problemklassen skalieren. Der Speicherverbrauch ist dabei sehr moderat im Ver-
gleich zu Standard-Einlevel-Vorkonditionierern wie etwa ILU(0). SAMG lässt sich einfach
in existierende Simulationsprogramme einbauen und bietet eine sehr variantenreiche AMG-
Umgebung.

Wir demonstrieren die Allgemeinheit und Flexibilität der vorgeschlagenen AMG-Metho-
dologie sowie die Effizienz konkreter SAMG-Verfahren für eine Vielzahl von Systemen von
PDGln. Insbesondere werden drei wichtige Anwendungen aus der industriellen Halbleitersi-
mulation diskutiert, n̈amlich Stress-Analyse (lineare Elastizität), Reaktions-Diffusions- und
Drift-Diffusions-Systeme. Die letzten zwei und hierbei insbesondere die letzte Anwendung
stellen große numerische Herausforderungen dar und wurden bisher noch nicht erfolgreich
mit AMG-Verfahren gel̈ost. F̈ur jede Anwendung zeigen wir anhand von Heuristika und nu-
merischen Resultaten, dass SAMG die Konstruktion robuster und effizienter AMG-Verfahren
erlaubt, und das sogar für Fälle, wo die typischerweise in Standard-Simulationsprogrammen
eingesetzten Einlevel-L̈oser schlecht konvergieren oder sogar fehlschlagen.

Schlagẅorter: algebraisches Mehrgitter (AMG), Systeme partieller Differentialgleichun-
gen, unbekanntenbasierter Ansatz, Umgebung für punktbasierte Ans̈atze, Halbleiter-Prozess-
und Device-Simulation, lineare Elastizität, Reaktions-Diffusions-Systeme, Drift-Diffusions-
Systeme.
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Chapter 1

Introduction

For the development of novel technologies, industry is increasingly relying on computer-
aided engineering. This is true, for example, for such different areas as the design of mi-
crochips, efficient oil production or the construction of aircrafts. However, the complex
process of designing, testing and optimizing new processes and products usually has to be
carried out in an iterative and more experimental fashion by means of time-consuming trial-
and-error steps with expensive prototypes. In order to reduce design time and production
costs, computer simulation thus gains a growing importance. Today, simulation is not able
to replace the experimental process but is able to assist it in such a way that principal design
decisions can be made faster and less prototypes are needed.

In various application fields, simulation is used to analyze the structure and dynamics of
material systems. The underlying models involve physical quantities, also calledunknowns
in the following, such as material displacements, concentrations, potentials or pressures, and
usually consist of one or more partial differential equations (PDEs) which have to be solved
numerically. This is done by discretizing and linearizing the PDEs and solving the arising
sparse matrix equations by direct or iterative linear solvers.

With the growing complexity of fabrication technologies and resulting products, a larger
effort has to be invested in the simulations to meet the requirements of increasing accuracy
and to gain an ever deeper insight into the governing forces. On one hand, the demand
for higher accuracy has led to the use of more accurate discretization schemes and more
complex and finer discretization grids. Today, truly three-dimensional locally refined un-
structured finite element or finite volume meshes with up to some millions of grid nodes are
commonplace for many applications. Their grid resolution will significantly grow as soon as
computer memory resources will allow this. Unfortunately, with an increasing grid resolution
increasingly large matrix equations have to be solved. On the other hand, the higher accuracy
requirements are more and more leading to physically complex models involving strongly
coupled PDE systems, reflecting the fact that typically several physical unknowns strongly
depend on each other and cannot be considered separately. As a consequence, such a PDE
system has usually to be solved simultaneously for all unknowns involved which, together
with fine grids, results in matrix equations with up to several millions of variables. To be
more specific, if the PDE system is nonlinear and/or time-dependent, a whole series of such
huge matrix equations has to be solved. This is frequently the case.

The solution of huge sparse matrix equations usually belongs to the computationally very
expensive parts of a simulation. Often, it is even the by far most expensive part. Therefore,
any reduction in the linear system solution time will result in a significant saving in the total
simulation time. This is a strong motivation for the intensive research activities in the field of
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linear solvers. However, due to the trends described above, the arising matrices are not only
increasingly large. The more complex the physical models and corresponding PDE systems,
the more difficult to solve them efficiently. It seems clear that for a linear solver to be efficient
it has to address the physics of the underlying problem as well as the numerical properties
of the PDE system appropriately. Each particular type of PDE system can have its own set
of particular difficulties. This aggravates the demand for efficient linear solvers for a broad
spectrum of applications even further.

A scalablesolver is characterized by a complexity1 of O(N) regarding both memory re-
quirementsand computational work. Though scalability is the most important property an
efficient matrix solver should have, itspractical relevanceis a user-defined measure weigh-
ing applicability to and robustness for one or more large matrix classes and optimal numerical
complexity among each other. The “wish list” of practitioners is even longer. In particular, an
optimally efficient and robust linear matrix solver would fulfill all of the following properties:
it would

- exhibit a complexity ofO(N ) in terms of both memory requirements and computa-
tional work with small “O(N)’s constants”;

- be able to handle industrially relevant matrix equations with up to millions of variables,
independent of dimension and type of the underlying grid etc.;

- be able to solve large classes of such applications robustly;
- be simple to use, most preferably as a “black box”;
- be simple to plug into existing simulation codes.

Clearly, not all of the points can be fulfilled simultaneously. For example, the more generally
applicable, the less efficient a solution approach has to be expected to be. This is especially
the case for the standard linear solvers used today, of both direct and one-level iterative type,
which can be applied to a wide range of problems but cannot keep up with the increasing
size and/or numerical difficulties of the problems. On one hand, direct solvers (sparse Gaus-
sian elimination) can be applied very generally but generally exhibit a complexity of up to
O(N3) w.r.t. their computational work and a complexity of up toO(N2) w.r.t. their memory
requirements, which makes their use prohibitive for large matrices. On the other hand, one-
level iterative solvers are less generally applicable. They usually exhibit a linear complexity
w.r.t. memory requirements, but strongly suffer from large condition numbers of the matri-
ces. Typically, they exhibit a complexity ofO(Nα) (α > 1) w.r.t. computational work and
are likely to fail for very ill-conditioned problems.

Since problem sizes are substantially growing, optimal complexity,O(N), in particular
regarding computational work, will be even more of a concern in the future. For the appli-
cations sketched above, this optimality can be reached by approaches employing numerical
information resulting from a hierarchy of grids (levels, scales). Various optimal hierarchical
approaches exist, called multigrid, multilevel or multiscale approaches, each of them suitable
for a certain range of problems.

Classical algebraic multigrid (AMG) [71, 87] is known to provide very efficient and ro-
bust solvers or preconditioners for large classes of matrix problems,Av = b, an important

1A linear solver is said to exhibit a(numerical) complexity ofO(Nα) w.r.t. computational work (w.r.t. memory
requirements), if -for a fixed relative residual reduction- its computational work (its memory requirements) scale(s)
proportionally withNα whereN is the number of variables of the linear system of equations.



3

one being the class of sparse linear systems with matricesA which are “close” to being M-
matrices. Problems like this widely occur in connection with discretizedscalarelliptic partial
differential equations (PDEs). In such cases, classical AMG is very mature and can handle
millions of variables much more efficiently than any one-level method, a main reason being
its optimal complexity ofO(N). Since explicit information on the geometry (such as grid
data) is not needed, AMG is especially suited for unstructured grids both in 2D and 3D. In
fact, only the matrixA and its right-hand sideb have to be passed to an AMG solver since
the construction of a reasonable multilevel hierarchy is part of the AMG algorithm, automat-
ically performed by exploiting easily accessible algebraic properties such as the size and sign
of matrix entries. Consequently, such an AMG solver is as easy to plug into an existing simu-
lation code as any standard one-level solver, it has (nearly) black-box quality, and - altogether
- already fulfills many of the “wishes” mentioned above.

Contents and Contributions of this Thesis However, extensions of classical AMG are re-
quired to efficiently solvesystemsof PDEs involving two or more scalar physical unknowns.
This is because it is based on a so-called variable-based approach which does not distinguish
between different unknowns. Unless the coupling between these unknowns is very weak,
such an approach cannot work efficiently for PDE systems where, in general, the correspond-
ing matrixA is far from being an M-matrix.

In the past, several ways to generalize classical AMG or other AMG approaches have
been investigated, and there is still an ongoing rapid development of new AMG and AMG-
like approaches. Regarding PDE systems, development has predominantly focused on spe-
cialized solvers for narrow classes of applications as, for instance, certain CFD (compu-
tational fluid dynamics) and linear elasticity problems where promising progress has been
made. However, there is no unique and best approach yet, and besides the developments
mentioned, AMG approaches have not been investigated for PDE systems. Some of the ex-
isting approaches rely on incisive conditions and cannot be generalized to larger application
classes, at least not in an obvious way. Others have the potential to be more generally appli-
cable if generalized or extended appropriately. However, this has not been done so far. As
a consequence, none of the existing approaches is really satisfactory in dealing with larger
classes of practically relevant problems, and many industrially relevant problems have not
been tackled at all yet. Moreover, a software (library) which realizes more generally ap-
plicable, efficient AMG approaches, which can easily be plugged into existing simulation
codes, and which is easy to use would highly be appreciated by the industry but has not been
available so far.

This thesis adresses these gaps and makes the following important contributions for filling
them at least for many important applications:

• the development of a general AMG methodology which is suitable for important classes
of industrially relevant PDE systems

We generalize the efficient classical “scalar” AMG methodology by employing “natu-
ral” structural information on a discrete PDE system to be solved, namely relationships
between so-called variables, unknowns and points. Rather than a single method this
will give us aflexible, general methodologycapable of providing very efficient precon-
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ditionersnot for all but large classesof practically relevant PDE systems. Among them
will be systems which have not been successfully solved by any other AMG approach.

Our methodology systematically extends classical scalar AMG, representing what we
call thevariable-based strategyin the following, by a straightforwardunknown-and a
particularly powerfulpoint-based strategy.

Unknown-based AMG (UAMG)2 is very similar to variable-based AMG (VAMG) ex-
cept that for each physical unknown its own hierarchy is created. UAMG can handle
anisotropies which are different from unknown to unknown. The unknowns are al-
lowed to live on a different grid each (staggered grids, for instance). Among the basic
conditions for this strategy to work is that the coupling between the different unknowns
is not “too strong”. In this thesis, we will introduce a measure for the strength of un-
known cross-couplings.

For many important PDE systems, the unknown cross-couplings are indeed too strong
for UAMG. Since for many such systems the different unknowns are discretized on
essentially the same “grid”, it appears to be quite natural to create the same hierar-
chy for all unknowns. A strategy which allows for strong unknown cross-couplings
and produces the same level hierarchy, is point-based AMG (PAMG)3. We develop
a general framework for PAMG approaches, which is the most important part of our
methodology. One key concept for PAMG is that point-coarsening is performed by
means of an auxiliary so-calledprimary matrix. A necessary condition for the PAMG
framework to be applicable is that a primary matrix can be defined wich reflects the
point couplings in a reasonable sense. We introduce and discuss various ways to define
concrete primary matrices as well as three general types of interpolation approaches.
Our focus is on the development of practical variants, that is variants which are com-
putationally cheap (“O(N) with a small constant”), efficient and applicable to relevant
and sufficiently large classes of PDE systems.

Convergence of our AMG approaches is proved under the assumption thatA is sym-
metric positive definite. We want to emphasize here that, in practice, this is not a
necessary condition. For instance, the application of PAMG to very asymmetric drift-
diffusion systems impressively demonstrates that AMG can efficiently work for con-
siderable deviations from the “ideal” case.

• a realization of this methodolgy within the product-quality solver library SAMG

We realize our general AMG methodology within the solver library SAMG. The re-
sult is a rich AMG environment with various concrete components. SAMG provides
highest flexibility for adaptations to very different situations arising in practice and, if
necessary, can easily be extended by the user even further.

We will demonstrate that SAMG can solve matrices arising from many different in-
dustrially relevant classes of PDEs and PDE systems efficiently and robustly. We will

2Unknown-based AMG has already been introduced in the early paper [71].
3The basic idea, that is a “simultaneous” coarsening (and interpolation) of the unknowns, has already been

outlined in the early papers [71, 8].
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also demonstrate that, for these problem classes, SAMG meets industrial needs of scal-
ability, robustness, (nearly-)black-box usage and plug-in-type integration into existing
codes, as indicated in the “wish list” above. Moreover, SAMG provides a far more effi-
cient and robust behavior for many problem classes than the standard one-level solvers
usually employed in industrial simulation codes.

• a demonstration of SAMG’s efficiency and robustness for challenging industrial appli-
cations

By means of real-life applications, we will show the generality and flexibility of the
proposed overall AMG methodology as well as the efficiency of concrete SAMG ap-
proaches for a variety of PDE systems. To be more specific, as a demonstration of
UAMG’s and especially PAMG’s “practical relevance”, three important applications in
industrial semiconductor process and device simulation are discussed, namely stress
analysis (linear elasticity problems), reaction-diffusion and drift-diffusion simulation.
For each application, it will be shown by means of both heuristical justifications as
well as numerical results for relevant test cases that the usage of SAMG leads to a so-
lution process which, compared to state-of-the-art one-level solvers employed in stan-
dard simulation codes, is very promising both in terms of robustness and efficiency.
Reaction-diffusion and, in particular, drift-diffusion systems are numerically very chal-
lenging applications which have not been tackled before by any AMG approach suc-
cessfully.

• forging links between applied mathematics and industrial application

This thesis covers the whole process from the development of a general AMG method-
ology over its product-quality software realization to its application to industrially rele-
vant problems. Our flexible, general methodology considerably extends AMG’s appli-
cability to practically relevant PDE systems, and its realization SAMG meets industrial
needs. Especially SAMG is an important contribution to forging links between applied
mathematics and industrial application.

The thesis is organized as follows. InChapter 2 we make a general characterization of
AMG and give an overview of specific approaches, in particular with respect to a stocktaking
of what has been achieved so far for solving PDE systems. In addition, basic notations and
definitions which are frequently used throughout this thesis are summarized. In the following
two chapters, our AMG methodology and its three general strategies, namely the variable-
based, the unknown-based and the point-based one, are explained in detail. WhereasChap-
ter 3 introduces this methodology and its three strategies from a more theoretical point of
view, including a discussion of the range of applicability and limitations,Chapter 4 gives
an overview of the concrete realization of our AMG methodology within the Fortran90 li-
brary SAMG. In these two chapters, we discuss, in particular, the choice of suitable AMG
components and the performance of resulting approaches for three different classes of model
problems. To be more specific, we consider anisotropic vector Laplacians, reaction-diffusion-
like models and drift-diffusion-like models. They represent, in particular, some important
properties of the discrete PDE systems discussed in Chapter 5 in a simplified, “concentrated”
way. In Chapter 5, SAMG’s efficiency and robustness is demonstrated for stress analy-
sis, reaction-diffusion systems and drift-diffusion systems arising in industrial semiconductor
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process and device simulation. We conclude this thesis inChapter 6 and give an outlook on
future research. Finally,Appendix A contains some additional aspects, outsourced for better
readability.

Remark: Parts of this thesis, namely a short introduction into the point-based framework
and some results for semiconductor process and device simulation, have been published in
[27, 24, 25, 26, 19, 18].
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Very special thanks go to Dr. Klaus Stüben for his continuous support of my work and
especially of this thesis; for all the inspiring and fruitful discussions with one ofthe AMG
experts, and also for the great effort he spent with proofreading my thesis.

I wish to thank Prof. Dr. Rudolph Lorentz and the Ebel family for proofreading parts of this
thesis.

Prof. Dr. R̈udiger Seydel is gratefully acknowledged for beeing co-examiner of this thesis.

The Delft Institute of Microelectronics and Submicrontechnology (DIMES) at the TU Delft,
the Integrated Systems Laboratory at the ETH Zürich, and the company Synopsys Inc. pro-
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Chapter 2

Fundamentals, Approaches,
Notation

The demand for optimally scaling, more robust and more generally applicable iterative linear
solvers has been driving the development of multigrid approaches for more than 30 years now.
Two general types of multigrid exist, geometric multigrid (GMG) and algebraic multigrid
(AMG). Today, both represent large classes of approaches, and additionally there are many
“hybrid” approaches which exhibit some characteristica of GMG or AMG or both.

Classical articles or books about geometric multigrid methods include [7, 91, 34]. For
a comprehensive survey of modern geometric multigrid, the reader is referred to the mono-
graph [94], also containing [87] in which an in-depth introduction to algebraic multigrid is
given. [14] reviews “robust” multigrid and [88, 103] review AMG, including references to
many important related multi-level approaches. A survey of iterative methods with a special
emphasis on accelerators can be found in [76]. The very recent [3] gives a survey on precon-
ditioners including (multi-level) ILU-type methods as well as sparse approximate inverses.
We will briefly review important approaches and relationships to AMG in Section 3.2.6.

The purpose of this chapter is threefold. Firstly, Section 2.1 summarizes fundamental
principles which form the basis of concrete AMG approaches and characterizes the current
status of AMG on the general point of view of someone comparing iterative matrix solvers.

Secondly, Section 2.2 gives a survey of the two different AMG methodologies that can be
found today, namely classical and aggregation-based AMG, as well as extensions, new de-
velopments and current research activities. In particular, we survey which AMG approaches
- besides our general AMG methodology - are already available for discrete PDE systems.

In the third part of this chapter, Sections 2.3 and 2.4, we introduce important general
notation and definitions used in the subsequent chapters. In particular, we define the notation
of the formal components of each approach belonging to our AMG methodology.

Remark 2.1 The reader is assumed to be familiar with the basics of multigrid, in particular
with the two fundamental principles, namelysmoothingandcoarse-grid correction, and with
the general multigrid cycling (see [94], for instance). N

Remark 2.2 Note that, unless explicitly stated otherwise, the term “AMG” stands for “clas-
sical AMG” throughout this thesis. A general exception from this rule is Section 2.2.N

Remark 2.3 We only investigate PDE systems in real space and, accordingly, only real ma-
trices. It is assumed that the given matrixA is nonsingular and all diagonal entries are positive
unless explicitly stated otherwise. N
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2.1 Fundamentals

Roughly speaking, two basic observations motivated the development of geometric multigrid.
One the one hand, when applied to a discrete elliptic problem, classical iterative methods like
Gauss-Seidel relaxation converge very slowly but smooth1 the error quickly. On the other
hand, a smooth error can be well represented on a coarser grid where a reduction of its
low-frequency components, causing the slow convergence, can be performed with less com-
putational effort. These two observations constitute the fundamental multigrid principles,
smoothingandcoarse-grid correction, which - translated or generalized appropriately - lay
the foundation for all multigrid approaches, geometric as well as algebraic ones. The inter-
play of both principles as realized within a concrete approach determines the efficiency of
this approach.

Each GMG and AMG is not a single method but a methodology, representing a whole
class of different concrete approaches. Moreover, there are two general AMG concept,clas-
sical AMG and aggregation-based AMG, each constituting even a whole methodology on
its own. Particularly these two methodologies are briefly explained and reviewed in Section
2.2.1. The aim of this section is to survey important principal aspects ofclassical AMGas
are revealed to someone comparing GMG, AMG and one-level iterative solvers from a very
general point of view. It should be noted that these aspects can principally be translated to
the aggregation-based AMG methodology.

We start with a characterization of robust multigrid (Section 2.1.1) mainly in order to
motivate why we develop AMG approaches. We explain why GMG cannot fulfill our goals
formulated in Chapter 1, in particular the goal of developing plug-in matrix solvers. In the
general characterization of AMG (Section 2.1.2), we point out similarities and differences to
GMG, explain why AMG development is a reasonable way for fulfilling at least important
parts of our goals, indicate open questions and perform a rough classification of AMG in
the circle of iterative matrix solvers. The aspects briefly mentioned in Section 2.1.2 will be
explained in more detail in the following chapters.

2.1.1 Robust Geometric Multigrid

Geometric multigrid interpretes the two principles, smoothing and coarse-grid correction, in
their original, geometric sense. It aims at solving grid-based equations,

Lhvh = bh onΩh , (2.1)

whereLh denotes a (finite-difference) operator andvh andbh functions defined on a grid or,
synonymously, mesh2 Ωh. Typically, (2.1) represents an elliptic partial differential equation
(with boundary conditions) discretized onΩh. Most typically,Ωh is a structured grid.

The main property of all GMG approaches is that they operate on a predefined hierarchy
of grids, in standard cases (rectangular meshes) obtained by a simple coarsening3 process

1The term “smooth” is meant relatively to the underlying discretization grid here.
2h refers to a “grid parameter”, related to a mesh size.
3We define “coarsening” as the process of constructing the next coarser grid (or level). The construction of the

intergrid transfer operators is regarded as a separate process.
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as, for example, by doubling the mesh size in each direction (“h → 2h”). Other classical
components are Gauss-Seidel relaxation for smoothing, straightforward geometric intergrid
transfer operators (bi-/tri-linear interpolation and restriction by injection or full weighting)
and coarse-grid operators which are analogs of the finest-grid difference operatorLh. With
these components, multigrid cycles (typically V-, F- or W-cycles) are performed through this
hierarchy in an iterative manner to obtain an approximation of the solutionvh.

Straightforward multigrid components of the above type make GMG most suitable for
isotropic problems on structured grids, the classical and simplest model problem being Pois-
son’s equation, discretized by the standard five-point stencil on the unit square. However,
for more complex applications, these simple and purely geometry-based components have
to be improved or replaced. Difficulties are caused by, for example, non-uniform smoothing
(as for anisotropic equations on standard-coarsened grids) and insufficient correction of error
components on coarser grids (as for diffusion equations with strongly varying coefficients).

Since smoothing and coarse-grid correction are required to interact efficiently, fixing the
grid hierarchy means tuning the components listed above. Among the major steps towards
increasing the robustness of geometric multigrid and extending the range of applicability
were the development of

• operator-dependent interpolation in combination with a Galerkin-based4 coarse-grid
correction process, originally developed to treat diffusion equations with discontinous
coefficients,

• more complex smoothers if simple coarsening strategies shall be employed, examples
being ILU-type smoothers or alternating line relaxation for two-dimensional anisotropic
equations, alternating plane relaxation for three-dimensional ones,

• sophisticated coarsening techniques if simple smoothers shall be employed, for in-
stance semi-coarsening in multiple directions for anisotropic equations.

The applicability of such more sophisticated techniques is relatively straightforward in regular-
grid applications. However, with the exception of the first point and the ILU smoothing, these
techniques can hardly be realized on less structured meshes, in particular in 3D. This is also
true for each multigrid component which is geometrically constructed, even if the PDE to be
solved is “simple”. In particular, the more complex a grid the more difficult is the definition
of suitable coarser grids just by exploiting geometric considerations, and in case of unstruc-
tured finite element (FE) or finite volume (FV) meshes this is hardly ever feasible. Thus,
predefining the grid hierarchy is one of the crucial points in applying GMG to “real-life”
applications.

In summary, GMG approaches can be highly efficient iterative solvers for a variety of con-
crete cases. However, a GMG approach is not a plug-in solver. It has usually to be tailored
to the specific simulation code and the class of problems to be solved and is not generally
applicable to large problem classes in the sense of a robust “black-box” solver. Moreover,
for practical applications on complex three-dimensional meshes, it can be extremely cumber-
some - if possible at all - to construct an efficient geometric multigrid method. These are the

4For a definition, see Section 2.3.2.
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limiting factors which have prevented GMG approaches from being widely integrated into
industrial simulation codes.

2.1.2 A General Characterization of Algebraic Multigrid

Operator-dependent interpolation and Galerkin-based coarse-grid correction have an interest-
ing property: both can - in principle - be constructed purely algebraically, based on the under-
lying matrix and without referring to a grid. Hence, their invention did not only lead to more
robust geometric multigrid approaches but was also the first step towards algebraic multigrid.
Although these ideas have already been incorporated to some extent in the first “black-box”
multigrid solver [21], this was still a geometric multigrid approach with a geometry-oriented
coarsening. A breakthrough in overcoming the limitations imposed by geometric principles
as discussed above, was achieved by the observation that, for certain matrix classes, even
reasonable coarse levels themselves could be computed solely based on the entries of the
matrix describing the problem. This observation has initialized the development of algebraic
multigrid methods in the early eighties5.

Algebraic Analogy AMG extends the two fundamental multigrid principles - smoothing
and coarse-grid correction - to a fully algebraic setting. All GMG components such as
smoothing, coarsening, interpolation, restriction and the grid operators, have an algebraic
analog and play a similar role6 as in geometric multigrid. This begins with the fact that,
instead of a grid-based formulation (2.1), AMG operates on linear algebraic equations,

Av = b or, equivalently,
nv∑
j=1

aijvj = bi (i = 1, . . . , nv) (2.2)

with A = (aij) ∈ IRnv,nv being a real (sparse) matrix,b, v ∈ IRnv the right-hand side and
the solution vector, respectively, andnv ∈ IN the size ofA. The components of the vector
v are calledvariables, denoted byv1, . . . , vnv

. The corresponding index set{1, . . . , nv} is
denoted byV.

If we replace the termsgrid point, grid, coarser gridandhierarchy of gridsby their “alge-
braic analogs”,variable, set of variables(constituting a particularlevel), subset of variables
andhierarchy of levels, respectively, we can describe algebraic multigrid7 in formally the
same way as a geometric multigrid method. In particular, the setV of variables formally plays
the same role as the setΩh of grid points, and coarse-grid discretizations used in geometric
multigrid to reduce low-frequency error components now correspond to properly constructed
matrix equations of reduced dimension, the Galerkin coarse-level matrix equations.

A Conceptual Difference between GMG and AMG In both GMG and AMG, error com-
ponents which cannot be diminished by the coarse-level correction process must efficiently
be reduced by the smoothing process and vice versa. However, the way in which an efficient

5References will be given in Section 2.2.
6Note again that we considerclassicalAMG here.
7We should actually use the term multilevel instead of multigrid. However, due to historical reasons and to

emphasize the analogy to geometric multigrid, we stick to the latter.
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interplay between both processes is achieved, constitutes the conceptual difference between
geometric and algebraic multigrid. In (classical) GMG, a hierarchy of grids is predefined;
the coarsening process and the interpolation operators are fixed and kept as simple as possi-
ble. Consequently, for an efficient interplay between smoothing and coarse-grid correction,
the smoothing process has to be adjusted to the pre-defined grid hierarchy to achieve good
convergence. AMG, on the other hand, only knows (2.2), at least in a purely algebraic set-
ting. In particular, a suitable multilevel hierarchy is not known a priori. In contrast to GMG,
a preferably simple smoothing process (typically Gauss-Seidel relaxation) is fixed in AMG,
and AMG’s main task is then to build up a suitable, problem-dependent hierarchy of lev-
els including all necessary transfer operators as well as coarse-level operators8 automatically
and “algebraically” by solely using information contained in the matrixA. Of course, this
coarse-level correction process has to be adjusted to the smoother to yield an efficient ap-
proach. It should be noted that, for AMG, smoothing has a somewhat different meaning than
for GMG. In Section 3.2.1, we will define and explain thisalgebraic smoothnessin detail. For
the moment, we simply think of analgebraically smoothfunction (vector) being principally
unaffected by relaxation.

Constructing the Hierarchy AMG provides a methodology for solving certain matrix
equations hierarchically. A necessary condition for each hierarchical approach to be suc-
cessful is that for the concrete problem class a “physically” meaningful hierarchy exist. An
additional necessary condition for the AMG methodology to be successful is that this hierar-
chy can be constructed algebraically.

As will be explained in Section 2.3.2, the degrees of freedom in constructing a coarse-
level correction process are the definition of coarsening and interpolation. The crucial condi-
tion to obtain a robust and efficient AMG solver is then to define coarsening and interpolation
such that the overall coarse-level correction supports the smoothing process chosen - if this is
possible for the concrete matrix class under consideration. AMG attempts to coarsen only “in
directions” in which relaxation really smoothes the error for the given matrixA. The guiding
principle in constructing the operator-dependent interpolation is complementary to the above
principle of coarsening. That principle is toforcethe range of interpolation to approximately
contain those “functions” which are unaffected by relaxation, that is the algebraically smooth
ones.

Flexibility For certain important matrix classes, the relevant information for constructing
a suitable hierarchy is contained in the matrix itself, for instance, in terms of size and sign
of the coefficients. AMG can then create the necessary operators fully automatically, and the
resulting coarse-level correction process islocally adapted to the smoothing properties of the
given smoother. The automatic adaptation to the specific requirements of the matrix at hand
is the major reason that AMG’s efficiency is not sensitively depending on the concrete matrix
equation to be solved, within the matrix class considered, -despite using simple smoothers.
This makes AMG very flexible, efficient and robust in solving certain large matrix classes of
high practical importance.

8The operators correspond to matrices here.
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The Setup Phase - A Price to be Paid The flexibility of AMG and its simplicity of use,
of course, have a price: Asetup phase, in which the given problem (2.2) is analyzed, the
coarse levels are recursively constructed and all operators are assembled, has to be concluded
before the actualsolution phasecan start. This overhead is one reason for the fact that AMG
is usually less efficient than comparable GMG approaches - if applied to problems for which
GMG canbe applied efficiently. Another reason is that AMG’s components can, in general,
not be expected to be “optimal”9 they will always be constructed on the basis of compromises
between computational work, memory requirements and overall efficiency. Nevertheless, if
applied to standard elliptic model problems, the computational cost of AMG’s solution phase,
ignoring the setup cost, is typically comparable with the solution cost of arobustGMG solver.
In addition, since AMG’s flexibility makes it much wider applicable than GMG, the cost of
AMG’s setup phase, enabling this flexibility, easily pays off.

Available Theory AMG has been developed based on a variational concept (see Section
3.1.1), and convergence theory available so far assumes the matrixA to be symmetric pos-
itive definite at least. AMG is guaranteed to converge then. However, in order to obtain
reasonable statements on problem-size (h-) independent convergence rates, much stronger
conditions have to hold (see Chapter 3). We summarize already here that, similar to GMG,
AMG has been best-developed for large classes of discretized ellipticscalar PDEs. To be
more specific, it is theoretically best-understood and very efficient for weakly diagonally
dominant symmetric M-matrices10, as often arising for such PDEs. The theory also covers
certain deviations from this ideal case. In this thesis (Sections 3.3 and 3.4), the AMG the-
ory is generalized to our strategies for discrete PDE systems, principally following the way
theoretical results have been obtained for scalar applications.

Unfortunately, convergence theory of practically applicable AMG approaches for matri-
cesA considerably deviating from the strong conditions of this theory is not available so
far. However, it should be noted that, assumingA only to be non-singular, smoothing and
coarse-level correction can always be defined - in an impractical way though - so that AMG
degenerates to a direct solver (see [87]). Although such approaches are much too expensive
in practice, they indicate that AMG can be applied to much more general matrix classes, and
they also served to motivate the development of certain, more realistic, practically applicable
algorithmical components, as has been discussed in [87] (cf. Section 3.2.6).

Practical Applicability Indeed, experience has shown that the conditions of weak diagonal
dominance, symmetry and M-matrix-property are sufficient but not necessary for AMG to be
applicable. In practice, AMG approaches can work efficiently even for certain matrix classes
which are considerably far away from this ideal case.

However, for other important matrix classes, appropriate smoothers and techniques for the
automatic construction of a reasonable coarsening and interpolation have not been developed
so far, and it is an open question how far we can go with AMG in practice. This is in particular
true for discrete PDE systems.

9in the sense that - though exhibiting an “optimal” complexity ofO(N) - the “magnitude ofO(N)’s constant”
might be rather large.

10For a definition of these and other matrix types mentioned in the following, see Section 2.4.4.
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Concrete developments for scalar applications are reviewed in Section 2.2.1. The status-
quo on developments for PDE systems is surveyed in Section 2.2.2. Chapters 3 to 5 are
concerned with theoretical and, in particular, practical aspects of our flexible, general AMG
methodology for PDE systems. Our methodology considerably broadens AMG’s range of
applicability to many important types of PDE systems. Among them are numerically chal-
lenging PDE systems arising in industrial semiconductor simulation.

AMG as a Preconditioner It is a general experience that, for most practical applications,
AMG works most efficiently when applied as a preconditioner for CG, BiCGstab or GMRes,
for instance, so-called accelerators (see Section 4.4). In fact, simplified AMG variants used
as preconditioners are often considerably more efficient than more complex AMG variants
applied as stand-alone solvers. Moreover, only due to acceleration AMG works successfully
for many practical applications. This is especially true for PDE systems11. Acceleration be-
longs to the most important means known today to increase AMG’s applicability, robustness
and efficiency.

SAMG - a System for Experts As indicated above, smoothing, coarsening, interpolation
and acceleration are the main components that have to be carefully chosen for each class of
applications in order to obtain an efficient AMG approach - which is possible not for all but
many important matrix classes. We will see in the course of this thesis that many different
variants for each of these four components are available. The goal in choosing concrete
variants is always to find a compromise between robustness within whole matrix classes and
highest efficiency for individual matrices.

Rather than one generally applicable approach, AMG thus represents a whole methodol-
ogy. Consequently, we say that the software realization of our AMG methodology, SAMG
(see Chapter 4), is a system for experts. This means, in particular, that SAMG in its current
form is not a black-box, but a library of different matrix solvers, and each individual solver
exhibits black-box character within the problem class(es) it can be applied to.

SAMG - A Plug-In Library of Matrix Solvers AMG only needs a matrixA and right-
hand sideb to be given, and, in case of PDE systems, some additional information12 which
is easily available in each simulation code. This implies two things. Firstly, as long as the
underlying matrices have suitable properties, AMG can be applied to problems on arbitrarily
complex meshes in 2D or 3D and even to pure matrix equations without a geometric back-
ground at all. This is a great practical advantage over GMG and also certain AMG(-type)
approaches (see Remark 2.7). Secondly, SAMG’s interface can be and has been kept very
simple and comparable with that of classical one-level plug-in solvers as typically used in
industrial simulation codes. Therefore, the SAMG library itself can easily be plugged into
these codes.

A Rough General Classification The aspects mentioned above give a first glance at the
advantages and limits of the AMG methodology and our realization SAMG. If (S)AMG is

11See Sections 4.4 and 4.6, and Chapter 5 for numerical results.
12Details will be given in Section 4.1.1.2.
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applicable to a certain matrix class, its strenghts are its optimal complexity (O(N)), its robust-
ness and black-box character, its plug-in character and applicability for complex geometric
problems and even problems with no geometric background at all. That is, (S)AMG provides
an attractive multilevel variant whenever GMG is either too difficult to apply - for instance,
on unstructured meshes - or cannot be used at all. Therefore, (S)AMG should not be regarded
as a competitor of GMG, but as an efficient alternative to standard one-level preconditioners,
such as ILU (see Section 4.4). If (S)AMG is applicable to a given matrix class, it fulfills
also the remaining goals listed in Chapter 1. The main task of this thesis is the extension of
(S)AMG’s applicability to practically relevant PDE systems.

2.2 Specific Approaches

Algebraic multigrid is most mature in solving large classes of scalar elliptic PDEs. Only a
few AMG approaches have been developed for particularsystemsof PDEs. In Section 2.2.1,
we will briefly characterize the general types of scalar AMG approaches that currently exist.
This section can be seen as an update to corresponding sections in [88, 87]. Afterwards,
in Section 2.2.2, we give a survey on AMG approaches that are applicable to certain PDE
systems. Since our general AMG methodology covers, in particular, most of the underlying
ideas, we will refer to the respective sections in Chapter 3 where those AMG approaches are
reviewed and relationships to approaches based on our methodology are explained.

2.2.1 AMG for Scalar Applications

2.2.1.1 Classical AMG

The development of AMG started at the beginning of the eighties for problemsAv = b
with weakly diagonally dominant Stieltjes13 matrices with first steps and results given in
[10, 86, 11]. A theoretical basis has been given in [70] and especially in [8]. The methodology
described in these papers has originally been developed as a close algebraic analog of robust
geometric multigrid. It only needs a matrix and right-hand side to be given. The setup phase
is performed fully automatically and produces coarse levels which aresubsets of the finest
level(-setV). The definition of interpolation formulas and coarsening strategies is based on
the principle ofalgebraic smoothness(see Section 3.2.1) and the notion ofstrong connectivity
(see Section 4.2.1.1) as reflected by the magnitude of the off-diagonal entries of the matrix.
The class of approaches based on this methodology constitutes what we callclassical AMG,
that is, even classical AMG is not a fixed method, but rather a methodology with different
concrete realizations.

In [70], the first realization of classical AMG was described. Its Fortran77 implementa-
tion, AMG1R5, was made publically available in the mid eighties and is widely being used
even today. The quite recent [17], for instance, gives a study of robustness and scalability of
(de facto) AMG1R5.

For several years then, the research activities on AMG have been sleeping. They were
revitalized at the beginning of the nineties when particularly industry has started to feel the

13for a definition of this and other matrix types, see Section 2.4.4.
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need for more efficient matrix solvers due to problem sizes bursting the capabilities of direct
and iterative one-level methods. AMG has thus become a popular and fruitful area of research
with a rapid development still ongoing.

During this time, classical AMG approaches have substantially been enhanced. Most
of the new developments were initiated by the fact that both the AMG1R5 algorithm and its
technical realization reached their limits when applied to ever larger and more complex indus-
trial problems. In particular, industry enquired for less memory-consuming and more robust
approaches. Driven by these and other industrial needs, more robust interpolation formu-
las, namelystandard interpolationandmulti-pass interpolation, andaggressive coarsening
strategies, reducing memory requirements considerably, have been developed (see [48, 87]
and Sections 4.2.1.3 and 4.3). Incorporating these new techniques, a completely new AMG
code, called RAMG [87], was developed. RAMG is a very flexible, robust and efficient ap-
proach for large classes of discretizedscalarelliptic PDEs and similar matrices. It is based
on the same methodology than AMG1R5 but provides different algorithmical components,
and several variants for coarsening and interpolation as the ones mentioned above.

The classical AMG methodology [87], reviewed in detail in Section 3.2, constitutes the
basis for the general AMG methodology that will be investigated in this thesis. Our library
SAMG (see Chapter 4) is a corresponding generalization of the library RAMG. Further point-
ers to the literature investigating classical AMG approaches are given in [87, 88], for instance.

2.2.1.2 Aggregation-Based AMG

In parallel to the improvement of classical AMG, a second type of AMG approaches was
developed,aggregation-based AMG14, see [4, 98, 5, 97, 52], for instance15. Correspond-
ing methods define coarser levels consisting of so-calledaggregatesof variables (ormacro-
variables, supernodes), each of which a new coarse-level variable is associated with. Ag-
gregates are disjoint subsets of variables. In the simplest case, interpolation from the new
coarse-level variables to the associated aggregates ispiecewise constant: all variables be-
longing to an aggregate receive the same interpolation formula. Due to their simplicity, in
particular with respect to their implementation, aggregative AMG methods have gained a
large attractivity.

Unfortunately, an immediate implementation of these simple components leads to rather
inefficient, not robust AMG approaches, even if used as a preconditioner. This is particu-
larly true for second order problems for which a mere piecewise constant interpolation is not
sufficient. Consequently, the basic idea of aggregative AMG needs certain improvements in
order to become practically applicable. One remedy - whose efficiency and robustness is
however limited to some rather simple situations - isovercorrection[4], rediscovered in [5]
as a rescaling of the Galerkin operator. Another remedy which accelerates aggregative AMG
also in more general situations is an a-posteriori improvement of interpolation by employing
a smoothing process(smoothed aggregation) before the Galerkin operator is computed. In
[98, 99], oneω-Jacobi relaxation step16 with piecewise constant interpolation serving as a
first guess is proposed for this purpose. The resulting interpolation is typically much better

14also calledaggregative AMG.
15The idea of aggregation is much older, see [4] for references.
16applied to a “filtered matrix” derived from the original matrixA by adding all weak connections to the diagonal.
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than the piecewise constant one. For some “ideal” problems and suitableω (depending on the
problem and the aggregates), linear interpolation is approached. Resulting solvers still tend to
be not robust when used stand-alone. Classical AMG approaches usually show a more stable
behavior because more effort is invested in creating coarsening and interpolation. When used
as preconditioners, however, efficiency is often substantially increased - for both aggregative
as well as classical AMG (cf. Sections 3.2.5 and 4.4).

At first sight, the two AMG types differ substantially in the way coarsening and interpo-
lation are constructed. However, to some extent, aggregation-based AMG (in its basic form
as outlined above) can be regarded as a particularly simple limiting case of classical AMG
with the aim to keep coarsening as fast and interpolation as simple as possible in order to
arrive at very cheap methods (cf. [87]). Both classical and (smoothed) aggregative AMG
thus try to find a good compromise regarding convergence, computational work and memory
requirements - but approach this compromise starting from somewhat opposite points.

Remark 2.4 For some theoretical analysis of convergence of smoothed aggregation, see
[97]. An extension of the concept of smoothed aggregation for convection-diffusion equa-
tions is studied in [31]. The authors’ method tackles the (assumed to be known!) “convec-
tive” and “diffusive” parts of the matrix separately and propose for the convective part the
use of non-symmetric “one-sided prolongator smoothers”. N

Remark 2.5 It should be noted that for both classical and aggregative AMG parallel variants
have been developed (see [49] and [68], for instance), and main research on this important
topic is ongoing. N

2.2.1.3 Towards More Accurate Interpolation

As has been indicated above and will be discussed in detail in the next chapter, one of the
most crucial points for the efficiency of an AMG algorithm is the accuracy of interpolation.
There are still open questions regarding the best way to define coarsening and interpolation,
for instance, if the matrixA is symmetric positive definite, contains relatively large positive
off-diagonal entries, and is far from being weakly diagonally dominant. In such cases, the
performance of both classical as well as aggregative AMG may be only suboptimal.

Motivated by the fact that classical AMG in its original form is mainly suitable for M-
matrices, but finite element discretizations, for instance, can produce also non-M-matrices,
several new ideas have been published in the last years. Among them areelement precondi-
tioning, element interpolationandenergy minimization.

The element preconditioning technique [33] assumesA to stem from a finite-element
discretization and its element-stiffness matrices to be accessible. Based on this information,
it constructs an M-matrixB which is spectrally equivalent toA. The approach [71] (i.e.
AMG1R5) applied toB is then used as a preconditioner for the original problem. In some
situations, and if the element-stiffness matrices are “similar” to each other, this AMG-type
approach based on AMG1R5 can yield a more efficient preconditioner than AMG1R5 itself.

It is a well-known fact that error components which are slow-to-converge w.r.t. the re-
laxation process correspond to the eigenvectors ofA belonging to the smallest eigenvalues
(see also Section 3.2.1). A rather new direction of AMG research makes direct use of this
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fact and tries to define interpolation so that the smaller the associated eigenvalue is, the better
the eigenvectors are interpolated. To satisfy this by explicitly computing the eigenvectors of
A is, of course, too expensive. However, in case of finite-element methods - assuming the
elements and their element-stiffness matrices to be accessible - two ways to determinelocal
representations of slow-to-converge error components have been reported in the literature.

One way consists in deriving measures (related to measures used in classical multigrid
theory) the minimization of which allows the determination of these local representations.
This approach, the first in this field, is calledAMG based on element interpolation, AMGe
[12, 16]. A derivative,AMGe based on element agglomeration[40], exploits AMGe ideas
not only for interpolation, but also in order to produce coarse grids and coarse elements by
an agglomeration17 approach.

The other way,spectral AMGe(ρAMGe) [16], is based on the spectral decomposition (i.e.
eigenvector computations) of small collections of element-stiffness matrices. This approach
is in its infancy, in particular because there are many open questions regarding a successful
extension to a robust algebraicmultilevel algorithm.

That AMGe is more robust for certain model problems than a classical AMG approach
(comparable to AMG1R5) has been demonstrated in [12, 40]. Hence, it is an interesting
new approach which might have the potential of leading to more robust AMG-type methods.
Unfortunately, the increased robustness is at the price of a more expensive setup phase, a
limited applicability (FE discretizations) and the need for additional information (knowledge
of the element-stiffness matrices). In particular, AMGe is not a “pure” algebraic approach any
more and thus points in a somewhat different direction compared with the aims pursued in
this thesis. It should be noted thatelement-free AMGe[35] tries to overcome the outlined
limitations by algebraically imitating the AMGe-construction of interpolation weights by
means of a so-called extension operator. However, this approach is still in its infancy.

Other algebraic approaches, designed for the solution of FE-discretized PDEs, have been
considered in [53, 107, 15]. In these approaches, the coarse-space basis functions are defined
so that their energy is minimized18 in some sense. This does not require the element-stiffness
matrices to be known, but leads to aglobal (constraint) minimization problem the solution
of which would be very expensive. However, iterative solution processes are proposed in the
three papers to obtain approximate solutions, indicating that the extra work to be invested is
acceptable. It is interesting to see that for a particular situation, the first iteration of the process
described in [53] results in the method [99] developed earlier. While [107, 15] concentrate
on scalar PDEs, an extension to PDE systems from linear elasticity is one major aspect in
[53] (see also the next section). The test examples presented in the three papers indicate that
energy minimization can help convergence. However, this benefit is essentially offset by the
expense of the minimization.

The approach [104, 102] uses certain local minimizations based on the Euclidean norm19

to find, for each variable, pairs of variables which would allow for a good interpolation.
For the minimizations, so-called test vectors (see [105]) have to be provided. They should

17Loosely speaking, aggregation and agglomeration differ in the “target” of grouping: whereas aggregates are
built from variables and are disjoint subsets of them, an agglomeration process builds macro-elements from finite
elements. Here, boundary variables of macro-elements can belong to more than one macro-element.

18In the FE context, it is natural to define interpolation implicitly by constructing the coarse-space basis functions.
19instead of the energy norm as the approaches before. These norms are defined in Section 2.4.5.
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approximately represent eigenvectors corresponding to the smallest eigenvalues ofA (if A is
symmetric positive definite). A heuristic algorithm is used to minimize the total number of
C-variables. In contrast to other AMG methods, interpolation and restriction are constructed
separately in case of a non-symmetricA. The approach is also available in parallel.

Remark 2.6 In this context, it should be noted that, albeit classical and aggregative AMG
have been developed in the variational context, both have successfully been applied to nu-
merous non-symmetric problems without any modification. In particular, the transpose of
interpolation is always used as restriction. A heuristical, but no theoretical justification is
available at this time. N

Remark 2.7 In contrast to classical and aggregative AMG, the approaches described above
need additional information which are not necessarily available. This is especially the case
for those approaches which have been designed for FE discretizations and need access to
the element-stiffness matrices. Such approaches cannot be plugged into existing simulation
codes in a straightforward way any more. This is why we classify them here as AMG-type
rather than AMG approaches. N

A new trend in general research for AMG approaches has been initiated by Brandt’s
paper on compatible relaxation [9]. [22] presents a theory for AMG that allows for general
smoothing processes and general coarsening approaches. In particular, several compatible
relaxation methods are introduced, and a theoretical justification is given for their use as
tools for measuring the quality of coarse grids. Several research groups are investigating
how the concept of compatible relaxation can be exploited in order to yield new efficient and
practically applicable AMG methods.

Another vivid area of AMG-related research is concerned with multilevel ILU-type and
reduction techniques. In Section 3.2.6, we will briefly review some of these methods and
discuss relationships to AMG.

2.2.2 Available AMG Approaches for PDE Systems

In practical applications, a variety of PDE systems has to be solved the numerical properties
of which can differ drastically. Relevant PDE systems often consist of diffusion equations
with additional convection, drift or reaction terms20. The individual PDEs are often of first
order in time (if time-dependent) and of second order in space. They can be nonlinear and/or
strongly coupled, the latter normally enforcing a “fully coupled” solution approach, that is, a
simultaneous solution for all physical unknowns involved.

Typical approaches implemented in modern (industrial) simulation packages consist of
an implicit discretization in time and space21, a Newton-type22 method to treat the nonli-
nearities and a direct method and/or one or more iterative one-level methods to solve the

20Diffusion is to be understood as the movement of particles due to a concentration gradient,convection as
the transport of particles with a flowing fluid,reaction as the transformation of species,drift as the movement of
particles due to an external force, for example, the movement of electrically charged particles due to an electric field.

21possibly including time stepping control and regridding methods.
22possibly with a sophisticated damping scheme.
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arising systems of linear equations. The corresponding matrices are large, sparse, frequently
ill-conditioned, often not symmetric positive definite, and usually far from being M-matrices.
Hence, these matrices do not exhibit the properties that the “scalar” AMG approaches men-
tioned above principally rely on.

A way to overcome this problem consists in developing appropriate generalizations or ex-
tensions of existing AMG approaches. Until now, this way has been trodden only for specific
PDE systems, mainly linear elasticity and Navier-Stokes systems. Appropriate extensions
of the agglomeration-based AMG methods, mentioned in Section 2.2.1.3, can be applied to
FE-discretized linear elasticity problems. We will mention other progresses made for certain

• linear elasticity problems in Section 3.3.3.2 and Remark 3.31,

• CFD problems (Navier-Stokes systems) in Remark 3.19,

• oil reservoir simulation problems23 in Remark 3.20.

As indicated in Chapter 1, besides the developments mentioned above, AMG approaches
have not been investigated for PDE systems so far. This is in particular true for industrial
reaction-diffusion24 as well as drift-diffusion systems.

The approaches reviewed in the remarks listed above have several strong relationships to
approaches belonging to our AMG methodology. Our general AMG methodology covers,
among others, also the basic ideas of these approaches. This will be explained in more detail
in the respective remarks.

2.3 Formal Algebraic Multigrid Components

Each AMG algorithm consists of two parts, namely thesetup phasethe purpose of which
is the automatic construction of a hierarchy of levels and transfer operators and thesolution
phasein which a multigrid cycling process is performed. To describe an AMG approach,
it is sufficient to specify the components of a two-level process. The recursive extension of
a two-level to a multilevel process is formally straightforward then. In order to distinguish
fine-level and coarse-level quantities, we use indicesh andH, respectively. In particular,

Ahv
h = bh or

∑
j∈Vh

ahijv
h
j = bhi (i ∈ Vh) , (2.3)

AHv
H = bH or

∑
j∈VH

aHijv
H
j = bHi (i ∈ VH) . (2.4)

h andH are chosen in order to indicate the formal similarity to geometric multigrid. How-
ever, in general, they are not related to a discretization parameter. Later on, in subsequent
chapters, we will only make use of these level indices if it is necessary to distinguish two
consecutive levels.

23featuring linear elasticity problems and multi-phase flow problems in porous media, the latter typically black-oil
models consisting of a pressure equation and two continuity equations.

24For completeness, we want to mention that in [102] a very straightforward point-based extension of [104] has
been introduced and applied to two simple reaction-diffusion models. Similar to the approach [104], it needs test
vectors. The effort necessary to obtain such vectors has not been discussed, however.
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Remember the following general assumptions: In this thesis, it is assumed that the given
matrixA = Ah is real, nonsingular and

∀ i ∈ Vh : ahii > 0 , (2.5)

unless explicitly stated otherwise.

Remark 2.8 Results carry over to singular symmetric matricesA the nullspace of which
consist of the constant vectors only (in particular, all row sums of such matrices equal zero).
In this case, the singularity of the coarsest-level system has to be treated correctly by the
selected coarsest-level solver (for example, sparse Gaussian elimination), and interpolation
and restriction have to transfer constants exactly. Since the latter is ensured by all interpola-
tion and restriction operators proposed in the remainder of this thesis, we will not discuss the
zero-row-sum case explicitly. N

Remark 2.9 The case that some (exceptional) diagonal entries of the original, finest-level
matrix A are zero will be discussed in Section 4.1.1. The case that nonpositive diagonals
emerge on coarse levels, will be discussed in Appendix A.1. N

For each AMG two-level algorithm, the smoothing process and the coarse-level correction
process have to be defined. It must especially be explained how the coarse-level setVH of
variables is obtained (“coarsening”) and how the operators between the two levels, namely
the interpolation (or prolongation) IhHI

h
HI
h
H and restriction IHhI

H
hI
H
h , and the coarse-level operator

AH are computed.
We will explain in Sections 2.3.1 and 2.3.2 how smoothing and (Galerkin-based) coarse-

level correction do formally look for the class of AMG approaches which are considered in
the remainder of this thesis. In particular, we will see that25 coarsening and interpolation
are the degrees of freedom in the coarse-level correction process employed in our AMG
methodology.

We will see in subsequent chapters that the processes of smoothing, coarsening and in-
terpolation, even for the AMG class we restrict ourselves to, are not uniquely defined. Par-
ticularly, even though coarsening and interpolation are strongly related to each other - and,
moreover, to the smoothing process - there exist many variants for them. Concrete processes
for smoothing, coarsening, interpolation and their interplay will be discussed in Chapters 3
and 4.

2.3.1 The Smoothing Process

Given a linearsmoothing operatorShShSh, we denote a single smoothing step by

vh −→ vh with

vh := SMOOTH(Sh, Ah, bh, vh) := Shv
h + (Ih − Sh)A−1

h bh .
(2.6)

25besides the coarsest-level solver which is not explicitly discussed in this thesis but assumed to be a (sparse)
direct solver.
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Ih denotes the identity operator. Analogously,ν smoothing steps are denoted by

SMOOTHν(Sh, Ah, bh, vh) .

In terms of the current error,eh := vh? − vh with vh? denoting the exact solution of (2.3), the
application ofν smoothing steps means

eh −→ eh with eh := Sνhe
h . (2.7)

Convention: The letterv will normally indicate approximation or solution quantities and the
lettere correction or error quantities.

As mentioned above, AMG usually employs rather simple smoothers. Often, a variable-
wise Gauss-Seidel (GS) relaxation (i.e.Sh = Ih − Q−1

h Ah with Qh being the lower trian-
gular part ofAh, including the diagonal) is selected. Clearly, unlessAh is positive definite,
such a simple variable-wise relaxation method is only reasonable ifAh fulfills additional re-
quirements, in particular, its diagonal elements should be sufficiently large compared to the
off-diagonal entries.

In this thesis, we will consider variable-wise, unknown-wise and point-wise GS relaxation
processes26, ω-Jacobi relaxation, i.e.Sh = Ih−ωD−1

h Ah withDh = diag(Ah), and various
ILU variants (see, in particular, Sections 3.4.1.2 and 4.4 and Chapter 5).

2.3.2 The Coarse-Level Correction Process

The first step in AMG’s coarse-level correction process consists in the construction of the set
of coarse-level variablesVH . This is done by splittingVh into two disjoint subsetsCh and
Fh,

Vh = Ch∪̇Fh , (2.8)

- based on certain rules - withCh representing those variables which are to be contained in
the coarse level (CCC-variables) andFh being the complementary set of fine-level variables
(FFF -variables). This splitting is called aC/FC/FC/F -splitting of Vh. Note that here the coarse-level
variablesVH := Ch can be interpreted as a subset of the fine-level ones.

Then, an interpolation operatorIhH is constructed, fitting to theC/F -splitting, and map-
ping coarse-level corrections to fine-level ones. We only consider interpolationseh = IhHe

H

which are of the form

ehi = (IhHe
H)i =

{
eHi for i ∈ Ch ,∑
j∈Ph

i
whije

h
j for i ∈ Fh , (2.9)

wherePhi ⊆ Ch is called theset of interpolatory variables (for thei-th variable).
The restriction operatorIHh , mapping fine-level vectors to coarse-level ones, is always

defined to be the transpose of interpolation,

IHh := (IhH)T . (2.10)

26see Sections 3.3.1.1 and 3.4.1 for the last two.
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Obviously, both interpolation and restriction are full rank operators. In this thesis, the term
transpose always refers to the Euclidean inner product (see Section 2.4.5), denoted by(·, ·)E
in the following.

OnceVH andIhH , IHh are given, the AMG coarse-level correction operator (Galerkin-
operator) can be evaluated:

AH := IHh AhI
h
H . (2.11)

2.3.3 The Two-Level Process

Smoothing and coarse-level correction are now combined as in geometric multigrid. One step
of a two-level process, starting with the approximationvhold, is defined as depicted in Figure
2.1.

1. Performν1 pre-smoothing steps: vh := SMOOTHν1(Sh, Ah, bh, vhold) .

2. Compute theresidual: rh := bh −Ahv
h .

3. Restrict the residual to the coarse level:bH := IHh r
h .

4. Solve the coarse-level correction system:AHeH = bH .

5. Transfer the correctioneH to the fine level and correct the old approximationvh:

v
h := vh + IhHe

H . (2.12)

6. Performν2 post-smoothing steps: vhnew := SMOOTHν2(Sh, Ah, bh, v
h) .

Figure 2.1: One cycle of a two-level AMG method.

In terms of the error, one two-level cycle mapsehold → ehnew where

ehnew = Kh,He
h
old with K := Kh,H := Ih − IhHA

−1
H IHh Ah , (2.13)

if ν1 = ν2 = 0 (i.e. coarse-level correction without smoothing). If smoothing is performed,

ehnew = Mh,He
h
old with Mh,H = Mh,H(ν1, ν2) := Sν2h Kh,HS

ν1
h . (2.14)

Kh,H is called thecoarse-level correction operator, Mh,H the two-level iteration opera-
tor . Obviously, this AMG two-level process formally equals a geometric two-level process.
As in geometric multigrid, the extension to a multilevel process (with e.g. V-, F- or W-cycles)
is straightforward.
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2.4 More Basic Definitions and Notation

2.4.1 Unknowns and Points

We usually assumeA to result from the discretization and linearization of a system of partial
differential equation (PDEs)

F (u1, . . . , unu) = 0 (2.15)

in the domainΩ ⊆ IRd attached with reasonable boundary conditions. Here, theu1, . . . , unu

denotenu ≥ 1 scalar functionsIRd ⊃ Ω → IR, calledunknowns in the sequel. In the special
casenu = 1, (2.15) represents a scalar PDE.

The set of indicesV can be split intodisjoint subsetsU1, . . . ,Unu with V = ∪̇nu

n=1Un,
where the subsetUn represents the indices of variables belonging to then− th unknownun.
Theun andUn are both calledunknowns, which should not lead to any confusion.

We generally assume thei-th equation (thei-th matrix row) to “belong” to thei-th vari-
able (cf. also Remark 2.10 below). For some theoretical considerations in this thesis, it is
convenient to assume (2.2) to be reordered “unknown-wise”. That is, assuming any given
order of indices inside eachUn, the system (2.2) then has the form A[1,1] · · · A[1,nu]

...
...

...
A[nu,1] · · · A[nu,nu]


 v[1]

...
v[nu]

 =

 b[1]
...

b[nu]

 . (2.16)

Here,v[n] denotes the vector of variables associated with then-th unknown,b[n] the corre-
sponding part of the vectorb, andA[m,n] the submatrix ofA which reflects the couplings of
them-th to then-th unknown. The entries in theA[m,n] with m 6= n are calledunknown
cross-couplings. If an order of the unknownsUn and the variables within eachUn has been
fixed, a mapping of the variable-indices to the unknown-indices is induced, the so-called
variable-to-unknown mapping (VU mapping).

If (2.15) is discretized so that“the different unknowns are living on the same grid”,
we often assume the linear system (2.2) to be reordered “point-wise”. To be more specific,
assume that the setV is split into disjoint subsetsP1, . . . ,Pnp with V = ∪̇np

k=1Pk. Then,
these subsetsPk are calledpoints, wherenp > 1 denotes the number of mesh points, andPk
contains the indices of variables sitting at thek-th point. The set{1, . . . , np} is denoted by
Vp. Clearly, the variables associated with any fixed point, all belong todifferentunknowns.
The point-wise reordered linear system (2.2) looks like (assuming any given order of indices
inside eachPk):  A(1,1) · · · A(1,np)

...
...

...
A(np,1) · · · A(np,np)


 v(1)

...
v(np)

 =

 b(1)
...

b(np)

 , (2.17)

wherev(k) denotes the vector of variables located at pointPk, b(k) the corresponding part
of the vectorb, andA(k,l) the submatrix ofA, which reflects the couplings of thek-th to
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the l-th point. TheA(k,l) are calledpoint-coupling matrices. If an ordering of the points
Pk and the variables within eachPk has been fixed, a mapping of the variable-indices to the
point-indices is induced, the so-calledvariable-to-point mapping (VP mapping).

For an illustration of variables, unknowns and points, see Fig. 2.2(a).

Remark 2.10 VU and VP mappings can be defined for every discretized PDE system. They
are, however, not unique, but for many PDE systems there exists a “natural” structural de-
scription. The classical counterexample that a not even a “natural” relationship between
variables and matrix rows exists, is given by the Cauchy-Riemann system. N

Remark 2.11 In the special case that (2.15) represents a scalar PDE (nu=1), there is only
one unknown (U1 = V), and each variable corresponds to a point, i.e.Pk = {k} for all
k ∈ V. N

Remark 2.12 Often, all unknowns are represented at each point. But there are important
cases, as can be seen in Chapter 5, where this is not true. In such cases, typically, not all
functionsun exist in the whole domain (as in Fig. 2.2(a)). N

Remark 2.13 Usually, we think of points as being grid nodes or element centers. How-
ever, the above definition does not involve coordinates and, hence, it is only important that a
clustering(with disjointclusters) of the variables makes sense. N

2.4.2 Couplings, Patterns and Graphs

For formal descriptions, matrix-vector terminology is used. However, the use ofgraphs
is often very convenient to easily describe, motivate, and analyze AMG processes such as
coarsening and interpolation strategies. The use of graphs is a way to easily see similarities
and analogies to geometric multigrid processes.

All graphs used in this thesis are based on theconnectivity pattern Σ(A) of a matrixA
which is defined as the distribution of the nonzero entries ofA, i.e. the set of index pairs(i, j)
for which aij 6= 0. Note that in practice the connectivity pattern is a subset of thesparsity
pattern of A. We come back to this in Section 4.1.1.2.

The nodes of the graphs correspond to variables or points, depending on which type of
relation level we want to investigate. The edges of such a graph, that is the connections
between the nodes, are defined via the connectivity pattern in the following way. We call a
variablevi (directly) coupled(or connected) to variablevj if aij 6= 0. Correspondingly, the
(direct)neighborhoodof a variablevi is defined by

Ni := {j ∈ V | j 6= i andvi coupled tovj} . (2.18)

Analogously, a pointPk (an unknownUn) is said to be coupled to a pointPl (an unknown
Um) if there exists a variable inPk (Un) which is coupled to a variable inPl (Um).

For each of the coupling types, graphs can be drawn. In this thesis, we will often make
use of graphs representing couplings of variables or points. If it is necessary to visualize more



2.4 More Basic Definitions and Notation 25

than one “species”- variables, unknowns or points - at the same time, different “colors” (to
distinguish variables of different unknowns) and groupings of variables (to mark variables
living at the same point) can be used (see also Fig. 2.2(a)). Examples of such graphs are
given by the Figures 2.2(b) and 2.3.

2.4.3 More Specific AMG Notation

If it is necessary to distinguish between positive and negative off-diagonal entries ofA, we
use the notation

a−ij :=

{
aij (if aij < 0)
0 (if aij ≥ 0)

and a+
ij :=

{
0 (if aij ≤ 0)
aij (if aij > 0) ,

(2.19)

and correspondingly

N−
i := {j ∈ Ni | aij < 0} and N+

i := {j ∈ Ni | aij > 0} . (2.20)

For theoretical considerations, it is often convenient to assume vectors and matrices to be
reordered according to a givenC/F -splitting so that (2.3) can be written as

Ahv
h =

(
AFF AFC
ACF ACC

)(
vF
vC

)
=
(
bF
bC

)
= bh . (2.21)

Analogously, the interlevel transfer operators are written as

IhH =
(
IFC
ICC

)
, IHh = (ICF , ICC) (2.22)

with ICF = (IFC)T andICC being the identity operator. Instead ofeh = IhHe
H and (2.9),

we simply write
eF = IFCeC and ei =

∑
j∈Pi

wijej (i ∈ F ) , (2.23)

respectively, which should not lead to any confusion.

2.4.4 Basic Matrix Types, Eigenvalues

Important parts of the AMG theory for the scalar case deal especially with the model class
of Stieltjes matrices. But also more general basic types of matrices are discussed, the most
important ones being listed in the following. Let(·, ·) = (·, ·)E denote the Euclidean inner
product. Then a square matrixB = (bij)i,j is called

• symmetric if bij = bji for all i, j.

• weakly diagonally dominant if

∀ i : bii ≥
∑
j 6=i

|bij | . (2.24)
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• strongly diagonally dominant if

∀ i : bii >
∑
j 6=i

|bij | . (2.25)

Remark: Strong diagonal dominance is obviously equivalent to the existence of a
δ = δB > 1 with

∀ i : bii −
∑
j 6=i

|bij | ≥ δbii . (2.26)

If for a classB of matricesB a δ can be found which is indepent ofB, B is said to
satisfy the property of strong diagonal dominanceuniformly.

• positive semi-definiteif for all v : (Bv, v) ≥ 0 . If B is additionally symmetric, we
writeB ≥ 0. Correspondingly,B1 ≥ B2 meansB1 −B2 ≥ 0.

• positive definite if B is positive semi-definite and

∀ v :
(

(Bv, v) = 0 ⇒ v = 0
)
. (2.27)

If B is additionally symmetric, we writeB > 0. Correspondingly,B1 > B2 means
B1−B2 > 0. The class ofsymmetricpositive definite matrices is denoted byAspd, the
subclass of weakly diagonally dominant symmetric positive definite matrices byAwdd.

Examples: Well-known examples of matrices belonging toAspd result from typical
nine-point discretizations of the anisotropic Laplace operator27−εuxx − uyy,

1
h2

 −(1 + ε)α 2αε− 1 −(1 + ε)α
2α− ε 2(1 + ε) 2α− ε

−(1 + ε)α 2αε− 1 −(1 + ε)α


h

, (2.28)

with −1/2 < α ≤ 1/2. Forα = 0, the standard anisotropic five-point stencil arises
(see 2.30 below), forα = 1/4 the stencil for the standard FE discretization with bilinear
finite elements. Note that the above stencil results from the following discretization of
−εuxx (for the stencil notation, see [94], for instance)

1
1 + 2α

1
h2

[
−ε 2ε −ε

]
h

 α
1
α


h

(2.29)

and a corresponding discretization of−uyy.

• anM-matrix (see [85]) if its off-diagonal entries are nonpositive,B is nonsingular and
all entries of its inverseB−1 are nonnegative.

27with Dirichlet conditions, for instance. In case of periodic boundary conditions, for instance, the resulting
matrices would be symmetric positive semi-definite.
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• a Stieltjes matrix if B > 0 and off-diagonally nonpositive. The class of Stieltjes
matrices is denoted byASt. Every Stieltjes matrix is an M-matrix.

As perhaps the most known example, consider Poisson’s equation with Dirichlet bound-
ary conditions, discretized by means of the standard five-point Poisson stencil,

1
h2

 −1
−1 4 −1

−1


h

. (2.30)

Remark 2.14 Every symmetric weakly diagonally dominant matrix with positive di-
agonals, nonpositive off-diagonals and withbii >

∑
j 6=i |bij | for at least onei is a

Stieltjes matrix (for a proof see [85]). N

• of essentially positive type[8] if B is positive definite and if there exists a constant
c > 0 such that

∀ v :
∑
i,j

(−bij)(vi − vj)2 ≥ c
∑
i,j

(−b−ij)(vi − vj)2 . (2.31)

The class ofsymmetricmatrices of essentially positive type is denoted byAess.

Remark: This condition implies that each row containing off-diagonal elements has
at least one negative off-diagonal entry. For thek-th row, this can easily be seen by
applying the above inequality to the vectorv = (vi) with vi = δik (Kronecker symbol).

Examples: Higher order discretizations of second order elliptic problems or problems
involving mixed derivatives often lead to symmetric essentially positive type matrices.
For instance, consider the stencil

1
12h2


1

−16
1 −16 60 −16 1

−16
1


h

(2.32)

which corresponds to a fourth order dicretization of−∆u (ignoring boundary condi-
tions). Here, (2.31) is fulfilled withc = 3/4. As another example, the nine-point
discretization of−∆u+ uxy,

1
h2

 − 1
4 −1 1

4
−1 4 −1

1
4 −1 − 1

4


h

(2.33)

satisfies (2.31) withc = 1/2. In such cases, the ”essential positiveness”of the matrices
is due to the fact that, for eachbij > 0, there existstrong negative pathsof at least
length two fromi to j, i.e., there existbik < 0 andbkj < 0 with |bik|, |bkj | being
sufficiently large compared withbij . N
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• of essentially block-positive typeif B is positive definite, allB(k,l) symmetric, and if
there exists a constantc > 0 such that

∀ v :
∑
k,l

(
−B(k,l)(v(k) − v(l)), v(k) − v(l)

)
≥ c

∑
k,l,−B(k,l)>0

(
−B(k,l)(v(k) − v(l)), v(k) − v(l)

)
.

(2.34)

Remark: We use the above definition of the term “essentially block-positive type” as
an analog of “essentially positive type” for the point-oriented case.

With λ(B) we denote aneigenvalueof B. λmin(B) andλmax(B) denote the minimal and
maximal eigenvalue ofB, respectively. Analogously,|λ|min(B) and|λ|max(B) are defined.
The following lemma holds

Lemma 2.1 (cf. [106]) Let B ∈ IRn,n be any symmetric matrix. Then each eigenvalue
λ(B) is real, and there exists an orthonormal basis ofIRn consisting of eigenvectors ofB.
Moreover,

∀ v ∈ IRn : (Bv, v)E ≤ λmax(B)(v, v)E , (2.35)

∀ v ∈ IRn : (Bv, v)E ≥ λmin(B)(v, v)E , (2.36)

andλmin(−B) = −λmax(B). For two symmetric matricesB1 andB2, we have

λmax(B1 +B2) ≤ λmax(B1) + λmax(B2) , (2.37)

λmin(B1 +B2) ≥ λmin(B1) + λmin(B2) . (2.38)

Of course, the sum of positive definite matrices (positive semi-definite matrices) is positive
definite (at least positive semi-definite).

2.4.5 Inner Products and Norms

In addition to the Euclidean inner product(·, ·)E , we will use the following three inner prod-
ucts ifA > 0:

(v, w)0 := (Dv,w)E , (2.39)

(v, w)1 := (Av,w)E , (2.40)

(v, w)2 := (D−1Av,Aw)E . (2.41)

with D being the diagonal ofA, D := diag(A) (which is also positive definite). The
associated norms are denoted by|| · ||i (i ∈ {E, 0, 1, 2}). (·, ·)1 is called theenergy inner
product, and|| · ||1 theenergy norm.

Given anyC/F -splitting, note that withA > 0 the matricesAFF andDFF = diag(AFF )
are also positive definite. Then we can define the analogs of the above inner products applied
toAFF instead ofAh. We will use

(vF , wF )0,F := (DFF vF , wF )E and (vF , wF )1,F := (AFF vF , wF )E , (2.42)
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and their associated norms|| · ||i,F (i ∈ {0, 1}).
Given any VP mapping (and (2.17), see Section 2.4.1), we can define analogs of (2.39) -

(2.41) by replacingD by its block-diagonal analog,

(v, w)P,0 := (DP v, w)E , (2.43)

(v, w)P,1 := (AP v, w)E = (Av,w)E , (2.44)

(v, w)P,2 := (D−1
P Av,Aw)E (2.45)

with DP being the block-diagonal matrix ofA, that is, thek-th diagonal block ofDP equals
A(k,k). Their associated norms are defined accordingly. Of course,A and its “blocked”version
AP are identical (besides ordering!). Analogously,(·, ·)P,0,F is defined.

In the following, we summarize some standard facts about matrix norms (see [84, 100]).
We only consider matrix norms onIRn,n in the following. We call a matrix norm||| · |||
compatible to a vector norm|| · || (on IRn) if for all matricesB ∈ IRn,n and vectorsv ∈ IRn

||Bv|| ≤ |||B||| ||v|| . (2.46)

With

||B|| := max
v 6=0

||Bv||
||v||

(2.47)

for square matricesB a matrix norm is defined, the so-calledoperator norm induced by the
vector norm|| · ||. Every operator norm is submultiplicative:

||B1B2|| ≤ ||B1|| ||B2|| , (2.48)

and we have||I|| = 1. Obviously, the operator norm is compatible to the vector norm it is
induced by, and||B|| ≤ |||B||| holds for all matrix norms||| · ||| which are compatible to the
vector norm|| · ||.

Thespectral radiusρ(B) of any matrixB ∈ IRn,n is defined by

ρ(B) := |λ|max(B) . (2.49)

The spectral radius ofB is the infimum of all operator norms ofB:

ρ(B) = inf
||·|| operator norm onIRn,n

||B|| . (2.50)

For all matricesB1, B2 the following holds:

ρ(B1B2) = ρ(B2B1) . (2.51)
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The following matrix norms are used in this thesis:

||B||E :=
√
ρ(BTB) Euclidean norm, (2.52)

||B||max := max
i,j

|bij | maximum norm, (2.53)

||B||rs := max
i

∑
j

|bij | row sum norm, (2.54)

||B||sch :=
√∑

ij

b2ij Schur norm. (2.55)

||·||E is the operator norm and||·||sch a compatible matrix norm to the Euclidean vector norm.
The row sum norm is the operator norm induced by the maximum vector norm.|| · ||E , || · ||rs
and|| · ||sch are submultiplicative,|| · ||max not. IfB is symmetric, we have||B||E = ρ(B).
If B > 0, we obtain

||B−1||E = ρ(B−1) =
1

λmin(B)
. (2.56)

For a regular matrixB, its condition number w.r.t. || · ||E is defined by

condE(B) := ||B||E ||B−1||E ≥ 1 . (2.57)

If B > 0, we obtain

condE(B) =
λmax(B)
λmin(B)

. (2.58)

For allB1 > 0,B2 > 0 and constantsc > 0 the following equivalence holds:(
∀ e (B1e, e)E ≤ c(B2e, e)E

)
⇐⇒ ρ(B−1

2 B1) ≤ c (2.59)

which follows fromB2 = B
1/2
2 B

1/2
2 with B1/2

2 > 0,B−1/2
2 B1B

−1/2
2 > 0 and

∀ e : (B1e, e)E ≤ c(B2e, e)E

⇐⇒ ∀ e : (B1B
−1/2
2 e,B

−1/2
2 e)E ≤ c(B2B

−1/2
2 e,B

−1/2
2 e)E

⇐⇒ ∀ e : (B−1/2
2 B1B

−1/2
2 e, e)E ≤ c(e, e)E

⇐⇒
(2.49)

ρ(B−1/2
2 B1B

−1/2
2 ) ≤ c

⇐⇒
(2.51)

ρ(B−1
2 B1) ≤ c
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2.4.6 Further Notation

For an arbitrary matrixB,B = 0 means thatB contains only zero entries.

The components of a vectorw are denoted bywi. w > 0 means that all of its components
are positive.

R(Q) andN (Q) denote therangeandnullspaceof a given operatorQ, respectively.

Finite difference discretization is abbreviated byFD discretization, analogously, finite ele-
ment (discretization) byFE (discretization), and finite volume (discretization) byFV (dis-
cretization).

The following terms are used for discussing numerical results. We often make use of scientific
notation in the form Me-P forM · 10P , for example 3.5e-9= 3.5 · 10−9. Analogously, Me+P
is defined. Theaverage residual reduction factor (ARF) corresponding tonitnitnit iterations
is defined as

ARF =
(
||r(nit)||
||r(0)||

)1/nit

(2.60)

wherenit denotes the number of iterations (cycles) performed,r(0) the residual of the first
guess (assumed to be nonzero), andr(i) (i > 0) the residual after thei-th iteration. We always
use|| · || = || · ||E here. In addition, (in order to obtain an ARF closer to the spectral radiusρ
of the iteration matrixM in case of stand-alone AMG, see also Remark 4.25) we often skip
the first two iterations and define

ARF2 =
(
||r(nit)||
||r(2)||

)1/(nit−2)

(2.61)

For all solvers discussed, the iterations are stopped if an iteration (cycle)n with

||r(n)||
||r(0)||

≤ εit (2.62)

is reached, whereεit ∈ ]0; 1] denotes the(relative) residual reduction factor demanded.
εit = 1e-10 is used throughout this thesis unless explicitly stated otherwise. “log. residual”
and “log. error” stand forlog10 ||r|| andlog10 ||e||, respectively. Timings given are always
wall-clock timings.



32 Chapter 2 Fundamentals, Approaches, Notation

(a) (b)

Figure 2.2: (a) A visualization of variables, unknowns and points. Variables are depicted by
small circles. Variables belonging to the same unknown are marked by the same “color” (i.e.
grey scale here), which then represents this unknown, and points are marked by large grey
circles surrounding the variables living at that point. In this example, the number of vari-
ables per point varies, and only one unknown, the “black” one, lives on the whole domain.
Here,nu = 3, nv = 24, andnp = 12.
(b) Couplings between variables. In this example, the couplings are assumed to be symmet-
ric (i.e. A is symmetric). In case of an asymmetricA, a directedgraph would be a natural
way for the visualization of couplings.

(a) (b)

Figure 2.3: (a) Couplings between the variables of the “black” unknown for the example in
Fig. 2.2. (b) Point couplings for the example in Fig. 2.2.



Chapter 3

A General AMG Methodology for
PDE Systems

3.1 Overview of Strategies and Model Problems

As we have discussed in the last chapter, AMG has originally been designed for solving scalar
PDE applications. Extensions which have been developed so far can handle particular types
of PDE systems such as those arising in linear elasticity. Important other types, for instance
reaction-diffusion and drift-diffusion applications, have not been tackled successfully yet. It
has turned out that different AMG strategies are suitable for different types of applications.
We here describe AMG strategies for various types of applications. The description covers
strategies which have already been mentioned in [71] as well as new strategies. Altogether,
these strategies have led to a general AMG methodology which has systematically been re-
alized in the AMG software SAMG. Whereas in this chapter our general methodology is
discussed from a more theoretical point of view, software aspects, in particular the systematic
implementation of our methodology within SAMG, are discussed in the next chapter.

The efficient solution of PDE systems without exploiting any structural information seems
unrealistic. Hence, a natural starting point to create extensions of AMG for PDE systems
is the exploitation of structural information, such asvariable-to-unknown (VU) mappings
and, if available,variable-to-point (VP) mappings, as introduced in Section 2.4.1. Such
mappings provide the basis of our AMG methodology for PDE systems explained in detail in
this chapter.

Our AMG methodology is developed based on a variational concept. In Section 3.1.1, we
summarize the basic properties of Galerkin-based coarse-level correction processes and show,
in particular, that the coarse-level correction operatorKh,H fulfills a variational principle.
Section 3.1.2 characterizes and surveys the three basic strategies of our methodology, namely
variable-based, unknown-based and point-based AMG, and gives an outline of the remainder
of this chapter (Sections 3.1.3 to 3.4).

Remark 3.1 For all investigations in this chapter,A is assumed to be symmetric positive
definite (A > 0). The principal handling of symmetric positive semi-definite matrices the
nullspaceN (A) of which only consists of constant vectors, has already been described in
Remark 2.8. Remark 2.9 has already pointed to sections which describepractical ways to
treat nonpositive diagonal entries,aii ≤ 0, arising on either the finest level or coarser levels
or both.
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We will extensively make use of the definitions in Sections 2.3 and 2.4. Level indices
h,H are used, if necessary, to distinguish two consecutive levels. Lemmas, theorems and
corollaries which can already be found in [87] are marked accordingly. N

3.1.1 Variational Principle

In this section, given anyA = Ah > 0, we summarize the basic properties of Galerkin-based
coarse-level correction processes. In particular, a variational principle for the coarse-level
correction operatorKh,H holds which simplifies further theoretical investigations substan-
tially. All our AMG approaches are based on the same formulation ofKh,H , so that the
following statements hold for all of them. For proofs, see [87].

We first state that the Galerkin coarse-level operatorAH = IHh AhI
h
H is also symmetric

positive definite1 (w.r.t. the Euclidean inner product):

Lemma 3.1 [87] LetAh > 0 hold, and letIhH have full rank. ThenAH is also symmetric
positive definite.

Proof. This is an immediate consequence of (2.10) and

(AHvH , wH)E = (IHh AhI
h
Hv

H , wH)E = (AhIhHv
H , IhHw

H)E
= (vH , IHh AhI

h
Hw

H)E = (vH , AHwH)E . N

The coarse-level correction operatorKh,H = Ih − IhHA
−1
H IHh Ah can easily be seen to fulfill

K2
h,H = Kh,H and to be symmetric with respect to the energy inner product(·, ·)1, that is,

∀ v, w : (Kv,w)1 = (v,Kw)1 . Having these facts andAh, AH > 0 in mind, it can be
proved thatKh,H fulfills a variational principle. To be more specific, the following theorem
holds:

Theorem 3.1 [87] LetAh > 0 and let anyC/F -splitting and any full rank interpolationIhH
be given. ThenKh,H is an orthogonal projector w.r.t. the energy inner product(·, ·)1. The
followings equalities hold:

(1) ∀ eh : ||Kh,He
h||1 = mineH ||eh − IhHe

H ||1 ,
(2) ||Kh,H ||1 = 1 .

Statement (1), the variational principle ofKh,H , shows that Galerkin-based coarse-level cor-
rections minimize theenergynorm of the error w.r.t. all variations in the range of interpo-
lation,R(IhH). Moreover, because of equality (2), a two-level method can never diverge if
the smoother satisfies||Sh||1 ≤ 1. That this result carries over to complete V-cycles, can be
shown by a recursive application of the following lemma with a zero initial guess,ẽH = 0,
on each coarse level:

Lemma 3.2 [87] Let the exact coarse-level correctioneH in (2.12)be replaced by any ap-
proximationẽH satisfying||eH − ẽH ||1 ≤ ||eH ||1 where|| · ||1 is taken w.r.t.AH . Then the
approximate two-level correction operator still satisfies||K̃h,H ||1 ≤ 1.

1For a generalization to positive definiteAh, see Corollary A.1.
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This lemma ensures a minimal robustness of each approach of our methodology: (V-)cycling
will not diverge if ||Sh|| ≤ 1. However, this gives us neither information on what influ-
ences convergence concretely nor conditions under whichA-independent convergence can be
proved. In Sections 3.2, 3.3.2 and 3.4.4, we will investigate two-level processes for variable-,
unknown- and point-based AMG, respectively, more closely in order to obtain concrete cri-
teria for assessing smoothing, theC/F -splitting, interpolation and their interplay and then to
obtain concrete statements ontwo-level convergence for certain subclasses ofAspd. For rea-
sons explained in [71, 87],A-independentmultilevel convergence cannot strictly be proved.
However, it turns out that multilevel approaches converge for many discrete PDEs and PDE
systems arising in practice (see Chapter 5, for instance).

3.1.2 Three Principal Strategies

Goals and Characterization Since increasingly large problems have to be solved in prac-
tical applications, our main concern is an optimal complexity2 of O(N) of our AMG ap-
proaches. In addition, we seek a reasonable compromise between robustness and black-box
quality within sufficiently large classes of PDE systems, small computational work (“the
magnitude ofO(N)’s constant”) and memory requirements, plug-in character, flexibility
for adaptations to specific problems and extendability for covering more and more problem
classes.

Clearly, there is no single algorithm satisfying all our goals for solving general PDE sys-
tems. Instead, we have developed a flexible, general AMG methodology which is based on
the scalar AMG approach [87]. This methodology allows to tailor AMG components to con-
crete problem classes. Especially an exploitation of the VU and/or VP mapping plays a key
role in our overall strategy. Concrete approaches differ “only” in the amount of information3

they employ, and in the concrete choice of the three main components smoothing, coarsening
and interpolation.

What has been achieved regarding numerical complexity can be summarized as follows.
In the course of this and the following chapter, we will see that the computational work and
memory requirements for the setup phase and one cycle of each concrete algorithm scale4

with the problem sizeN . Therefore, if the convergence rate does not depend onN (within
a problem class given), this will also be true for the overall approach for a fixed residual
reduction and our main aim be fulfilled. Whereas this independence cannot be proved in
a strict mathematical sense, numerical results indicate that it holds for a large number of
relevant model problems (defined in Section 3.1.3) as well as practical application classes, as
discussed in this chapter and Chapter 5.

Instead of more elaborate stand-alone solvers, we focus on relatively inexpensive AMG
algorithms which can efficiently be used as preconditioners. In practice, this has been proved
to be an efficient means to reduce computational efforts and memory requirements.

Before going into details of our methodology, an outline of its three principal strategies
and its range of applicability is given in the following paragraphs.

2See the definition of the termcomplexity in Chapter 1.
3i.e., besidesA andb, the VU and/or VP mapping, and/or coordinates.
4Note that we always assumeA as well as all coarser-level matrices to be sparse. Indeed, this is observed in

practice for all problem classes which are in the scope of this thesis.
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Variable-Based AMG (VAMG) Our considerations begin with AMG as described in [87]
since generalizations of its coarsening and interpolation concepts are used in each of our
AMG approaches. AMG has been developed based on a variational concept (see Section
3.1.1) and is most mature for weakly diagonally dominant Stieltjes matrices as frequently
arising in the context ofscalar PDEs. Within our methodology, it constitutes what we call
variable-based AMGsince it solvesAv = b “as is”, that means by ignoring unknowns and
points totally. It can thus only cope with very weakly coupled PDE systems. In Section
3.2, we recall the variable-based methodology and the main results on convergence as far as
important for our strategy.

Unknown-Based AMG (UAMG) Variable-based AMG can be extended in several ways in
order to cope with more strongly coupled PDE systems. The most straightforward extension,
the so-calledunknown-based AMG, performs coarsening and interpolation separately for the
individual unknowns by means of variable-based approaches applied to the diagonal blocks
A[n,n] (n = 1, . . . , nu). Quite a lot of experience has been gained with this simple extension
since its introduction in the early paper [71].

Unknown-based AMG and its range of applicability are discussed in detail in Section
3.3. In particular, we will see that necessary conditions for UAMG to work are that VAMG
efficiently works for allA[n,n], and that smoothing produces an error which is smooth for
each unknown separately. The last point will be seen to be closely related to the “strength”
of unknown cross-couplings which are completely ignored by UAMG for constructing coars-
ening and interpolation. If these couplings are too “strong”, this simple AMG approach may
become inefficient or even fail. A new measure for the strength of unknown cross-couplings
will be introduced in Section 3.3.

Point-Based AMG (PAMG) Since, for some practically very important PDE systems, the
unknown cross-couplings are indeed too strong for UAMG, one of our goals is to develop
approaches capable of handling such strong couplings. One important step in this direction is
the observation that for many PDE systemsthe different unknowns are discretized on (princi-
pally) the same gridso that it appears to be quite natural to create the same hierarchy for all
unknowns. This is in contrast to what UAMG does. A concept which addresses both issues,
that is it allows for strong unknown cross-couplings and produces the same level hierarchy,
is the so-calledpoint-based AMG. We speak of a point-based approach if coarsening takes
place on the level of points (point-coarsening5) rather than variables as before.

Section 3.4 details ageneral framework for PAMG approacheswhich is a main contri-
bution of this thesis. One key concept for PAMG is that point-coarsening is performed by
means of an auxiliary so-calledprimary matrixwhich is required to reflect the point cou-
plings in a reasonable sense. We discuss in Section 3.4.2 various ways to define concrete
primary matrices, some of which lead to “known” approaches, others to new ones. In Section
3.4.3, three general types of interpolation approaches are introduced and discussed, namely
block-interpolation, multiple-unknown-interpolation and single-unknown-interpolation. For

5To be more specific, all variables belonging to the same point either becomeC orF so that, as a result, the same
level hierarchy is assigned to all unknowns. For details including a discussion of some exceptions, see Section 3.4.
Note that the basic idea of point-based coarsening can already be found in the early papers [71, 8].
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both primary matrices and interpolation schemes, we especially focalize on the development
of practical variants, that is variants which are computationally cheap (“O(N) with a small
constant”), efficient and applicable to relevant and sufficiently large classes of PDE systems.
All our PAMG approaches make use of matrix entries and the VU and VP mappings. Only
for some approaches, additional information is needed, namely information on coordinates
of the grid nodes.

In Section 3.4.4, convergence of several typical PAMG approaches is proved under the
assumptionA > 0 (i.e. A ∈ Aspd). Although many important PDE systems do not lead
to matrices inAspd, in numerical tests a similar observation as in the “scalar AMG case” is
made:A > 0 is not a necessary condition. The application of PAMG to very asymmetric
drift-diffusion systems (see Section 5.3) impressively demonstrates that PAMG can efficiently
work for considerable deviations from the “ideal” case.

Range of Applicability It seems clear that there exists no unique AMG algorithm which
will work satisfactorily for all systems of PDEs. Instead, major work is required for devel-
oping concrete approaches for relevant classes of applications. Our methodology with its
various components offers a great variety of approaches, which makes it very flexible for an
application to different specific problem classes.

UAMG can efficiently solve, for instance, certain typical applications arising in the field
of linear elasticity, at least if the simulation domain has a sufficiently large part of its boundary
fixed by Dirichlet conditions. In such cases, UAMG works usually more efficiently than
PAMG approaches. In Section 3.3, UAMG is discussed for appropriate model problems. The
model problems itself are defined in Section 3.1.3. Numerical results for linear elasticity
problems occurring in industrial semiconductor simulation are presented and discussed in
Section 5.2.1.

The flexible point-based strategy can cope with a variety of different PDE systems. This
is demonstrated for two important classes, namely reaction-diffusion and drift-diffusion prob-
lems. Throughout Section 3.4, a proper choice of primary matrices and interpolation schemes
is investigated especially for these two problem classes by means of suitable model problems
(defined in Section 3.1.3). We will see that for each of these two problem classes a dif-
ferent PAMG approach is required. Numerical tests demonstrate the effectiveness of our
point-based strategy for reaction-diffusion and drift-diffusion problems arising in industrial
semiconductor process and device simulation (see Sections 5.2.2 and 5.3).

In this chapter, we also consider some limits of our strategy. Problems for which none
of the AMG methods discussed in this thesis works efficiently include cases where the un-
knowns are too strongly coupled for an application of UAMG and, at the same time, exhibit
strong anisotropies in directions which are different for each of the unknowns so that a treat-
ment by PAMG is not appropriate either.

We also draw some comparisons to other AMG approaches for solving PDE systems
revealing that our general methodology covers (but is not limited to) many of the underlying
ideas.

A synopsis of our AMG strategies, their main features, their range of applicability, their
systematic realization and their efficiency for solving problems arising in industrial semicon-
ductor simulation will be given in the concluding Chapter 6.
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3.1.3 Model Problems

The following three model classes are used in the remainder of this chapter to illustrate several
aspects of unknown- and point-based AMG. The performance of different AMG components
applied to these classes is discussed, in particular, in Sections 3.3.3, 3.4.1.2, 3.4.2, 3.4.3.4,
and 4.6.

For all three model classes, we assume the unit square[0, 1]2 to be the test domain with a
uniform grid with mesh sizeh = 1/2p with p ∈ IN. We do not explicitly discuss boundary
conditions, and assume, for simplicity, Dirichlet conditions everywhere.

Let ε with 0 ≤ ε ≤ 1 be given. WithLx:ε,h we denote the standard 5-point stencil
discretization operator (cf. (2.30)), multiplied withh2,

Lx:ε,huh(x, y) : =

 −1
−ε 2 + 2ε −ε

−1


h

uh(x, y)

of the two-dimensional anisotropic Laplacian−εuxx − uyy with anisotropy in thex-
direction. LetLy:ε,h denote the corresponding discretization with anisotropy in they-direction.

LetLx:ε = Lx:ε,h andLy:ε = Ly:ε,h denote the corresponding matrices emerging from a
standard lexicographic numbering of the grid points. Let the abbreviationL = Lh denote the
corresponding matrix in the isotropic caseε = 1. Note that

λmin(L) = 4 (1− cos(πh)) and λmax(L) = 4 (1 + cos(πh)) .

With these basic stencils and matrices we “compose” model problems now. We make
use of an unknown-wise ordering (2.16) of the variables to define the models and switch to a
point-wise ordering (2.17), whenever more suitable for discussing specific aspects.

3.1.3.1 Anisotropic Vector Laplacians

The matricesLx:ε,h andLy:ε,h are used to define the following three PDE system model prob-
lems which comprise our first model class. We generally assume for this and the following
models thata, b, c are real constants anda, b positive. The discrete PDE system

LA ∗
[
v[1]
v[2]

]
=
[
b[1]
b[2]

]
with LA = LS := LS,h(ε, a, b, c) :=

[
a c
c b

]
∗
[
Lx:ε,h 0

0 Lx:ε,h

]
(3.1)

represents the anisotropic vector Laplacian where the anisotropy is in thesamedirection for
the two unknowns6. Analogously, the above discrete PDE system with

LA = LD := LD,h(ε, a, b, c) :=
[
a c
c b

]
∗
[
Lx:ε,h 0

0 Ly:ε,h

]
(3.2)

represents the anisotropic vector Laplacian where the anisotropy of the first unknownu1 is
again in theoppositedirection than the one of the second unknown7. Similarly, the above

6The index “S” stands for “same direction” of the anisotropy of the first and second unknown.
7The index “D” stands for “different direction” of the anisotropy of the first and second unknown.
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discrete PDE system with

LA = LX := LX,h(ε, a, b, c) :=
[
aLx:ε,h cLh
cLh bLy:ε,h

]
(3.3)

represents another anisotropic vector Laplacian where the anisotropy of the first unknownu1

is in theoppositedirection than the one of the second unknown. We call the model problems
in this classanisotropic vector Laplaciansor AVL models throughout this thesis. More
precisely, model (3.1) is called AVLS model, model, (3.2) AVLD model, and (3.3) AVLX
model.

Note that, unlessε = 1 or c = 0, the matricesLD are not symmetric whereas the matri-
cesLS andLX are always symmetric. Ignoring boundary conditions, we obviously get the
following stencils - a pointwise ordering assumed now -

LS =


0 (−1) ∗

[
a c
c b

]
0

(−ε) ∗
[
a c
c b

]
(2 + 2ε) ∗

[
a c
c b

]
(−ε) ∗

[
a c
c b

]
0 (−1) ∗

[
a c
c b

]
0


h

,

LD =


0

[
−a −εc
−c −εb

]
0[

−εa −c
−εc −b

]
(2 + 2ε)

[
a c
c b

] [
−εa −c
−εc −b

]
0

[
−a −εc
−c −εb

]
0


h

,

LX =


0

[
−a −c
−c −εb

]
0[

−εa −c
−c −b

] [
(2 + 2ε)a 4c

4c (2 + 2ε)b

] [
−εa −c
−c −b

]
0

[
−a −c
−c −εb

]
0


h

.

The(LX)(kk) are symmetric positive definite if and only ifab(1 + ε)2 > 4c2. The nonvan-
ishing(LX)(kl) (k 6= l) are symmetric positive definite if and only ifεab > c2.

The (LS)(kk) are symmetric positive definite if and only ifab > c2. If the latter holds,
we have(LS)(kl) < 0 for all non-vanishing(LS)(kl) with k 6= l. Since each eigenvalue of
LS is of the form eigenvalue ofLx:ε,h times eigenvalue ofA(k,k), LS is symmetric positive
definite then, and in addition of essentially block-positive type (2.34) (with the constantc of
(2.34) being 1).



40 Chapter 3 A General AMG Methodology for PDE Systems

3.1.3.2 A Class of Reaction-Diffusion Models

As a simple model exhibiting some important properties of the reaction-diffusion systems
investigated in Section 5.2.2, consider the reaction-diffusion operator[

−∆u1 0
0 −∆u2

]
+
[
g1(u1, u2)
g2(u1, u2)

]
.

For our model class, letg1 = f(x, y)u2 andg2 = f(x, y)u1 with a positive functionf . With
−∆ being discretized by means of the standard 5-point stencil, we arrive at the following
matrices:

A =
[
L D
D L

]
(3.4)

whereD = (dii) denotes a diagonal matrix withdii = h2f(xi, yi). For our model class, we
restrict ourselves to the following:

dii =

{
c := h2f for 1 ≤ i ≤ nz
0 otherwise,

with 1 ≤ nz ≤ np and a constant (function)f > 0. The model problems in this class are
calledRD modelsthroughout this thesis.

Obviously, all “problematic” couplings are located on the block diagonal, to be more

specific, on the firstnz point matricesA(k,k) =
[

4 dkk
dkk 4

]
wheredkk = c = h2f > 0.

Besides these point matrices, the unknowns are decoupled. For allk with dkk = c, we have
A(k,k) > 0 if and only if c < 4. Fornz = np, the eigenvalues ofA can easily be seen to
beλ(L) ± c. In this case, we arrive atλmin(A) = 4 (1 − cos(πh)) − c. Since the smallest
eigenvalue ofA is, for allnz, larger or equal to the smallest eigenvalue ofL minusc (due to
Lemma 2.1),A ∈ Aspdholds ifh2f = c < 4(1−cos(πh)). Note that1−cos(πh) = O(h2).
The parametersc andnz will be used later on to adjust the strength and number of unknown
cross-couplings, respectively.

3.1.3.3 A Drift-Diffusion-Like Model Class

We consider the following class of matrix equations, mimicing some important properties of
the drift-diffusion systems discussed in Section 5.3, λL I −I

−fn ∗ Lx:ε L 0
fp ∗ L 0 L

 ∗
 v[1]
v[2]
v[3]

 =

 b[1]
b[2]
b[3]

 (3.5)

where the vectorv[1] shall reflect the potentialψ, v[2] the electron concentrationn, andv[3] the
hole concentrationp. Let λ, c be positive constants,I denote the identity, and the functions
fn, fp be defined as

fn(x, y) := c exp(10xy) , fp(x, y) := 1 .
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We will discuss the cases

ε ∈ {1e-3, 1} , (λ, c) ∈ {(1, 1), (1e-3,1e3), (1e-9,1e9)} ,

so that amongn andp the electron concentrationn is always the “dominant” species here (see
Example 3.5). The system’s matrixA is not symmetric. Moreover, the largerc, the stronger
the asymmetry ofA. Throughout this thesis, we call the model problems in this classDD
models.

3.2 Variable-Based AMG

In this section, we recall the essential aspects of classical, variable-based AMG (VAMG) as
described in [87]. We consider the derivation of variable-based criteria and techniques for
smoothing, coarsening and interpolation as well as results on convergence of two-level meth-
ods. We will follow, in principle, the considerations made in [87]. Additions are provided by
Sections 3.2.3.4, 3.2.5 and 3.2.6.

This section mainly serves as a preparation for the subsequent sections since the com-
ponents of VAMG, suitably modified or generalized, provide the basis for each approach
which belongs to our AMG methodology for PDE systems. Under suitable conditions, most
of the convergence statements will be shown to carry over to “analogous” unknown- and
point-based approaches, as will be discussed in Sections 3.3.2, 3.4.1.1 and 3.4.4.

VAMG has been developed in the variational context. Hence, the theoretical investigation
of convergence is most naturally done w.r.t. the energy norm, provided thatA > 0 holds for
the matrixA given. We have already seen in Section 3.1.1 that the Galerkin coarse-level
operator then fulfills a variational principle. Because of this, and under natural additional
assumptions, convergence of all approaches of our AMG methodology can be proved, which
ensures a minimal robustness. However, since we have the solution of problemclassesin
mind - for instance the class of matrices representing a PDE discretized on increasingly finer
grids and/or with varying “physical parameters” - convergence results are of practical im-
portance only if convergence can be proveduniformly for relevant matrix classesA. In the
remainder of this section, we will hence discuss what has been achieved so far on that score
for VAMG.

In Section 3.2.1, we will explain the central concept of algebraic smoothness and obtain
a concrete measure for thesmoothing propertyof a relaxation operator. In particular, it will
be proved that Gauss-Seidel fulfills the smoothing propertyuniformly within the important
classASt of Stieltjes matrices, for instance. An interpretation of the smoothing property
for certain important situations gives us several guidelines for designingC/F -splittings and
interpolations later on.

The interplay between smoothing and coarse-level correction is studied for the two cases
post- and pre-smoothing in Sections 3.2.2 and 3.2.4, respectively. In the case of post-smoo-
thing, the focus is on criteria for suitableC/F -splittings and interpolations and on the deriva-
tion of concrete interpolation formulas, provided suitable coarser levels to be given8. In the
case of pre-smoothing, we concentrate more on ways to improve the “quality” of smoothing

8Note that concrete coarsening procedures will not be discussed before Chapter 4.
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and interpolation by “brute-force methods”, so-calledF-smoothingandJacobi interpolation,
which will prove their usefulness for “tough” problems. Post- and pre-smoothing are tightly
coupled but provide a different point of view. For both cases, we can prove two-level con-
vergence theorems with concrete upper bounds9 for the convergence rate. Moreover,uniform
two-level convergence can be proved, in particular, for weakly diagonally dominant Stieltjes
matrices.

Remarks: If a theorem or lemma is only a special case of results for more general, point-
based approaches, its proof is postponed to Section 3.4. Proofs which can already be found
in [87] are mostly not repeated. Also far more examples than discussed in this section can be
found in [87].

3.2.1 Algebraic Smoothness

As indicated in Section 2.3, smoothing and coarse-level correction play formally the same
role as in geometric multigrid, although the term “smoothing”refers to different notions: In
geometric multigrid, “smoothness”of an error is always related to two consecutive grids: An
erroreh on a given fine grid is said to begeometrically smoothif it can be well approximated
on the next coarser grid (of a predefined grid hierarchy). This notion of smoothness does not
make sense in the context of algebraic multilevel approaches with automatic level construc-
tion because there is no predefined level hierarchy and, eventually, the problem to be solved
has not even a geometric background at all. However, if we interprete the given smoother
S as basic solver forAv = b, the purpose of the coarse-level correction is to accelerate this
solver. Therefore, an errore is defined to bealgebraically smoothif the smoother stalls, i.e.
if ||Se|| ≈ ||e|| in some appropriate norm. In other words, an error is called algebraically
smooth if somethinghas to bedone to speed up convergence - in the AMG context, by means
of a properly constructed coarser level.

For symmetric positive definite matricesA, a concrete definition of the “smoothing prop-
erty”of the relaxation operatorS is introduced next. We follow the concept introduced in [8]
and interprete it for certain model classes which will give us a basis for constructing AMG
coarsening and interpolation.

3.2.1.1 Smoothing Property of Relaxation

The eigenvalues and -vectors ofD−1A play a special role in investigating classical smoothers
such asω-Jacobi (S = I − ωD−1A) with a proper underrelaxation parameterω and Gauss-
Seidel (S = I − Q−1A). For both schemes, eigenvectors corresponding to thesmallest
eigenvalues ofD−1A typically determine the convergence ofS interpreted as a solver of
Av = b. The smaller the smallest eigenvalues, the slower the convergence and, hence, the
“smoother”the corresponding eigenvectors (at least) in the algebraic sense.

Clearly, the smallest eigenvalues ofD−1A can be assumed to approach zero for all rel-
evant applications which can profit from multi-level improvements, because otherwise clas-
sical relaxation schemes would converge rapidly on their own. As an example, consider a
standard elliptic PDE of second order, standard second-order discretized on a square grid

9The upper bounds are usually far too pessimistic, though. See Remark 3.4.
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with mesh sizeh: The smallest eigenvalues ofD−1A can be shown to satisfyλ = O(h2) and
the largest onesλ = O(1).

Remark 3.2 If the PDE mentioned previously is isotropic (e.g. Poisson-like), the smallest
eigenvalues correspond to just those eigenvectors which are very smooth geometrically, and
the large eigenvalues to geometrically non-smooth eigenvectors. Here, geometric coincides
with algebraic smoothness. But this is not always the case and may be (for extreme non-PDE
examples) even the other way around (see [87] for an example). Consequently, instead of
“algebraically smooth”one should better speak ofslow-to-converge, say. However, we stick
to the term “algebraically smooth” for historical reasons. N

We will now make use of inner products and norms defined in Section 2.4.5 for a classification
of eigenvectors ofD−1A. First, we summarize some basic relations.

Lemma 3.3 [87] LetA > 0. Then the following inequalities hold for alle:

||e||21 ≤ ||e||0||e||2 , ||e||22 ≤ ρ(D−1A)||e||21 , ||e||21 ≤ ρ(D−1A)||e||20 (3.6)

The application of these norms to the eigenvectorsφ ofD−1A yields obviously

D−1Aφ = λφ =⇒ ( ||φ||22 = λ||φ||21 and||φ||21 = λ||φ||20 ) . (3.7)

Proof. The first inequality follows from Schwarz’ inequality, the other two from (2.59).�

If applied to an algebraically smooth errore = φ (λ close to zero), the above three norms are
largely different in size:

||φ||2 � ||φ||1 and ||φ||1 � ||φ||0 . (3.8)

On the other hand, if applied to algebraically non-smooth error, the three norms are compa-
rable in size. This observation motivates the significance of these norms: by comparing e.g.
the size of the 1- (energy-) and the 2-norm it is possible to identify slow-to-converge error,
giving rise to the following, central definition:

A smoothing operatorS is said to satify thesmoothing property w.r.t. a matrixA > 0
if for all e

||Se||21 ≤ ||e||21 − σ||e||22 (σ > 0) (3.9)

holds withσ being independent ofe. S is said to satisfy the smoothing property w.r.t. a
classA of matricesA > 0 if (3.9) holds uniformly for allA ∈ A, i.e. with the sameσ.

As a consequence and in accordance to the motivation of (3.9), an operatorS which satis-
fies the smoothing property efficiently reduces an errore as long as||e||2 is relatively large
compared with||e||1. If ||e||2 � ||e||1, i.e. if e is algebraically smooth,S stalls.

Obviously,σ||e||22 ≤ ||e||21 is necessary for (3.9) to hold which, because of (2.59), is
equivalent toρ(D−1A) ≤ 1/σ. Consequently, a necessary condition for (3.9) to hold uni-
formly for all A ∈ A is the uniform boundedness ofρ(D−1A) in A. This is indeed satisfied
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for all important subclasses ofAspd under consideration here. That especially Gauss-Seidel
relaxation fulfills the smoothing property (3.9) uniformly within important matrix classes will
be shown below. Let us first make the following remark.

Remark 3.3 In other applications, there might not exist an algebraic smooth error at all. For
example, ifA > 0 is strongly diagonally dominant, i.e. if it fulfillsaii −

∑
j 6=i |aij | ≥ δaii

with δ > 0, we haveρ(A−1D) ≤ 1/δ which is equivalent to||e||22 ≥ δ||e||21 for all e. If e
was algebraically smooth, we would hence arrive atδ||e||21 ≤ 1

σ ||e||
2
1 due to the necessary

condition σ||e||22 ≤ ||e||21 stated above. This cannot be satisfied for sufficiently largeδ.
But because multi-level methods are not required to speed-up one-level methods for such
matrices, we tacitly exclude such cases. N

In the following, important results on the smoothing properties of the classical smoothers
Gauss-Seidel and Jacobi are collected. More detailed discussions of different relaxation
schemes can be found in [8, 71, 87].

Theorem 3.2 [87] LetA > 0 and define with any vectorw = (wi) > 0

γ− := max
i

{
1

wiaii

∑
j<i

wj |aij |
}
, γ+ := max

i

{
1

wiaii

∑
j>i

wj |aij |
}
.

Then Gauss-Seidel relaxation satisfies(3.9)with σ = 1
(1+γ−)(1+γ+) .

For aproof, see [87]. This theorem also emerges as a special case of Theorem 3.10.�

Gauss-Seidel satisfies the smoothing property (3.9) not only for allA > 0 but uniformly
within all important classesA of matrices under consideration here:

• For all Stieltjes matrices, (3.9) is satisfied withσ = 1/4. This is because there exists a
vectorz > 0 with Az > 0. By choosingw = z in Theorem 3.2, we obtain

γ− := max
i

{
1

ziaii

∑
j<i

zj |aij |
}

= max
i

{
1− 1

ziaii

∑
j≤i

zjaij

}
< 1 .

Similarly, we obtainγ+ < 1.

• This result carries over to eachA > 0 which is obtained from a Stieltjes matrix by
symmetrically flipping some or all off-diagonal signs.

• For eachA > 0 with≤ l nonvanishing entries per row, (3.9) is satisfied withσ = 1/l2.

• In practice, usually
∑
j 6=i |aij | ≈ aii holds. Therefore, withwi ≡ 1, γ− andγ+ can be

expected to be close to or even less than 1. Hence,σ ≈ 1/4 is a typical value for many
applications.

Also ω-Jacobi with a suitable relaxation parameterω fulfills (3.9), with σ ≈ 1/2 being a
typical value (see [87]).
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3.2.1.2 Interpretation of Algebraically Smooth Error

The exploitation of what smooth error “looks like” is the key for constructingC/F -splittings
and interpolation schemes suitable to speed up the convergence behavior ofS. Therefore, in
this section, algebraically smooth error is heuristically characterized for a typical smoother,
namely Gauss-Seidel relaxation, and for important subclasses ofAspd. Both characterizations
start from the fact that, ifS fulfills the smoothing property (3.9), an algebraically smooth error
(Se ≈ e) is characterized by||e||2 � ||e||1. With the results obtained here we will later on
motivate interpolation schemes and criteria for constructingC/F -splittings.

Gauss-Seidel Relaxation In terms of the residualr = Ae, the inequality||e||2 � ||e||1
evaluates to

(D−1r, r)E � (e, r)E . (3.10)

This states an important characterization of algebraically smooth error: corresponding scaled
residuals are much smaller than the errors themselves. Let us investigate this further for a
typical AMG smoother. Gauss-Seidel relaxation, performed for variablevi, corresponds to
replacingvi by vi where

vi =
1
aii

(
bi −

∑
j 6=i

aijvj

)
=

1
aii

(
aiivi + bi −

∑
j

aijvj

)
= vi +

ri
aii

(3.11)

or, in terms of the corresponding error:

ei = ei −
ri
aii

. (3.12)

Here,ri denotes the residualbeforethe relaxation of variablevi. For an algebraically smooth
error, i.e.ei ≈ ei, we can heuristically conclude that|ri| � aii|ei| and thus∣∣∣∣aiiei +

∑
j∈Ni

aijej

∣∣∣∣� aii|ei| . (3.13)

That means, although the error may still be large globally, locally it can be approximated by
a function of its neighboring error valuesej :

aiiei +
∑
j∈Ni

aijej = 0 . (3.14)

In this sense, an algebraically smooth error provides some rough approximation to the solu-
tion of thehomogeneous F-equationAFF eF +AFCeC = 0. In Section 3.2.3, the derivation
of interpolation will directly be based on this equation.
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Interpretation for Subclasses ofAspd Another way of interpreting smooth error is based
on the fact that, because of Lemma 3.3, the inequality||e||2 � ||e||1 implies ||e||1 � ||e||0.
For all matricesA, ||e||21 can be split as follows:

||e||21 =
1
2

∑
i,j

(−aij)(ei − ej)2 +
1
2

∑
i,j

aij(e2i + e2j ) . (3.15)

SinceA is assumed to be symmetric, this can further be simplified to

||e||21 =
1
2

∑
i,j

(−aij)(ei − ej)2 +
∑
i

sie
2
i (3.16)

with si being thei-th row sum ofA,

si := si(A) :=
∑
j

aij . (3.17)

The inequality||e||1 � ||e||0 is now reformulated for the classAess. A matrix A > 0 of
essentially positive type has to fulfill (2.31). Due to this and the splitting (3.16), the inequality
||e||1 � ||e||0 is equivalent to

c

2

∑
i,j

(−a−ij)(ei − ej)2 +
∑
i

sie
2
i �

∑
i

aiie
2
i .

In the most important case ofsi ≥ 0, we thus have, on the average for eachi,

c

2

∑
j 6=i

−a−ij
aii

(ei − ej)2

e2i
� 1

which can be interpreted as follows: An algebraically smooth error varies slowly in the di-
rection of large negative connections, i.e. fromei to ej if |aij |/aii is relatively large. Even
if there are positive couplings in the matrix, an algebraically smooth error changes slowly in
their direction, as long as they are not too large - i.e. as long as there exist strong negative
paths for them (see Section 2.4.4 for examples). Since a subclass ofAess is the classASt of
Stieljes matrices, the above interpretation directly carries over toASt but with the simplifica-
tion that there are no positive off-diagonal entries.

In the general case, however, ifaij > 0 exceeds a certain size, the above cannot be expected
to be true any more. This can be seen by transforming the equality (3.16) further. The value,

ti := aii −
∑
j 6=i

|aij | ,

which can be used as a measure of diagonal dominance (cf. (2.26)), is related tosi by
si = ti + 2

∑
j 6=i a

+
ij . Therefore, we arrive at

||e||21 =
1
2

∑
i

(∑
j 6=i

|a−ij |(ei − ej)2 +
∑
j 6=i

a+
ij(ei + ej)2

)
+
∑
i

tie
2
i . (3.18)
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Assumingti ≥ 0 (weak diagonal dominance),||e||1 � ||e||0 now means, on the average for
eachi, ∑

j 6=i

|a−ij |
aii

(ei − ej)2

e2i
+
∑
j 6=i

|a+
ij |
aii

(ei + ej)2

e2i
� 1 . (3.19)

Consequently, ifaij is positiveandaij/aii relatively large,ej tends to approximate−ei
relatively to the size ofei. This leads to the following general conclusion:

For all (approximatively) weakly diagonally dominant matricesA > 0, relaxation
schemes which satisfy the smoothing property(3.9) smooth the error along largeneg-
ativeconnections, but tend to oscillate along largepositiveconnections.

3.2.2 Post-smoothing and Two-Level Convergence

We now combine the already gained results on the variational principle ofK = KH
h and the

smoothing property to obtain a two-level convergence estimate which is stated in Theorem 3.3
below. Afterwards, we discuss the so-calledτττ -condition of interpolation which represents a
sufficient condition for the convergence estimate to hold and will serve as a measure to assess
the quality of interpolation. Together with the above interpretations of algebraic smoothness,
it will be used to derive concrete interpolation formulas.

We adopt, as before, the theoretical approach introduced in [8] and further developed in
[71, 87] and investigate the case of post-smoothing. We assume one smoothing step per cycle,
that is, the two-level operator to be considered isSK.

3.2.2.1 A Theorem on Two-Level Convergence

Our goal now is to haveSKe as small as possible. Hence, for a good interplay between
smoothing and coarse-level correction, the error after the coarse-level correction step,Ke,
needs to be “relaxable”so that the smootherS can effectively work again. Assuming the
smoothing property (3.9) to be fulfilled,Ke should therefore be far away from being alge-
braically smooth, that is we want||Ke||2 to be bounded from below by||Ke||1. That this
condition ensures convergence of the two-level methodSK is stated in the following theo-
rem:

Theorem 3.3 [87] LetA > 0 and letS satisfy the smoothing property(3.9). Furthermore,
assume theC/F -splitting and interpolation to be such that

∀ e : ||Ke||21 ≤ τ ||Ke||22 (3.20)

with someτ > 0 being independent ofe. Thenτ ≥ σ and||SK||1 ≤
√

1− σ/τ .

Proof. Combine (3.9), (3.20) and||K||1 = 1. �

Remark 3.4 We want to stress already here that Theorem 3.3 and the following theorems
can be used to investigateuniform two-level convergence and to obtain principal guidelines.
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The concrete upper bounds obtained, however, are usually far too pessimistic. For instance,
for the matricesL, i.e. the Poisson equation discretized by means of the standard five-point
stencil on the unit square (for a definition ofL, see Section 3.1.3),τ = 2 (for an explanation,

see Remark 3.8), andσ = 4/9 (see Section 3.3.3.1), we obtain
√

1− σ/τ =
√

1− 4
9 ·

1
2 ≈

0.88. This upper bound cannot explain the efficiency of AMG, observed in practice, for the
ideal model case of a well-discretized Poisson equation. N

3.2.2.2 Theτττ -Condition of Interpolation

Condition (3.20) is difficult to examine in practice and does not really embody what we
need: practical measures which help to judge directly the quality of ourC/F -splitting and
interpolation and which help to create suitable splittings and interpolation operators. The
next theorem on a sufficient condition for (3.20) is an important step in this direction:

Theorem 3.4 [87] If A > 0 and if theC/F -splitting and interpolationIFC are such that

∀ e : ||eF − IFCeC ||20,F ≤ τ ||e||21 (3.21)

with τ being independent ofe, then(3.20)is satisfied.

Henceforth, (3.21) is called theτττ -condition of interpolation . It will serve as a measure for
the quality of theC/F -splitting and interpolation, not only for variable-based but - general-
ized in a straightforward way - also for unknown- and point-based approaches.

The τ -condition (3.21) is non-trivial only for an algebraically smooth errore. This can
easily be seen if we apply (3.21) to the eigenpairs(φ, λ) of D−1A and use Lemma 3.3:

||φF − IFCφC ||20,F ≤ λτ ||φ||20 .

This implies a non-trivial condition only for thoseφ which correspond to the small eigenval-
ues ofD−1A, i.e. the algebraically smooth eigenvectors. Critical for a uniform fulfillment of
the τ -condition is therefore the accurate interpolation of those eigenvectors the eigenvalues
of which tend to zero ifA varies inA.

Remark 3.5 As mentioned in Section 3.2.1.1, in case thatA consists of the matricesA = Ah
emerging from the standard second-order discretization of an isotropic elliptic problem on
grids with mesh sizeh, algebraically smooth eigenvectors ofD−1A are also geometrically
smooth and their eigenvalues satisfyλ = O(h2). In such cases, (3.21) is closely related to
the requirement of first-order interpolation. N

As already pointed out in discussing the smoothing property, we are interested in uniform
convergence within reasonable classesA of matricesA, representing e.g. similar problems
on differently accurate grids. In the last section, it was already shown that for important
subclasses ofAspd the standard Gauss-Seidel relaxation fulfills the smoothing property uni-
formly. Hence, to have also uniform two-level convergence in the sense of Theorem 3.3
within a classA, it is sufficient to develop criteria for suitableC/F -splittings and for the
construction of concrete interpolations which satisfy theτ -condition (3.21) uniformly within
A.
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3.2.3 Interpolation Schemes

In the following, we explain the general variable-based approach for constructing interpola-
tion and state theorems on the quality of concrete basic interpolation schemes measured in
terms of two-level convergence. In particular, we explain the relationships of interpolation to
both smoothing andC/F -splitting since the interplay of these three processes determines the
efficiency of the overall approach. For our concrete procedure in defining these processes,
this means that we discuss how our interpolation schemes are derived from properties of the
smoothing property, how theC/F -splitting and interpolation influence each other, and which
conditions on theC/F -splitting can be derived10. Theorems from [87] on two-level conver-
gence will be stated for concrete basic interpolation schemes. In particular, we will see that
uniform convergence for important subclasses ofAspd can be guaranteed. The “ideal” case
will be seen to be the class of weakly diagonally dominant Stieltjes matrices (Awdd∩ASt). We
will also make remarks on handling matrices deviating from this ideal case. See especially
Sections 3.2.3.3 and 3.2.3.4.

In order to motivate the general approach in constructing interpolation, we recall that
(3.21) is a nontrivial condition only for algebraically smooth error. For such error, however,
we have seen in Section 3.2.1.2 that the homogeneous F-equations (3.14),

aiiei +
∑
j∈Ni

aijej = 0 (i ∈ F ) , (3.22)

are approximately satisfied. Consequently, the definition of interpolation will also be based
on these equations. This means that the definition of the interpolation weightswij in

ei =
∑
j∈Pi

wijej (i ∈ F ) (3.23)

has to be such that (3.23) approximates (3.22) for alli ∈ F .

Remark 3.6 Variables which are (nearly) not coupled to any other variable, corresponding to
matrix rows with all off-diagonal entries being (nearly) zero, do not require any interpolation.
Often, they arise from Dirichlet boundary conditions and are calledessentially isolated vari-
ables. Of course, such variablesi will always become F-variables with “empty”interpolation
formulas (3.23):wij ≡ 0. For simplicity, they aretacitly excludedin the following. N

We always assume in this section that we have already determined aC/F -splitting and sets
of interpolatory variables,Pi (i ∈ F ). TheC/F -splitting and thePi are, however, very
important for the quality of the interpolation itself. Generally, in order to allow the F-variables
to be interpolated from C-variables,the splitting has to be such that each F-variable has a
“sufficiently strong connection” to the set of C-variables(see also the conditions a proper
C/F -splitting should fulfill as discussed in Section 4.2.1.1). Although this connection does
not necessarily have to be viadirectcouplings, in the following we only consider, for ease of
description, the so-calleddirect interpolation where thePi are subsets ofC ∩Ni, that is an

10Concrete algorithms for splitting a setΩ intoC andF , however, will be explained in Section 4.2.
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F-variablei is interpolated from a subset of the C-variables which belong to the neighborhood
Ni of i. In practice, however,indirect interpolationschemes, asstandard interpolationand
multipass-interpolation, play an important role. Some remarks on these are made in Section
3.2.3.5, and detailed explanations of corresponding algorithms can be found in Section 4.3.
There, also other types of interpolation weights11 are discussed.

3.2.3.1 Stieltjes Matrices

We have seen in Section 3.2.1.2 that for weakly diagonally dominant Stieljes matrices alge-
braically smooth error varies slowly in the direction of strongnegativecouplings. To be more
specific, we define a variablei to bestrongly (negatively) coupledto a variablej (i 6= j) if

−aij ≥ εstr max
j 6=i

|a−ij | , (3.24)

with someεstr > 0, a typical value being 0.2512.
An error at a variablei is thus essentially determined by the weighted average of the error

at the variablesj it is strongly coupled to, i.e. its “strong neighbors”. Consequently, assuming
∅ 6= Pi ⊆ C ∩ Ni, the more strong couplings of any F-variablei are contained inPi, the
better will

1∑
j∈Pi

aij

∑
j∈Pi

aijej ≈
1∑

j∈Ni
aij

∑
j∈Ni

aijej (3.25)

be satisfied for smooth error. This suggests approximating (3.22) by

aiiei + αi
∑
j∈Pi

aijej = 0 with αi =

∑
j∈Ni

aij∑
j∈Pi

aij
(3.26)

which results in an interpolation scheme (3.23) with matrix-dependent, positive weights

wij = −αiaij/aii (i ∈ F, j ∈ Pi) . (3.27)

Theorem 3.5 below states that this interpolation scheme fulfills aτ -condition (3.21). Note
that the row sums of (3.22) and (3.26) are equal and we have

aii

(
1−

∑
j∈Pi

wij

)
= si (3.28)

which shows that
∑
j∈Pi

wij = 1 if si = 0. Hence, constants are interpolated exactly in the
limit case of a zero row sum matrix13.

11i.e. except of weights based on entries ofA as considered here, an example for an alternative being weights
based on coordinates.

12We will use this measure of strong connectivity in Section 4.2 to construct theC/F -splitting.
13For regular matrices, this is not the case. Instead, the weights are chosen so thatIFCIC equals the result of

one Jacobi step applied to (3.22) with the vectore = 1C (i.e. vector with all components being ones) as the starting
vector. Cf. also Section 3.2.4 forrelaxation of interpolation.
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3.2.3.2 Essentially Positive Type Matrices

Also for matricesA ∈ Aess with si ≥ 0 for all i, algebraically smooth error varies slowly
in the direction of strongnegativecouplings (see Section 3.2.1.2). For them, we could use
the same interpolation scheme as described above. Remember thataij < 0 for all j ∈ Pi,
and that, for allA ∈ Aess, each row containing off-diagonal entries has at least one negative
off-diagonal entry (see Section 2.4.4). The weights (3.27) are positive again.

However, in practice, we want to implement an interpolation which - at least formally
- can be employed for matrices which do not strictly fulfill the conditionsA ∈ Aess and
si ≥ 0 for all i, for instance, because they contain some particularly large positive off-
diagonal entries. Other typical examples are provided by the discretizations (2.32) or (2.33)
with Dirichlet boundary conditions. The resulting matricesA are inAess but do not fulfill
si ≥ 0 nearboundaries. In such cases,

∑
j∈Ni

aij might become zero or even positive for
certaini ∈ F , and we would obtain zero or even negative interpolation weights. According
to the heuristic considerations in Section 3.2.1.2, it can be assumed for matricesA ∈ Aess

with si ≥ 0 for all i that an algebraically smooth error satisfies∑
j

a+
ijej ≈

∑
j

a+
ijei (i ∈ F ) (3.29)

which, for j 6= i, requiresej ≈ ei or a+
ij to be small relatively toaii. This suggests adding

all positive entries to the diagonal. We use

ãiiei + αi
∑
j∈Pi

a−ijej = 0 with ãii = aii +
∑
j∈Ni

a+
ij , αi =

∑
j∈Ni

a−ij∑
j∈Pi

a−ij
(3.30)

instead of (3.26), which yields in all cases positive weights

wij = −αia−ij/ãii (i ∈ F, j ∈ Pi) . (3.31)

The row sums of (3.30) and (3.22) are equal, and

ãii

(
1−

∑
j∈Pi

wij

)
= si (3.32)

so that constants are interpolated exactly in the limit case of a zero row sum matrix.
The above interpolation can formally be applied to any matrixA > 0 and anyC/F -

splitting provided thatPi ⊆ C ∩ N−
i andPi 6= ∅ for eachi ∈ F . The following theorem

holds:

Theorem 3.5 [87] LetA ∈ Aesswith all si ≥ 0. With fixedτ ≥ 1 select aC/F -splitting so
that, for eachi ∈ F , there is a setPi ⊆ C ∩N−

i satisfying∑
j∈Pi

|a−ij | ≥
1
τ̃

∑
j∈Ni

|a−ij | . (3.33)

Then the interpolation(3.23)with weights(3.31)satisfies theτ -condition(3.21)with τ = τ̃ /c
and thec of (2.31).
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Proof. A direct proof can be found in [87]. Additionally, this theorem emerges as a special
case of Corollary 3.1 (see Corollary 3.2 in Section 3.4.4.2). �

This theorem shows that theτ -condition(3.21)can be satisfied uniformly, for instance,
within the class of weakly diagonally dominant Stieltjes matrices whenever the setsPi
(⊆ C ∩N−

i ) are reasonably large.

Remark 3.7 Criterion (3.33) shows thatstrongcouplings enhance convergence, butweak
ones only increase computational efforts. Therefore, to satisfy (3.33) with as few C-variables
as possible, the splitting should be arranged such that C-variables are only chosen from
the strongest couplings of every F-variable. This just means coarsening in the direction of
smoothness. See also the discussion in Section 4.2.1.1. N

Remark 3.8 Obviously, the concrete choice ofτ is crucial: on one hand, the largerτ , the
weaker is assumption (3.33) and the faster the coarsening can be, but the two-level conver-
gence will be very slow. On the other hand,τ = 1 gives best convergence, but forcesall
neighbors ofi ∈ F into C. As discussed in [87], this approach, applied recursively, will
result in an extremely inefficient (direct) solver. A reasonable compromise isτ = 2 which
means, forA ∈ ASt, that about 50% of the total strength of connections of every F-variable
has to be represented on the next coarser level. In practice, however, coarsening may still be
too slow, especially for matrices which have many row entries of similar size. N

Remark 3.9 Other variants of interpolation weights, which are usually less efficient or some-
times even not defined, are discussed in [87]. N

The requirement ofsi ≥ 0 for all i in the previous theorem is sufficient but not neces-
sary as the following theorem shows. However, the two-level convergence rate suffers from
negative row sums:

Theorem 3.6 [87] Let A be an essentially positive-type matrix withsi ≥ −κ with some
κ ≥ 0. Assume(Ae, e)E ≥ ε(e, e)E for all e with someε > 0. With fixedτ ≥ 1, select a
C/F -splitting as in Theorem 3.5. Then the interpolation(3.23)with weights(3.31)satisfies
theτ -condition(3.21)with τ replaced by somẽτ = τ̃(ε, κ, c, τ). As a function ofε andκ, we
haveτ̃ →∞ if κ→∞ or ε→ 0.

Example: This theorem can be applied, for instance, to matricesA corresponding to the
stencils (2.32) or (2.33) with Dirichlet boundary conditions, since they are inAessbutsi ≥ 0
does not hold near boundaries. N

Remark 3.10 While uniform smoothing is guaranteed inASt, the above theorem shows that
theτ -condition of interpolation cannot be expected to be fulfilled uniformly in this complete
class, only in subclasses, as for instance the classASt∩ Awdd (see box above).

A counterexample is the subclass of matricesA = Ac defined by discretizing the Helm-
holtz operator−∆− cI on the unit square with Dirichlet boundary conditions and with fixed
meshsizeh. For discretizing−∆, the standard five-point stencil is used. In lexicographic
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numbering, we obtainAc = 1
h2Lh − cIh. Let λ0 be the smallest eigenvalue of1h2Lh ande0

be a corresponding eigenfunction (normalized so that||e0||E = 1). We then have||e0||21 =
λ0 − c. Therefore, for theτ -condition (3.21) to hold uniformly, its left hand side has to
approach zero ifc approachesλ0. This means that the first eigenfunction (e0) of the Laplace
operator has to be approximated with increasing accuracy ifc → λ0, which is normally not
true unless special interpolation techniques are used. N

Remark 3.11 Not in all cases, the first eigenfunctions produce problems as in the example
above. For instance, ifA is a zero row sum matrix (a limit case since we considerA > 0 in
this chapter), the constant functions are eigenfunctions. They, however, do not produce such
problems since they are interpolated exactly by our interpolation schemes. N

3.2.3.3 General Case

As has been shown in [87] for an example, the approximation (3.30) becomes less accurate in
the sense of (3.21) if (3.29) is strongly violated. This indicates that the treatment of positive
couplings in interpolation is very critical in general. For instance, we have seen in Section
3.2.1.2 for matricesA ∈ Aspd which are approximately weakly diagonally dominant that we
have to expect an oscillatory behavior of algebraically smooth error ifaij > 0. The oscil-
lations are the stronger the largeraij is relative toaii (see (3.19)). However, we can expect
that thoseej corresponding to positive couplingsaij > 0 change slowlyamong each other
unlessaij is so small that it can be neglected. This gives rise to the following generalization
of the interpolation scheme (3.27) which is completely symmetric in handling negative and
positive couplings.

If a variablei has both negative and positive couplings and theC/F -splitting is such that
bothC ∩N−

i ⊇ P−
i 6= ∅ andC ∩N+

i ⊇ P+
i 6= ∅ hold, we can use the approximation

aiiei + αi
∑
j∈P−i

aijej + βi
∑
j∈P+

i

aijej = 0 (3.34)

with αi =

∑
j∈N−i

aij∑
j∈P−i

aij
and βi =

∑
j∈N+

i
aij∑

j∈P+
i
aij

(3.35)

to define the interpolation scheme. The following interpolation weights emerge:

wij =

{
−αiaij/aii (j ∈ P−

i ) ,
−βiaij/aii (j ∈ P+

i ) .
(3.36)

We havewij > 0 (j ∈ P−
i ) andwij < 0 (j ∈ P+

i ). If eitherN+
i = ∅ or N−

i = ∅,
these definitions are to be modified in a straightforward way by settingP+

i = ∅, βi = 0 or
P−
i = ∅, αi = 0, respectively. In particular, for Stieltjes matrices, the above interpolation is

identical to (3.27). The row sums of (3.34) and (3.22) are equal and

aii

(
1−

∑
j∈Pi

wij

)
= si , (3.37)
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which shows that also here constants are interpolated exactly if all row sums are zero. Anal-
ogously to Theorem 3.5, we obtain

Theorem 3.7 [87] LetA > 0 and ti = aii −
∑
j∈Ni

|aij | ≥ 0. With fixedτ ≥ 1 select

a C/F -splitting such that the following holds for eachi ∈ F : If N−
i 6= ∅, there is a set

P−
i ⊆ C ∩N−

i satisfying ∑
j∈P−i

|aij | ≥
1
τ

∑
j∈N−i

|aij | (3.38)

and, ifN+
i 6= ∅, there is a setP+

i ⊆ C ∩N+
i satisfying∑

j∈P+
i

aij ≥
1
τ

∑
j∈N+

i

aij . (3.39)

Then the interpolation(3.23)with weights(3.36)satisfies theτ -condition(3.21).

Proof. A direct proof can be found in [87]. Additionally, this theorem emerges as a special
case of Corollary 3.1 (see Corollary 3.2 in in Section 3.4.4.2). �

Analogously to Theorem 3.6, a straightforward extension of the above theorem to the
caseti ≥ −κ with someκ ≥ 0 can also be proved.

The above interpolation scheme, which has been developed for matricesA ∈ Awdd,
can be used for all matrices, at least technically. However, its “quality” will suffer con-
siderably, in particular, from a violation of weak diagonal dominance. In general, the
treatment of large positive off-diagonal entries is critical for AMG’s efficiency.

3.2.3.4 Elimination of Positive Couplings

The question arises if and how we can handle matricesA ∈ Aspd \ Awdd appropriately. In
particular, it is an open question in general how we should treat large positive entries when
constructing coarsening and interpolation. Although a general answer might not exist, a
remedy which we callelimination of positive couplingsoften helps in practice increasing the
robustness of AMG for matrices with large positive entries. In contrast to incorporating such
entries explicitly, as done in the last section for constructing interpolation, this remedy tries
to “get rid” of (large) positive entries. It can heuristically be motivated as follows.

An example for a practically relevant matrixA ∈ Aspd which isnot in Awdd is the matrix
which corresponds to the stencil (2.28) withε = 0 andα = 1/4,

1
h2

 −1/4 −1 −1/4
1/2 2 1/2

−1/4 −1 −1/4


h

. (3.40)

For instance, Gauss-Seidel relaxation forA produces errors which are (geometrically and al-
gebraically) smooth iny-direction. However, a coarsening process based on (3.24) does not
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detect the direction of smoothness. Although it ignores the positive entries1/2, as is appro-
priate for the above matrix, it regards the entries−1/4 as being strong due to the standard
choiceεstr = 1/4. A simple remedy for the above matrix would be anεstr > 0.25. This
workaround, however, does not help in general since it does not address an appropriate han-
dling of large positive matrix entries. Often, a better way to decide on strength of connectivity
is to “eliminate” (large) positive entries by inserting their corresponding stencils(only for
and) prior to deciding on the strength ofnegativecouplings. For the above stencil, one such
elimination step produces the stencil

1
h2

 1/14 0 −1 0 1/14
−2/14 0 2 0 −2/14

1/14 0 −1 0 1/14


h

, (3.41)

The positive off-diagonals have become rather small, so have the negative off-diagonals in
x-direction so that a coarsening process based on the standard criterion (3.24) correctly iden-
tifies the real direction of smoothness, they-direction.

The above elimination can be regarded as a first step in employing geometry implicitly.
It tries to find the “real” negative couplings reflecting the directions of smoothness.

Eliminations of positive couplings can also improve interpolation and can be incorporated
into “indirect” interpolation schemes discussed next. Variants implemented within SAMG are
mentioned in Section 4.3.

3.2.3.5 Indirect Interpolation

So far, we have constructed interpolation based ondirectconnections, that is, an F-variablei
is interpolated only from C-variables in its direct neighborhoodNi. Correspondingly,C/F -
splittings have to be such that eachi ∈ F is sufficiently strongly connected to the set of
C-variables viadirectconnections.

Although a strongF -to-C connectivity is indeed crucial, it does not necessarily have to
be via direct connections. In fact, this may limit the quality of interpolation and, closely
related, the speed of coarsening. Whereas, on one hand, a too slow coarsening will result
in high memory requirements, a faster coarsening, on the other hand, typically implies a
slower convergence. However, advantages in terms of less memory requirements and less
computational work for the setup and per cycle often outweigh the disadvantage of slower
convergence. In many cases, it pays to employ a computationally cheaper AMG variant as a
preconditioner rather than a more expensive AMG approach - regardless if the latter is used
stand-alone or as a preconditioner (see also the discussion in Section 4.4).

For an illustration, consider the following situation, the typical geometric scenario of
isotropic five-point discretizations on regular meshes. Interpolation based only on direct
connections would not allow for theh → 2h coarsening which is typically used in GMG
methods, the reason being that those F-variablesi sitting in the center of a coarse-grid cell
have no direct connection to the C-variables (graphs illustrating the situation can be found in
[87]). However, all their direct F-neighbors,j, do havestrong connections to the C-variables
and can thus be interpolated directly.

A straightforward generalization of interpolation is obtained by interpolating thej-varia-
bles first and then, via the resulting interpolation formulas, thei-variable. This approach can
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be applied in several variants. It can be used solely for F-variables lacking a strong connection
to C, or it can be used as a means to increase the quality of interpolation by “enlarging” the
formulas of direct interpolation. Depending on the application, such variants increase the
robustness of interpolation substantially.

In a straightforward way, elementary but technically rather involved, we obtain corre-
sponding theorems on the fulfillment of theτ -condition (3.21) which are analogous to the
above stated ones. Practical indirect interpolation schemes, the so-called (extended) standard
and multipass interpolation, will be considered in Section 4.3.

3.2.4 Pre-smoothing and Two-Level Convergence

The last three Sections (3.2.1 to 3.2.3) were mainly concerned with minimizing the energy
norm of the two-level iteration operatorSK in case of (one) post-smoothing (step). The start-
ing point was the direct implication of thesmoothing propertyon the interpolation which led
to theτ -condition (3.21). Criteria for the fulfillment of this condition were then investigated
for concrete interpolation formulas the development of which was inspired by the exploita-
tion of algebraic smoothness. The interplay of smoothing and interpolation was thus analyzed
based on the concept of algebraic smoothness.

In this section, we summarize a very different approach, considered in [48, 87], for the
investigation of this interplay and for the construction of rapidly converging AMG methods.
This approach aims atforcing the right hand side of the variational principle,

||Kh,HS
ν
he
h||1 = min

eH
||Sνheh − IhHe

H ||1 (3.42)

(see Theorem 3.1) to become small. For this purpose, two “brute-force” methods, the so-
calledF-smoothingandJacobi interpolation, are employed. Theorem 3.8 below proves an
upper bound for the two-level convergence of the resulting “brute-force” AMG approach.
Moreover, we will see that the condition on Jacobi interpolation employed in this theorem is
closely related to theτ -condition (3.21) discussed in Section 3.2.2. The convergence of the
“brute-force” AMG approach isuniform for the same matrix classes for which the approach
described in Section 3.2.2 converges uniformly. In addition, we discuss in brief advantages
in terms of convergence if full smoothing instead of mere F-smoothing is used and state that
Gauss-Seidel relaxation with “CF-ordering” may be preferable to a “lexicographic ordering”.

The main reason for discussing the two “brute-force” methods for smoothing and inter-
polation here is that each of them can help to improve convergence for some “tough” appli-
cations. Properly applied to the respective AMG strategy - based on variables, unknowns or
points -, they provide us with tools to enhance our “conventional” AMG approaches, as will
be demonstrated in Section 5.3.2 for a class of very ill-conditioned matrices.

3.2.4.1 Convergence Using Mere F-relaxation

The basic idea behind the approach considered here is the fact that, for all (scalar) applications
we have in mind here, the submatrixAFF can easily be forced to be very well conditioned,
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for instance strongly diagonally dominant,

aii −
∑

j∈F,j 6=i

|aij | ≥ δaii (i ∈ F ) (3.43)

with some fixed, predefinedδ = δ(AFF ) > 0 (see (2.26)) - if we choose theC/F -splitting
accordingly. Assuming (3.43) to hold, the solution of theF-equation,

AFF eF +AFCeC = 0 (3.44)

(with frozeneC), can efficiently be approximated, for instance, by relaxation, in the following
calledF-relaxation. Using this as the basis for both smoothingand interpolation, the right
hand side of (3.42) can be forced to become arbitrarily small. This is shown in the following.
OneF-smoothingstep is defined to be a mappingv → v̄ where

QFF v̄F + (AFF −QFF )vF +AFCvC = bF , v̄C = vC . (3.45)

In the case of Gauss-Seidel relaxation,QFF denotes the lower triangular part ofAFF includ-
ing the diagonal, in the case of Jacobi relaxation, we would haveQFF = DFF . However,
we only use Gauss-Seidel in practice. The corresponding smoothing operatorSh, mapping
the corresponding error quantitiese→ ē, reads

Sνhe =
(
SνFF (eF − êF ) + êF

eC

)
whereSFF = IFF −Q−1

FFAFF . (3.46)

For any givene = (eF , eC)T , we have rapid convergenceSνhe → ê (ν → ∞) assuming
(3.43) to hold. Here,̂e := (êF , eC)T with êF := −A−1

FFAFCeC denotes the solution of
(3.44).

Remark 3.12 F-relaxation does not satisfy the smoothing property. The last equation shows
thatSe = e for all e ∈ E := {e | eF = −A−1

FFAFCeC}. Hence, (3.9) cannot hold. N

We define interpolation by applyingµ F-relaxation steps to solve the F-equations (3.44) ap-
proximately. In contrast to F-smoothing, we use Jacobi relaxation in order to keep the re-
sulting operator as local as possible. The resulting interpolation process is thus calledJacobi
interpolation . To be more specific, given anyeC , we iteratively define a sequence of opera-
tors,

I
(µ)
FC = PFF I

(µ−1)
FC −D−1

FFAFC with PFF = IFF −D−1
FFAFF (3.47)

starting with some reasonable first guess interpolation operatorI
(0)
FC . Because of (3.43), we

have rapid convergence(IhH)(µ)eC → ê (µ→∞) at a rate which depends only onδ.

Remark: In contrast to F-smoothing, there is no “natural” first guessI
(0)
FC available. As will

be shown in the theorem below, the choice ofI
(0)
FC is crucial for uniform two-level conver-

gence. N

The following theorem states a condition, (3.48), on the first guess interpolationI
(0)
FC which

is sufficient to imply two-level convergence of the AMG approach resulting from combining
F-smoothing and Jacobi interpolation.
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Theorem 3.8 [87] LetA > 0 and assume theC/F -splitting to be such thatAFF is strongly
diagonally dominant(3.43) with fixedδ > 0. Let smoothing be performed byν ≥ 1 F-
relaxation steps(3.45). Finally, let the interpolation be defined byIFC := I

(µ)
FC (3.47)with

someµ ≥ 0 and assume that the first guess interpolation,I
(0)
FC , satisfies

||(ÎFC − I
(0)
FC)eC ||1,F ≤ τ ||e||1 (3.48)

for all e with someτ ≥ 0 being independent ofe and with ÎFC := −A−1
FFAFC . Then the

following estimate holds:

||KSνe||1 ≤ (||SFF ||ν1,F + τ ||PFF ||µ1,F )||e||1 . (3.49)

Clearly, the norms ofSFF andPFF in (3.49) are less than 1 and depend only onδ. In par-
ticular, the largerδ, the faster the convergence. Consequently, the previous theorem shows
that we can enforce arbitrarily fast two-level convergence by selectingν andµ accordingly.
Moreover, the convergence isuniform for A ∈ A if we can construct the first guess interpo-
lation, I(0)

FC , such that (3.48) is uniformly satisfied for all suchA. Lemma 3.4 below shows
that this can be achieved for the same classes of matrices for which the relatedτ -condition
(3.21) can be satisfied uniformly (see Section 3.2.3).

Lemma 3.4 [87] The conditions(3.48)and(3.21)are essentially equivalent. More precisely,
consider the two estimates

(a) ||eF − IFCeC ||20,F ≤ τ1||e||21 , (b) ||(ÎFC − IFC)eC ||21,F ≤ τ2||e||21 . (3.50)

If (a) holds for all e and if η ≥ ρ(D−1A), then (b) holds for alle with τ2 = ητ1. If (b)
holds for all e and ifAFF is strongly diagonally dominant(3.43), then (a) holds for alle
with τ1 = (1 +

√
τ2)2/δ.

Of course, not each choice for the first guess interpolationI
(0)
FC can work. ForI(0)

FC = 0,

for instance, we cannot expect (3.48) to hold (see Remark 5.6 in [87]). Generally,I
(0)
FC has to

be chosen such that the corresponding Galerkin operator is spectrally equivalent to the Schur
complement,ACC −ACFA

−1
FFAFC , w.r.t. all matrices in the class under consideration. For

more details see [87].
However, the requirement of strong diagonal dominance (3.43) and the condition (3.48)

on the first guessI(0)
FC can easily be satisfied by constructing theC/F -splitting and the inter-

polation according to Theorem 3.7. In particular,I
(0)
FC is then chosen to be the direct interpo-

lation (3.36). Therefore, not only the conditions on interpolation are essentially equivalent,
as stated in Lemma 3.4 above, but the interpolation can be defined on the same basis.

Remark 3.13 Remarks regarding the practical employment of F-smoothing and Jacobi re-
laxation can be found in Sections 3.2.5 and 4.3.1.5. Various numerical experiments employ-
ing F-smoothing and Jacobi interpolation can be found in [48, 87]. N
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3.2.4.2 Convergence Using Full Relaxation

The analyses of post- and pre-smoothing, respectively, lead to similar results. However, the
approach discussed here is not really in the spirit of standard multigrid since smoothing in
the usual sense is not exploited. The role of F-smoothing is merely to forceSνe ≈ ê rather
than to smooth the error of the full system. This, together with Jacobi interpolation is a
“brute-force” approach to make||Sνe− IhHeC ||1 small for alle = (eF , eC)T .

Practice has shown, however, that the use offull relaxation steps instead of mere F-
relaxation usually leads to more efficient AMG approaches in terms of computational
work. Moreover, we want to note here that Gauss-Seidel in CF-ordering (related to
red-black Gauss-Seidel relaxation in geometric multigrid) has turned out to be a very
efficient smoother in practice. In particular, for positive definite problems, it performs
usually more efficient than Gauss-Seidel without a specific ordering.

For general smoothing processes based on full relaxation, the results of Theorem 3.8 do not
carry over. Simply by ignoring the C-part of the relaxation, they do carry over in a trivial
way to Gauss-Seidel relaxation in CF-ordering: estimate (3.49) withν = 1 is obtained. This,
however, cannot explain the better performance observed for full smoothing.

Heuristically, the better performance of full instead of mere F-smoothing can be explained
as follows. In case of full smoothing - assumingS to satisfy the smoothing property - rather
cheap interpolation schemes, based on simple assumptions as (3.25), are usually sufficient to
approximate algebraically smooth error. In case of mere F-smoothing, however, such “basic”
interpolation schemes have to be “improved” by Jacobi interpolation in order to treat all error
components not affected14 by F-smoothing. Note that one step of Jacobi interpolation is more
expensive than replacing mere F- by full smoothing.

3.2.5 Discussion

Section 3.2 was concerned with the basic principles of AMG for scalar applications and the
two-level convergence theory. These principles as well as the convergence theory will be
extended to unknown- and point-based AMG in the following sections. We will see that
the essential aspects will carry over to our whole AMG methodology. In this section, we
make some remarks on limits of the two-level convergence theory and on practical means to
improve VAMG for “tough” problems.

The AMG theory presented here applies only to symmetric positive definite matrices. For
certain “ideal” subclasses ofAspd, the most prominent example beingASt∩Awdd

15, but also
subclasses ofAess

16 and some perturbations thereof,uniform two-level convergence can be
proved. However, the upper bounds are often far too pessimistic as has been seen in Remark
3.4. Other limits of the theory, for instance, w.r.t. multi-level convergence, are discussed in
[87].

Of practical importance are two other points. Firstly, even if not strictly provable, we
can expect uniform two-level convergence for certain larger matrix classes, being not too far

14Recall, in particular, that an errore ∈ E is not reduced at all by F-smoothing (see Remark 3.12).
15weakly diagonally dominant Stieltjes matrices.
16namely matrices inAess(symmetric essentially positive type matrices) withsi ≥ 0 for all i.
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off from the ideal case. In practice, VAMG’s performance turns out to be fairly insensitive
to deviations from the ideal case, and V-cycle convergence is, to a large extent, independent
of the size of the problem. Secondly, two-level convergence investigations already reveal (at
least some) important guidelines in obtaining efficient multi-level approaches. Among those
guidelines are

• Find a smoother which fulfills the smoothing property uniformly for the matrix class
under consideration with a largeσ (see Section 3.2.1.1).

• Find a reasonable compromise forτ , in particular, by coarsening in the direction of
smoothness (see Remarks 3.7 and 3.8).

• Handle large positive off-diagonal entries carefully (see Sections 3.2.3.3 and 3.2.3.4).

• Consider indirect interpolation (see Section 3.2.3.5).

We will come back to these topics when discussing the practical realization ofC/F -splitting
and interpolation schemes (see Sections 4.2 and 4.3).

A “classical” means to improve convergence which has not been mentioned so far is to
replace V-cycling by F- or W-cycling. However, in contrast to their importance for GMG,
in an AMG approach F- or W-cycles do often not pay: they improve convergence rates but
are quite expensive compared with a V-cycle. They reach at best the two-level convergence
rate and are therefore not able to cure possible problems with the accuracy of the coarse-level
correction. Hence, they provide only a possibility of second choice.

A fitting of interpolation based on some “test vector(s)”, as has already been mentioned
in [71], is another possibility to improve convergence. However, such a “sophisticated” tech-
nique tends to be computationally quite expensive. We come back to this topic in Section
3.3.3.2.

Of more practical importance for “tough” problems are the following means:

• the usage of AMG as a preconditioner, which is one of the most important ways (if
not even the most important one) known today to increase AMG’s robustness and ef-
ficiency as already indicated in Section 2.1.2. This will be demonstrated, for instance,
in Sections 4.4 and 4.6, and in Chapter 5.

• ILU(T-type) smoothing which can often fulfill the demand of stronger smoothing for
“tough” problems (cf. also investigations in [59, 110] of ILU smoothing for GMG).

• the employment of F-smoothing and Jacobi relaxation, as discussed in Section 3.2.4.
These provide purely algebraic means to improve convergence. They should be usedin
addition to full smoothing and the (indirect) interpolation schemes discussed in 3.2.3,
respectively. To be more specific, for many “tough” matrices arising in practical ap-
plications, a good compromise to obtain an efficient AMG approach is to employ full
smoothing in CF-ordering, maybe with one or more additional F-smoothing steps, to
use one of the (indirect) interpolation schemes of Section 3.2.3, and to improve inter-
polation - if necessary - by one or more Jacobi relaxation steps.

For example, the applications in Chapter 5 profit from all these means (even used in combi-
nation for drift-diffusion systems) to a large extent.
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3.2.6 Complement: Towards Even More Robustand Efficient Multi-
level Preconditioners

For many years, multigrid methods, general-purpose Krylov subspace methods, one-level
iterative preconditioners, and direct methods have been developed rather independently from
each other. Particularly in the last few years, research groups - particularly practitioners - have
incorporated ideas from other areas into their world or even started to combine different areas.
Today, the development of robust and efficient preconditioners is in the focus of research.
The overall goal is to develop preconditioners which combine the use of multilevel ideas for
(nearly) optimal efficiency with the use of incomplete factorizations or approximate inverses
for extreme robustness also for difficult applications. Promising developments include

(a) a transfer of techniques from sparse direct solvers, such as reorderings, scalings, and
pivoting, to ILU-type preconditioners,

(b) the development of new one-level preconditioners based on sparse approximate in-
verses (for instance, SPAI by Grote and Huckle, AINV by Benzi and Tuma),

(c) ILU and SPAI as smoothers for AMG methods,
(d) the usage of multigrid methods, in particular AMG, as preconditioners for Krylov sub-

space methods,
(e) the incorporation of reduction techniques into algebraic multilevel methods and, in

particular, the development of multilevel ILU methods,
(f) parallelizations of the methods17 .

Due to the vast amount of literature, we do not try to give a complete survey, but refer the
interested reader to the survey by Saad and van der Vorst [76] and Benzi’s recent survey [3]
and the references given therein. Points (c) and (d) are also discussed in this thesis.
Especially the combination of ILU and multilevel techniques draws much attention. Incom-
plete factorizations and AMG-type approaches are closely related. All these algorithms can
be interpreted as approximate Schur complement methods (see paragraph below and articles
by Axelsson and Vassilevski (especially AMLI), Dahmen and Elsner cited in [3]). To reach
the overall goal mentioned above, a very promising approach to develop “general-purpose”
preconditioners is thus based on a combination of algebraic multilevel techniques and in-
complete factorizations with an additional incorporation of (some of) the other techniques
mentioned above. In the following, we briefly mention important corresponding directions of
research and their relationship to AMG.

Schur-Complement Approach Assuming anyC/F -splitting given, remember (2.21), a
convenient form forAv = b for theoretical investigations:

Av =

(
AFF AFC
ACF ACC

) (
vF
vC

)
=

(
bF
bC

)
= b . (3.51)

17At least briefly, we want to mention the very interesting and popular FETI methods, a family of (nearly) scalable
algorithms, developed by Farhad et al. for solving huge problems in structural mechanics and other applications of
finite element analysis on massively parallel computers by a domain decomposition approach. [46, 45] discusses
particular interesting modern developments. The FETI methods make use of knowledge of the underlying application
to achieve a nearly optimal complexity and cannot be considered purely algebraic methods. The basic idea, however,
has the potential to be adapted to more general problem classes.
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AssumingA−1
FF to exist, a way to solveAv = b consists in a block-elimination ofACF ,

followed by solving the resulting equation

CvC = bC −ACFA
−1
FF bF (3.52)

involving the Schur complementC := ACC − ACFA
−1
FFAFC , and finally solving for the

F -variables:
vF = A−1

FF (bF −AFCvC) . (3.53)

AMG as an approximate Schur complement approach If we start with a zero first guess
v(0) and define, withICC being the identity,

IhH :=

(
IFC
ICC

)
, IFC := −A−1

FFAFC , IHh := (ICF , ICC) ,

we obtain the Schur complement as a coarse-level matrix (independent of the concreteICF ):

AH = IHh AhI
h
H = (ICF , ICC)

(
AFF IFC +AFC
ACF IFC +ACC

)
= (ICF , ICC)

(
−AFFA−1

FFAFC +AFC
−ACFA−1

FFAFC +ACC

)
= C .

With ICF := −ACFA−1
FF in addition, the same right-hand side as in (3.52) emerges:

IHh (b−Av(0)) = −ACFA−1
FF bF + bC .

Let v? denote the exact solution ofAv = b. Solving (3.52) yieldsv?C then. With a smoothing
operatorS defined as

S :=

(
0 −A−1

FFAFC
0 ICC

)
,

(pure F-smoothing!) we obtain in a post-smoothing step the exact solution ofAv = b:

v(1) = S(v(0) + IhHv
?
C) + (I − S)A−1b = SIhHv

?
C + (I − S)v?

=

(
0 −A−1

FFAFC
0 ICC

) (
−A−1

FFAFC
ICC

)
v?C +

(
IFF A−1

FFAFC
0 0

) (
v?F
v?C

)
=

(
−A−1

FFAFCv
?
C

v?C

)
+

(
v?F +A−1

FFAFCv
?
C

0

)
=

(
v?F
v?C

)
.

Therefore, the resulting two-level AMG methodSK (i.e. coarse-level correction followed
by one smoothing step) is a direct solver, which can naturally be extended to a multi-level
method.18

18These statements also hold for the methodKS, see Section A.2.3 (“Limit case of direct solvers”) in [87].
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Both the smootherS and interpolationIFC of the direct solver described above are di-
rectly related to solving the (homogeneous) F-equation (3.44),AFF eF + AFCeC = 0, ex-
actly. The “brute-force” AMG methods described in Section 3.2.4 use F-smoothing and
interpolation operators which are formed based on approximations of this F-equation. Also
the interpolation operator of standard AMG is based on it. Hence, AMG and, in particular,
the “brute-force” methods discussed in Section 3.2.4 can be interpreted as approximate Schur
complement methods.

Several other known methods also approximate the two-level Schur complement method
(3.52)-(3.53) and can also be extended to multi-level methods.

Reduction Methods For instance, choosing aC/F -splitting which results in a diagonal -
or at least diagonally dominant - matrixAFF leads to a “reduction method”.

A diagonally dominantAFF can be constructed, for instance, by first applying an AMG-
typeC/F -splitting19 method to the matrix graph of strong couplings and afterwards, if nec-
essary at all, shifting variables toC (till AFF is as strongly diagonally dominant as desired).

Obviously, forAFF to become diagonal, the corresponding set of F-variables has to be an
independent set. This can be achieved, for instance, by applying an AMG-typeC/F -splitting
method with the following changes: it is applied to the whole matrix graph, not only to the
matrix graph of strong couplings as done in AMG, and the roles ofC andF are “interchanged
afterwards”.

An obvious advantage of forcingAFF to be diagonal(ly dominant) is that its inverse (if
existing) and, hence, the Schur complementC are easy to compute. A strong disadvantage
is, however, that the density of the coarse-level matricesC usually increases exponentially
unless a cut-off strategy is applied. Due to cut-off, such a method is not a direct solver
anymore.

A well-known method of this type is the method of total reduction (TR; see, in particular,
[80, 81]). TR has mainly been developed for solvingAv = b with A corresponding to a
scalar elliptic PDE on a rectangle, discretized by means of a 5-point or 9-point stencil as,
for instance, (2.30)20. For such applications, the iterative variant of the method is numer-
ically stable (see [80, 81, 95]), has optimal complexity O(N) and can be implemented very
efficiently which makes it a “perfect” iterative solver. The only but strong disadvantage is its
small range of applications.

Remark 3.14 (Relationship of standard AMG and TR) Consider any standard 5-point
discretization on a rectangular mesh. Then, obviously,AFF becomes diagonal if we select the
C/F -splitting such that, for eachi ∈ F , all of its neighbors are inC (red-black coarsening)
The coarse-level operator of the standard VAMG method (VAMG(std,A), see Chapter 4) on
the second level consisting of the black points, say, can be seen to correspond to (“long”)
9-point stencils. By straightforward calculations21, one can see that, applied toAv = b with
A corresponding to (2.30), the two-level standard AMG method VAMG(std,A), the two-level
direct solver described above and the two-level total reduction method are equivalent.

19Readers not familiar with classical AMG should also read Chapter 4 before reading this section.
20together with Dirichlet, Neumann or periodic boundary conditions. It can also be applied to certain more general

situations w.r.t. equation, dimension, geometry of the domain.
21e.g. using stencil calculus described in [80]. Cf. also Example A.2.1 in [94].
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Applied to the second-level matrix, TR and the direct AMG solver are still equivalent. A
“usual” AMG method, however, differs from them. This is because the strategies of AMG
and TR are quite different. As already mentioned,C/F -splittings are created and employed
in a different way; TR solves for (subsets of) the original variables on all levels instead of
smoothing errors and computing corrections as done in AMG; and TR uses a cut-off to retain
sparsity of the coarse-level matrices, whereas AMG aims at keeping the coarse-level matrices
sparseandat the same time creating good interpolation and coarse-level operators by a proper
coarsening process (max-MIS property, see Section 4.2.1). N

Remark 3.15 The MGR method combines geometric multigrid and reduction by means of
so-called ”intermediate grids“ (see [67], [111]). N

Approximate cyclic reduction methods as the one described in [66] make also use ofC/F -
splittings to produce easy-to-invertAFF . The resulting matricesAFF are usually not forced
to be diagonal. AC/F -splitting is applied to a “reduced graph”, i.e. a graph of strong cou-
plings (AMG-typeC/F -splitting, optionally withC andF interchanged), and an approxi-
mation of the Schur complement based on a sequence of “point-Gauss” elimination steps is
used. The method aims at constructing approximate Schur complementsC with a similar
sparsity structure than that ofA.

Multi-Level Incomplete Factorizations The two-level approach (3.52)-(3.53) is also the
basis for “algebraic recursive” or “multi-level ILU” methods (for surveys, see [103, 76, 3]).
Among them are

• NGILU and MRILU by Botta, Wubs and van der Ploeg (cf. [103]),

• the hierarchical basis multigraph algorithm by Bank and Smith (see [103]),

• multilevel ILU (MLILU) by Bank and Wagner (cf. [103]; for some comparative notes
of this and the previous method, see [66]),

• multilevel ILU (ILUM), block ILUM (BILUM), BILUTM, (parallel) algebraic recur-
sive multilevel solvers ((p)ARMS) and ARMS-C by Saad and co-workers (see, for
instance, [51, 73] and the references given therein),

and more. They combine incomplete factorization techniques, AMG-typeC/F -splittings,
permutations or reorderings (for instance, MC64 by Duff and Koster, part of the Harwell
Subroutine Library HSL), rescalings, partial pivoting, block complete pivoting, and dropping
(cut-off) strategies to obtain robustandefficient preconditioners.

It seems clear that none of the mentioned AMG or multilevel ILU methods alone will be
the “holy grale” for all applications - and such a “holy grale” is unlikely to show up. It is
the clever combination of techniques for the concrete application considered which makes an
efficient preconditioner. Research for “hybrid” linear solvers with characteristics from both
iterative and direct methods will be ongoing with “AMG-like” multilevel techniques playing
an important role.
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3.3 Unknown-Based AMG

We now recall a rather popular AMG strategy to solve systems of PDEs, the so-calledun-
known-based AMG (UAMG) strategy which is very similar to the variable-based strategy
except that all unknowns are treated separately. Compared with the variable-based strategy,
the only additional information required is information about the VU mapping as defined in
Section 2.4.1.

To be more specific, let us assume, for ease of description, the variables to be ordered by
unknowns, that is,Av = b has the form (2.16) (see Section 2.4.1): A[1,1] · · · A[1,nu]

...
...

...
A[nu,1] · · · A[nu,nu]


 v[1]

...
v[nu]

 =

 b[1]
...

b[nu]

 . (3.54)

The unknown-based strategy applies variable-based methods to theA[n,n] (n = 1, . . . , nu)
for coarsening and interpolation. Especially due to the separate coarsening this can even lead
to a decoupling of the individual discrete PDE systems in extreme cases.

A detailed description of the components smoothing, coarsening, interpolation and coarse-
level operators defining each UAMG approach is given in Section 3.3.1. Section 3.3.2 then
discusses two-level convergence of UAMG. This discussion will indicate that essential condi-
tions for the unknown-based strategy to work are that eachA[n,n] can successfully be treated
by variable-based AMG, that smoothing the individual unknowns separately is sufficient to
cause the resulting error to be smooth separately for each unknown, and that the unknown
cross-couplings are not too “strong”. In particular, as a new contribution, a measure for this
strength of unknown cross-couplingsis introduced. Finally, in Section 3.3.3, we indicate the
range of applicability and the limits of the unknown-based strategy. In particular, we dis-
cuss the conditions and the measure mentioned above for the model problems introduced in
3.1.3 and for linear elasticity problems. We also summarize experiences compiled from the
literature on the application of AMG to linear elasticity.

3.3.1 Components

3.3.1.1 Unknown-Wise Smoothing

For UAMG, we usually employunknown-wise Gauss-Seidel (UGS)smoothing, that is,
VGS smoothing but with an unknown-wise ordering: first all variables belonging toU1 are
relaxed, then all variables belonging toU2 and so on. Both VGS and UGS satisfy the smooth-
ing property (3.9)22 for all A ∈ ASt and other important subclasses ofAspd (see Section
3.2.1.1). In practice, if UGS smoothing is not efficient, often ILU(0) or ILUT smoothing
helps.

22In fact, (3.9) cannot distinguish different orderings.
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3.3.1.2 Unknown-Wise Coarsening and Interpolation

In UAMG, coarsening and interpolation only deal with theA[n,n]. To be more specific,
coarsening the set of variables corresponding to then-th unknown is strictly based on the
connectivity structure reflected by the submatrixA[n,n]. A variable-based coarsening method
is applied to eachA[n,n]. Also interpolation for a particular unknownUn is solely based on
the corresponding matrix entries ofA, that is, only onA[n,n]. In particular, interpolation to
any variablevi involves only coarse-level variables corresponding to the same unknown, i.e.
if vi ∈ Un, then its set of interpolatory variablesPi is a subset ofUn ∩ C. Obviously, the
following form emerges for the interpolation operatorIhH :

IhH =

 IhH,[1,1] 0
...

0 IhH,[nu,nu]

 (3.55)

where eachIhH,[n,n] represents an interpolation operator constructed forA[n,n] by means of a
variable-based method as discussed in Section 3.2.3. Such an interpolation is calledmultiple-
unknown-interpolation (MU-interpolation) .

3.3.1.3 The Coarse-Level Matrices

The Galerkin coarse-level matrices are usually computed w.r.t. all unknowns. That means, as
for VAMG, we define

AH := (IhH)TAhIhH . (3.56)

In some cases, however, it might be more feasible in terms of computational efforts to com-
pute even the Galerkin operator unknown-wise, that is

AH := (IhH)TAu,hIhH (3.57)

whereAu is defined as the block-diagonal matrix consisting of theA[n,n], that is

Au :=

 A[1,1] 0
...

0 A[nu,nu]

 . (3.58)

In case of an unknown-based approach, we call type (3.56)full Galerkin and type (3.57)
block-Galerkin .

3.3.2 Two-Level Convergence

In the following, we assume that the full Galerkin coarse-level operator (3.56) is employed.
The subsequent investigations of two-level convergence give us direct generalizations of
statements that have been developed for VAMG. We discuss essential conditions on the ef-
ficiency of UAMG and quantify that the “stronger” the unknown cross-couplings the worse
the convergence of an unknown-based approach has to be expected to be.
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ForA > 0, alsoAu > 0 holds. We then define theunknown-wise inner energy product:

(v, w)u,1 := (Auv, w)E . (3.59)

Theunknown-wise energy norm, || · ||u,1, is defined accordingly.

Lemma 3.5 The following inequality holds for allA > 0:

∀ e : (Aue, e) ≤ ρ(A−1Au)(Ae, e) . (3.60)

Proof. This follows from (2.59) and (2.51) used to obtain a valid constantc in

(Aue, e) = (AuA−1Ae, e) ≤ c(Ae, e) .

�
Since in UAMG a variable-based coarsening and interpolation strategy is applied to each
A[n,n], it is natural to demand VAMG to work for eachA[n,n] and aτ -condition (3.21) to be
fulfilled with someτ = τ(A[n,n]). As has to be expected, the maximumτu of theseτ(A[n,n])
comes into the upper bound for two-level convergence. We first note that the followingτττ -
condition of MU-interpolation ,

∀ e : ||eF − IFCeC ||20,F ≤ τu||e||2u,1 , (3.61)

holds under the conditions mentioned above. We can prove the following analogs of Theo-
rems 3.3 and 3.4 now:

Lemma 3.6 Let A > 0 and a VU mapping be given. If theC/F -splitting and interpola-
tion IFC are such that theτ -condition(3.61)of MU-interpolation is fulfilled withτu being
independent ofe, then(3.20)is satisfied withτ = τuρ

(
A−1Au

)
.

Proof. Due to Lemma 3.5, we obtain||e||2u,1 ≤ ρ
(
A−1Au

)
||e||21. The remainder follows

from Theorem 3.4. �

Lemma 3.7 LetA > 0 and a VU mapping be given. LetS satisfy the smoothing property
(3.9). Furthermore, assume theC/F -splitting and interpolation to be such that the condi-
tion (3.61) is fulfilled with someτu being independent ofe. Then||SK||1 ≤

√
1− σ/τ is

satisfied withτ = τuρ
(
A−1Au

)
≥ σ.

Proof. Combine Theorems 3.6 and 3.3. �
The crucial points here are the fulfillment of theτ -condition of MU-interpolation and the
smoothing property (3.9). Since we employ variable-based methods for coarsening and in-
terpolation, the smootherS has to provide error which is algebraically smooth separately for
the different unknowns. In principle, we thus demand an “unknown-smoothing property” to
hold and define: A smoothing operatorS is said to satify theunknown-smoothing property
w.r.t. a matrixA > 0 and a VU mapping given if, for alle, the following inequality holds
with aσu > 0 being independent ofe:

||Se||2u,1 ≤ ||e||2u,1 − σu||e||2u,2 (σu > 0) . (3.62)
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The following theorem, a straightforward analog of Theorem 3.3 combined with Theorem
3.4, can be proved now. As for Lemma 3.6, we make use of Lemma 3.5 in the proof, here even
on several places. Lemma 3.5 provides a simple means to compare the energy norm based
onA with that based onAu. The upper bound of two-level convergence obtained below is
thus notoptimal(and might even be far away from that). However, it at least indicates which
terms influence UAMG’s performance.

Theorem 3.9 LetA > 0 and letS satisfy the unknown-smoothing property(3.62). Further-
more, assume theC/F -splitting and interpolation to be such that theτ -condition(3.61)of
MU-interpolation is fulfilled withτu being independent ofe. Then

||SK||u,1 ≤
√
ρ
(
A−1Au

)
ρ
(
A−1
u A

)√
1− σu/τ̃ (3.63)

with τ̃ = τuρ
(
A−1Au

)2
ρ
(
(A−1

u A)2
)
.

Proof. Due to Corollary 3.6, theτ -condition of MU-interpolation implies

∀ e : ||Ke||21 ≤ τuρ
(
A−1Au

)
||Ke||22 (3.64)

with someτu > 0 being independent ofe. Due to (2.59) and (2.51), we obtain

||Ke||22 = (D−1AKe,AKe)E = (AD−1AKe,Ke)E
≤ ρ

(
A−1
u DA−1

u AD−1A
)
(AuD−1AuKe,Ke)E

= ρ
(
(A−1

u A)2
)
||Ke||2u,2

.

With Lemma 3.6 and (3.64), we can then estimate

ρ
(
A−1Au

)−1||Ke||2u,1 ≤ ||Ke||21 ≤ τuρ
(
A−1Au

)
||Ke||22

≤ τuρ
(
A−1Au

)
ρ
(
(A−1

u A)2
)
||Ke||2u,2 .

Together with (3.62), we now obtain

||SKe||2u,1 ≤ ||Ke||2u,1 − σu||Ke||2u,2 ≤
(

1− σu

τuρ
(
A−1Au

)2
ρ
(
(A−1

u A)2
))||Ke||2u,1 .

We know from Theorem 3.1 that||K||1 = 1. Again due to (2.59), we can estimate

||Ke||2u,1 ≤ ρ
(
A−1Au

)
||Ke||21 ≤ ρ

(
A−1Au

)
||e||21 ≤ ρ

(
A−1Au

)
ρ
(
A−1
u A

)
||e||2u,1 .

In summary, the theorem is proved. �
Therefore, we can - in principle - measure the strength of unknown cross-couplings by

ρu := ρ(A−1Au) ρ(A−1
u A) . (3.65)

Remark 3.16 Due to (2.51),ρ
(
A−1Au

)
= ρ
(
AuA

−1
)

andρ
(
A−1
u A

)
= ρ
(
AA−1

u

)
hold. N

Remark 3.17 The above upper bound for two-level convergence can be larger than one.
Due to Theorem 3.1, unknown-based AMG will nevertheless not diverge forA > 0 if the
smoother satisfies||S||1 ≤ 1 (see also Lemma 3.7). N
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3.3.3 Discussion

The investigations made above indicate which conditions are necessary for an unknown-based
approach to be efficient. First, smoothing should cause the error to become algebraically
smooth separately for each unknown. This will be the case if the unknown cross-couplings
are not too strong in the sense of a smallρu. Second, a similar statement can be made for
the variable-based coarsening and interpolation strategies applied to theA[n,n]. Not only
should these strategies be appropriate for theA[n,n] but the resulting operatorK also for the
whole matrixA. Again, this will be the case if the unknown cross-couplings are weak in the
sense of a smallρu. In summary,ρu provides a measure of thestrength of unknown cross-
couplings in the following sense: the larger this value, the “stronger”, that is the worse, has
the influence of unknown cross-couplings on the convergence of an unknown-based approach
to be expected.

We are going to investigate the strength of unknown cross-couplings and the applicability
of UAMG for our three model classes now. Afterwards, in Section 3.3.3.2, we will discuss
UAMG for matrices arising in linear elasticity. Also other AMG approaches for elasticity
problems will be reviewed.

3.3.3.1 Theoretical and Numerical Investigations of UAMG for the Model Problems

Investigations of the Smoothing Property The smoothing property of variable-wise Gauss-
Seidel (VGS) and, hence, also unknown-based Gauss-Seidel (UGS) is now investigated for
the three model classes defined in Section 3.1.3. We start with the AVL models.

For matrices of the formLS defined by (3.1), we can compute the parameterσ in (3.9)
by means of Theorem 3.2 - as long as|c| <

√
ab. Forw = 1 we obtain

γ+ = max
{

(1 + ε)a+ (3 + 3ε)|c|
(2 + 2ε)a

,
(1 + ε)b+ (1 + ε)|c|

(2 + 2ε)b

}
,

γ− = max
{

(1 + ε)a+ (1 + ε)|c|
(2 + 2ε)a

,
(1 + ε)b+ (3 + 3ε)|c|

(2 + 2ε)b

}
.

Obviously, this evaluates to

γ+ = max
{
a+ 3|c|

2a
,
b+ |c|

2b

}
=

1
2

+
1
2

max
{

3
|c|
a
,
|c|
b

}
,

γ− = max
{
a+ |c|

2a
,
b+ 3|c|

2b

}
=

1
2

+
1
2

max
{
|c|
a
, 3
|c|
b

}
,

σ =
1

(1 + γ+)(1 + γ−)
=

4
(3 + |c|max

{
3
a ,

1
b

}
)(3 + |c|max

{
1
a ,

3
b

}
)

independent ofε. We can follow now that (forw = 1) σ ∈]0, 4/9]. For the caseA ∈ Aspd, i.e.
|c| <

√
ab, we obtainσ ∈ ]1/9, 4/9]. For instance, fora = b = 2|c|, we obtainσ = 16/81

as a value for the smoothing property of VGS for matricesLS . As expected, these results for
σ indicate that large unknown cross-couplings, which correspond to a large|c|, destroy the
good smoothing property of VGS obtained for the decoupled case (σ = 4/9).
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For matrices of the formLX defined by (3.3), we can compute the parameterσ analo-
gously. Forw = 1 we obtain

γ+ = max
{

(1 + ε)a+ 6|c|
2(1 + ε)a

,
(1 + ε)b+ 2|c|

2(1 + ε)b

}
.

If we replacea with b, we obtainγ−. In contrast to the AVLS model,σ depends onε here.

For instance, fora = b = 2|c|, we arrive atσ = 4(1+ε)2

9(2+ε)2 , which results inσ = 1/9 for
ε = 0 and (as forLS) σ = 16/81 for ε = 1. The obtained values forσ are the same or (a bit)
worse than those obtained forLS . Numerical results for differentLX matrices will be given
in Section 3.4.1.2.

Also for the reaction-diffusion-like class defined in Section 3.1.3.2, Theorem 3.2 helps in
determiningσ. Here,maxk |dkk| < 4 (1− cos(πh)) ensuresA > 0 and, hence, Theorem 3.2
to be applicable. Forw = 1 we obtain

γ+ = γ− = max
k

(
|dkk|+ 2

4

)
≥ 1

2
and thusσ =

(
16

(maxk |dkk|+ 6)2

)
≤ 4

9
.

For the caseA > 0, maxk |dkk| < 4 (1− cos(πh)), we obtain

σ ∈
]

16
(10− 4 cos(πh))2

,
4
9

]
.

Of course, since|c| = h2|f | is very small for smallh, the lower bound is very close to the
upper bound4/9. Note, however, that the unknown cross-couplings can in practice be much
larger than diagonal elements. The same conclusion as for the AVL case can thus be drawn.
With increasing magnitude ofmaxk |dkk| we can expect VGS and UGS to be less efficient
smoothers. Numerical results proving this will be shown in Section 3.4.1.2.

The matrices belonging to the drift-diffusion-like class (Section 3.1.3.3) are not symmet-
ric so that Theorem 3.2 cannot be employed. Numerically, it can be seen that VGS strongly
diverges. This has to be expected since the matrices are far from being diagonally dominant:
a whole off-diagonal block,A[1,2], dominates the diagonal blocksA[n,n] (see Example 3.5).
Numerical results will be shown in Section 3.4.1.2.

Investigations of ρu As pointed out above, the factorsρ
(
AA−1

u

)
andρ

(
AuA

−1
)

can be
expected to have a decisive impact on UAMG’s convergence. For the AVLS model (3.1) with
a = b and|c| < a, it is easy to see that

AA−1
u =

[
I c

aI
c
aI I

]
,

and thusρ(AA−1
u ) = 1 + |c|/a. Additionally,AA−1

u is symmetric positive definite, and we
obtain

ρ(AuA−1) = (λmin(AA−1
u ))−1 = (1− |c|/a)−1 .
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Obviously, for|c| approachinga (from below to retainA > 0),A approaches singularity and
ρu = 1+|c|/a

1−|c|/a tends to infinity.

For the AVLX model (3.3), the matricesAuA−1 andAA−1
u are (except of trivial cases)

not symmetric and have complex eigenvalues. Fora = b = 1, c = 10, ε = 1e−3 we obtain23

|λ|max(AuA−1) ≈ 5.3e-2 , |λ|max(AA−1
u ) ≈ 1.7e+2 .

Fora = b = 10, c = 1, ε = 1e− 3 we obtain

|λ|max(AuA−1) ≈ 2.8e+2 , |λ|max(AA−1
u ) ≈ 2.7e+0 .

Although with the above parameter settings the corresponding matricesA are not> 0, the
ρ-values indeed indicate that UAMG is not appropriate here.

Numerical results for the AVL models will be shown in Section 4.6. They will demon-
strate that for UAMG applied to AVL models, it is not so important whether the anisotropies
for the different unknowns are in the same or in different directions. However, it is important
how large the unknown cross-couplings are, as indicated by the above considerations ofρu.
For the ideal situation of nearly decoupled Laplacians (ρu ≈ 1), Remark 5.2 will give an
example.

For the RD model withnz = 1, c = 1e+ 3, we obtain24

{λ(AuA−1)} ≈ { -3.3e-3, 3.3e-3, 1} , {λ(AA−1
u )} ≈ { -3.0e+2, 3.0e+2, 1}

and, hence,ρu ≈ 3.0e+2. For the same RD model but withc = 1e+ 9, we obtain

{λ(AuA−1)} ≈ { -3.3e-9, 3.3e-9, 1} , {λ(AA−1
u )} ≈ { -3.0e+8, 3.0e+8, 1}

and, hence,ρu ≈ 3.0e+8. Note that, for increasingnz, |λ|max(AA−1
u ) and thusρu grow

substantially.
The situation is comparable with the AVL models. With increasingc, VAMG’s efficiency

decreases because diagonal dominance is increasingly strongly violated for the2nz rows
containing a large positive off-diagonal entry. Due to the same reasons, also UAMG’s con-
vergence will break down25. Even worse for the DD models with moderate(λ, c). Neither
VAMG nor UAMG works here.

Concrete numerical results for both RD and DD models will be shown in Section 3.4.1.2
(investigations of smoothing properties) and Section 4.6 (performance of different VAMG,
UAMG and PAMG approaches).

3.3.3.2 Linear Elasticity

Linear elasticity or plasticity problems, as for instance material stress calculations, are of
great practical importance. For typical FE discretizations and boundary conditions, the aris-
ing matrices are symmetric positive definite. However, the numerical solution of these ma-
trices by means of one-level or hierarchical iterative solvers faces several problems, among

23Computations have been performed for the caseh = 1/32, employing LAPACK’s [1] direct eigensolver.
24Computations have been performed for the caseh = 1/32, employing LAPACK’s [1] direct eigensolver.
25regardless whether UGS or the “stronger” ILU(0) is used as smoother.
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the severe ones being locking effects (due to unproper discretizations), higher order finite
elements, shell elements, anisotropies and large positive off-diagonal matrix entries, multi-
or single-point constraints and rigid body modes. Consequences can be very ill-conditioned,
nearly singular matrices. In addition, higher order elements or shell elements pose severe
problems for (A)MG approaches.

We concentrate here on AMG approaches for matrices emerging from second-order stan-
dard FE discretizations. After describing the PDE system to be solved, we briefly go into the
problems for AMG - anisotropies, large positive off-diagonals and rigid bodes - and review
the different approaches in the literature. In particular, we explain under which conditions
UAMG can work and prepare subsequent discussions in Section 5.2.1 where AMG for appli-
cations in semiconductor stress simulation is investigated.

Lamé Equations The classical Laḿe equations modeling 3D linear elasticity problems
(see, for instance, [6] for more detailed information) formulated with the Lamé coefficients
λ, µ read as follows

− (2µ+ λ)u1,xx − µu1,yy − µu1,zz − (µ+ λ)u2,xy − (µ+ λ)u3,xz

−µu2,xx − (2µ+ λ)u2,yy − µu2,zz − (µ+ λ)u1,xy − (µ+ λ)u3,yz

−µu3,xx − µu3,yy − (2µ+ λ)u3,zz − (µ+ λ)u1,xz − (µ+ λ)u2,yz

 =

 f1
f2
f3

 . (3.66)

The scalar functionsu1, u2, u3 denote the displacements inx-, y- andz-direction, respec-
tively. Typical boundary conditions are Dirichlet conditions for some parts of the boundary
and ∂Tσ(u)

∂ν = g for the remainder, whereTσ denotes the stress tensor,∂∂ν the derivative
normal to the boundary,f the volume force andg the surface force (cf. [6]).

If we assume that external forces depend only onx andy with vanishingz-component,
and that there are noz-components of the strain26, the plane-strain problem emerges27:[ − (2µ+ λ)u1,xx − µu1,yy − (µ+ λ)u2,xy

−µu2,xx − (2µ+ λ)u2,yy − (µ+ λ)u1,xy

]
=
[
f1
f2

]
. (3.67)

The problem class considered in Chapter 5.2.1 will be of the plane-strain type.
Generally, the Laḿe coefficients are related to Young’s modulusE of elasticity and the

Poisson ratioν by

ν =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ
, λ =

Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3.68)

The Laḿe system is elliptic in the sense that each individual equation is elliptic. Additionally,
each individual equation exhibits anisotropy, in particular for the case of nearly incompress-
ible material,λ� µ, and the anisotropy for each equation is obviously in a different direction
than for the respective other equation(s). Forλ � µ, the problem is very ill-conditioned28.

26i.e. a deformation inz-direction is not allowed.
27If we allowed for strain inz-direction, we would arrive at the plane-stress problem.
28see discussions of locking effects in [6], for example. Here, a weak formulation of the system with the pressure

p as an additional unknown function, resulting in a system with a penalty term, would help the situation. However,
(u, p)-systems are not discussed here.
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The arising stiffness matricesA inherit the anisotropy and ill-conditioning of the continuous
PDE system. Due to the ill-conditioning, classical one-level solvers have severe problems in
solving the matrix equations efficiently.

Handling Anisotropies and Large Positive Off-Diagonals Despite the facts that the
equations are elliptic and the stiffness matricesA usually symmetric positive definite, AMG
approaches might not be efficient. One problem being that even standard bilinear finite ele-
ments lead to large positive off-diagonals in the submatricesA[n,n] here (see Section (2.4.4),
stencil (2.28) withα = 1/4). A modification of coarsening, efficiently curing the problem
here, has already been discussed in Section 3.2.3.4. This way, VAMG can handle theA[n,n]

correctly also in case of strong anisotropies. The PDE system, however, is too strongly cou-
pled for VAMG.

Calculations ofρu have been performed for (3.67), on the unit square, discretized by
bilinear finite elements,h = 1/32, ν ∈ {0.20, 0.45 }, with Dirichlet conditions on two sides
of the unit square and homogeneous Neumann boundaries on the remaining two. Calculations
have also been performed for three stress matrices arising in semiconductor simulation, see
Section 5.2.1.3. Values forρu between3 and 10 have been obtained. These “small”ρu
values, indicating a “moderate” unknown cross-coupling, correspond to the experience that
UAMG works quite efficiently for stress matrices - at least if they are not nearly singular. This
topic will be discussed next. Before, we note that, due to a more or less strong anisotropy
in different directions for the different unknowns, unknown-based AMG should be more
appropriate than a point-based strategy.

Rigid Body Modes However, the application of any AMG approach to the stiffness ma-
tricesA is challenging mainly due to the so-calledrigid body modesforming the non-trivial
kernel of an elasticity operator without essential boundary conditions. In case of 2D elastic-
ity, this kernel consists of three rigid body modes, namely two translations and one rotation;
in case of 3D elasticity, it consists of six rigid bodes, namely three translations and three
rotations. Since the “quality” of an AMG interpolation depends on how well eigenfunctions
belonging to the smallest eigenvalues are reproduced, these eigenfunctions, which are equal
to the rigid body modes in the singular case, have to be interpolated as exactly as possible if
A is singular or nearly singular. The latter is the case if only on a small part of the domain
Dirichlet conditions are imposed.

In the singular case (i.e.A has only zero row sums), the translations, being unknown-wise
constant functions, pose no problems for AMG since their exact interpolation can simply be
achieved by requiring the row sums of the interpolation matrixIFC to be one unknown-wise.
Our interpolation schemes do fulfill this condition for zero-row-sum matrices. However, the
rotations are linear functions, and their exact interpolation cannot be guaranteed by an AMG
approach without special input and/or modifications. Moreover, in the nearly singular case,
the rigid body modes are only approximations of the eigenfunctions corresponding to the
smallest eigenvalues. The smaller the smallest eigenvalue ofA, the worse the performance
of unmodified AMG can be expected to be. The magnitude of the smallest eigenvalue ofA is
strongly related to the raterDir which is defined as the number of Dirichlet variables divided
by the total number of boundary variables.rDir is thus an important factor determining the
performance of UAMG for the stiffness matricesA in case of linear elasticity.
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AMG Approaches for Linear Elasticity That the unknown-based approach can suc-
cessfully be applied to certain linear elasticity problems has already been demonstrated in
[69, 71]. As discussed above, the convergence of this simple and cheap approach deteriorates
if the problem is (nearly) singular since the eigenfunctions corresponding to the rotations in
the singular case cannot be exactly reproduced by the interpolation schemes employed. The
same is true for aggregative approaches.

In principle, if a set of independent eigenvectors corresponding to the smallest eigenvalues
of A is known and is passed to an AMG solver as a set of “test vectors”, interpolation can be
forced to reproduce them correctly. Whereas in general situations, of course, explicitly com-
puting these eigenvectors is too expensive, the rigid body modes of linear elasticity (being
good approximations of these eigenfunctions in the nearly singular case) can be determined
via the coordinates of the grid nodes. For classical AMG, a procedure to fit interpolation
to a set of submitted vectors (such as rigid body modes) has been outlined already in [71].
Nevertheless, the development of robust and efficient approaches, based on classical AMG,
is still subject to further research. For AMG based on smoothed aggregation, a proper incor-
poration of submitted eigenvectors has been discussed in [99, 53], for instance. Since these
approaches are point-based, we will review them and other point-based approaches for linear
elasticity in Section 3.4 in Remark 3.31.

To interpolate eigenvectors belonging to small eigenvalues particularly well is also the
expressed goal of AMGe. Instead of using a set of test vectors, local approximations to the
smallest eigenvalues are constructed via the element-stiffness matrices. As has been demon-
strated in [12, 16] for a thin body elasticity model, AMGe indeed shows better convergence
properties than unknown-based AMG [71]. However, AMGe’s efficiency in terms of compu-
tational cost has not been discussed so far.

3.4 A General Framework for Point-Based AMG

In this section, we outline a general and flexible framework for constructing AMG approaches
to solve various types of PDE systems. In contrast to the previous approaches, that is variable-
and unknown-based ones, all of the new ones operate on the level of points rather than vari-
ables. This is to be understood as follows. Whereas in an unknown-based approach each
unknown is associated with its own level hierarchy and own transfer operators, it often makes
more sense to coarsen the unknownssimultaneouslyif they live on the same grid. This
leads to what we call point-based approaches: we talk about apoint-based AMG approach
(PAMG) if coarsening takes place on the level of points (rather than variables as before)
and all unknowns are defined on the same hierarchy. Such a coarsening is calledpoint-
coarsening.

Since we primarily have the solution of PDEs in mind, we think of points as correspond-
ing to real physical grid nodes in space, each one associated with a block of variables,v(k).
However, we want to point out that, from AMG’s point of view, it is not important whether
points really correspond to physical grid nodes. Instead, one may think of the nodes of a
graph representing the connectivity structure ofA. Regarding a point-based approach, it is
only relevant for AMG to know whether there are blocksv(k) of variables (corresponding
to different unknowns) which may be treated (at least coarsened, but often also interpolated)



3.4 A General Framework for Point-Based AMG 75

simultaneously. In the context of PAMG approaches, for simplicity, we assume the variables
to be ordered point-wise (cf. Section 2.4.1): A(1,1) · · · A(1,np)

...
...

...
A(np,1) · · · A(np,np)


 v(1)

...
v(np)

 =

 b(1)
...

b(np)

 , (3.69)

whereA(k,l) represents the couplings of thek-th to thel-th point, that is ofv(k) to v(l). The
A(k,l) are also calledpoint-coupling matrices. In case that all unknowns are defined at all
points, allA(k,l) are(nu×nu)-matrices. Generally, however,A(k,l) is a(|Pk|×|Pl|)-matrix29

and, hence, not necessarily square.
As VAMG and UAMG, also PAMG follows the scheme outlined in Section 2.3. In addi-

tion to the information VAMG and UAMG can exploit, namelyA, b, and (for UAMG) the VU
mapping, PAMG makes use of the VP mapping, too, in order to define the three main compo-
nents smoothing, coarsening, and interpolation. A main difference to VAMG and UAMG is
thepoint-coarsening schemewhich is uniformly obeyed by all our PAMG approaches: To
obtain aC/F -splitting on a given level withA being the current level-matrix the following
three steps are performed:

1. Define an auxiliary (sparse)(np × np)-matrixPPP = (pkl), called theprimary matrix ,
which reflects the point-couplings of the current level-matrixA in some reasonable
sense. In particular, the employed primary matrix should reflect the physical con-
nectivity (the general structure as well as the strength of connections) of neighboring
variables reasonably well,simultaneously for all unknowns.

2. Perform a scalar AMG coarsening process applied toPPP to obtain a splitting of the set of
points into coarse- and fine-level points. The resulting index sets of C- and F-points are
denoted byCp andF p, respectively, and the splitting is called theCp/F pCp/F pCp/F p-splitting .

3. Assign (in principle) the same new coarse level to all unknowns by copying this split-
ting to the set of variables.

Remark 3.18 The above scheme can be generalized; we could allow more than one primary
matrix. In principle, each unknown could have its own primary matrix. Possible realizations
are, however, one topic of future research. N

Due to the various information PAMG can exploit to solve a discrete PDE system, one can ex-
pect that we have much more freedom compared to VAMG and UAMG in defining concrete
components. However, as for all AMG approaches, we have to bear in mind that smoothing,
coarsening and interpolation are strongly related processes, and that their interplay deter-
mines the efficiency of the overall appproach.

In the following sections, we describe ageneral framework to set up concrete point-
based approaches. We focalize on concrete ways to construct each of the components of our
scheme for relevant applications. Since usually not only one problem but rather a whole class

29|S| denotes the number of elements of a setS.
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of problems shall be solved efficiently, we especially seek definitions of the PAMG compo-
nents which can be used “uniformly” for the whole class considered. The considerations of
the next sections will reveal that for many problem classes which exhibit a point structure
efficient PAMG approaches can be defined by means of our framework. Whereas the com-
ponents can often be defined uniformly for one problem class, they might vary substantially
between the classes.

Outline of the Following Sections Section 3.4.1 investigates point-oriented smoothing, es-
pecially the block-variant of Gauss-Seidel and its application to our model problems. This is
followed by a discussion of possible coarse-level correction processes. Section 3.4.2 contains
a detailed description of possible primary matrices. It also explains their recursive definition
in case of a multilevel method and discusses the resulting point-coarsening processes for the
types of primary matrices introduced. Section 3.4.3 then explains the possibilities within our
framework of how to base the interpolation strategy on a given primary matrix. Three general
types of interpolation and, for each type, concrete variants are introduced. In both Sections
3.4.2 and 3.4.3, point-based coarsening and interpolation are discussed especially for the two
models problems 3.1.3.2 and 3.1.3.3 for which unknown-based AMG is inefficient or even
fails. We will see, in particular, that the applicability of concrete components vary substan-
tially between the models and that two main directions of point-based AMG cristallize out:
oriented on norms on one hand, oriented on coordinates on the other. These results will later
be strengthened also for practical problems arising in semiconductor simulation: Chapter
5 will reveal that, whereas a strategy based on coordinates is effective for reaction-diffusion
problems, a norm-based strategy is effective for drift-diffusion problems. In Section 3.4.4, we
develop generalizations of VAMG’s two-level convergence theory and prove - under suitable
conditions - some corresponding generalized theorems on convergence of PAMG approaches.

3.4.1 Smoothing

Though, at least formally, any relaxation method could be used as a smoother in a point-based
approach, a distinctly point-oriented smoothing is often a prerequisite for the success of a
point-based approach. The reason being that a smoothing which treats variables belonging to
the same point simultaneously is often most appropriate for handling strong unknown cross-
couplings and for producing algebraically smooth error which allows for a point-coarsening.
This should especially be true for applications where the decisive unknown cross-couplings
are located mostly in theA(k,k) on the block-diagonal ofA. An obvious example for such a
matrix class is given by the RD models (3.4).

A standard block-wise smoother isblock-wise Gauss-Seidel (BGS). Its linear smoothing
operatorSBGS equals

SBGS = I −Q−1
P A (3.70)

with QP being the lower block-triangular part ofA including the diagonal blocks:

QP = (Q(k,l))k,l=1,...,np
with Q(k,l) =

{
A(k,l) if l ≤ k ,

0 else.
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Note thatQP is non-singular for arbitraryA > 0.
In the next Section, 3.4.1.1, we prove thatSBGS satisfies the so-called point-smoothing

property. Afterwards, BGS’ smoothing properties are examined for our model problems.
Numerical results are also presented and discussed for ILU(0) smoothing. Another remark
concerning ILU-type smoothing is made at the end of Section 3.4.1.2.

3.4.1.1 Point-Smoothing Property

Generalizations of the variable-based smoothing property (3.9), Theorem 3.2 (see Section
3.2.1.1) and Lemma 3.2 in [87] to the point-based case can be obtained in a straightforward
way. We start with the smoothing property and define:

A smoothing operatorS is said to satify thepoint-smoothing property w.r.t. a matrix
A > 0 if for all e

||Se||21 ≤ ||e||21 − σ||e||2P,2 (σ > 0) (3.71)

holds withσ being independent ofe.
The following lemma gives us a straightforward generalization of Lemma 3.2 [87] to the

point case.

Lemma 3.8 LetA > 0 and let the smoothing operator be of the formS = I −Q−1
P A with a

nonsingular matrixQP . Then the smoothing property(3.71)is equivalent to

σQTPD
−1
P QP ≤ QP +QTP −A .

Proof. A straightforward calculation shows that

||Se||21 = ||e||21 − ((QP +QTP −A)Q−1
P Ae,Q−1

P Ae)E .

Therefore, (3.71) is equivalent to

σ||e||2P,2 ≤ ((QP +QTP −A)Q−1
P Ae,Q−1

P Ae)E

which, in turn, is equivalent to

σ(D−1
P QP e,QP e)2E ≤ ((QP +QTP −A)e, e)E . �

With this lemma, we can now prove a straightforward generalization of Theorem 3.2 to the
point-based case.

Theorem 3.10 LetA > 0 and define with any vectorw = (wk)k=1,...,np > 0

γp− := max
k

{
1
wk

∑
l<k

wl||A−1
(k,k)A(k,l)||E

}
,

γp+ := max
k

{
1
wk

∑
l>k

wl||A−1
(k,k)A(k,l)||E

}
.

Then Block-Gauss-Seidel relaxation(3.70)satisfies(3.71)with σ = 1
(1+γp

−)(1+γp
+)

.
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Proof. We proceed analogously to [87].SBGS satisfies the assumptions of Lemma 3.8,
and we haveQP + QTP − A = DP . Hence, (3.71) is equivalent toσ(QTPD

−1
P QP e, e)E ≤

(DP e, e)E which, because ofDP > 0,QTPD
−1
P QP > 0 and (2.59), is equivalent to

σ ≤ 1/ρ(D−1
P QTPD

−1
P QP ) .

A sufficient condition for the latter inequality is given by

σ ≤ 1/|D−1
P QTP | |D−1

P QP |

for the operator norm| · | induced by an arbitrary vector norm (cf. (2.50) and (2.48)). We
have

(D−1
P QP )(k,l) =

{
A−1

(k,k)A(k,l) for l ≤ k ,

0 else,

(D−1
P QTP )(k,l) =

{
A−1

(k,k)A
T
(l,k) = A−1

(k,k)A(k,l) for l ≥ k ,

0 else.

For a vectorw = (wk)k=1,...,np > 0, the matrix norm|| · ||w defined by

||B||w := max
k

{
1
wk

∑
l

wl||B(k,l)||E
}

is the operator norm to the vector norm||v||w := maxk

{
1
wk
||v(k)||E

}
. For this special

choice, we get

||D−1
P QP ||w = max

k

{
1
wk

∑
l≤k

wl||A−1
(k,k)A(k,l)||E

}
= 1 + γp− ,

||D−1
P QTP ||w = max

k

{
1
wk

∑
l≥k

wl||A−1
(k,k)A(k,l)||E

}
= 1 + γp+ ,

which proves the theorem. �

3.4.1.2 Investigations of Point Smoothing for the Model Problems

In this section, the point-smoothing properties of BGS are examined for the three model
classes defined in Section 3.1.3. In particular, the results for the RD and DD model classes
are also important for subsequent discussions.

ConsiderA = LS defined by theAVL model (3.1). For each of the two casesl < k and
l > k, two matricesA−1

(k,k)A(k,l) are nonzero and of the form (ignoring boundary conditions)

A−1
(k,k)A(k,l) = − d

2 + 2ε

[
1 0
0 1

]
,
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(a) (b)

Figure 3.1: BGS relaxation for the DD model withh=1/64 (nv=11 907), (λ, c, ε)=(1e-
3,1e3,1e-3): Error of unknownu1 after (a) 1 iteration, (b) 5 (and qualitatively all following)
iterations. The errors ofu1, u2 andu3 are similarly smooth. For and(λ, c, ε) =(1e-9,1e9,1e-
3) the plots are very similar.

one matrix withd = 1, and one withd = ε. Forw ≡ 1, we thus obtain

γp+ = γp− =
1

2 + 2ε
+

ε

2 + 2ε
=

1
2
,

independent ofa, b, c. Although the matrixA = LD defined by theAVLD model (3.2) is not
symmetric so that (3.10) can strictly speaking not be applied, the resultingσ can serve as a
hint how BGS works for this case. We obtain

A−1
(k,k)A(k,l) =


− 1

2+2ε

[
ε 0
0 1

]
for onel < k, l > k each
(“on thex-axis of the stencil”),

− 1
2+2ε

[
1 0
0 ε

]
for onel < k, l > k each
(“on they-axis of the stencil”),

and thus arrive at the sameγp+ = γp− as forLS . Therefore, for the AVLS and AVLD models,
we arrive atσ = 4/9 - completely independent ofh, ε, a, b, c. This is in accordance with
numerical results: even for the asymmetricLD, BGS is an efficient smoother. Applied to
LS , the smoothing effect is as for VGS applied toLx:ε: the error is smooth iny-direction,
but, unlessε approaches 1, not inx-direction. For both unknowns, smooth error is thus
qualitatively identical to Fig. 3.1. In contrast to this, applied toLD, the error of unknown
u1 is smooth in the contrary direction than the error of unknownu2: the smoothing effect on
unknownu1 (u2) is similar to that of VGS applied toLx:ε (Ly:ε).

We can also explain these results heuristically by observing that, for bothLS andLD,
the errore(k) is the approximate sum of the four summandsA−1

(k,k)A(k,l)e(l) (l 6= k) with
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(a) (b)

Figure 3.2: BGS relaxation for the DD model withh=1/64 (nv=11 907),(λ, c, ε)=(1,1,1e-3):
Error of (a) unknownu1, (b) unknownu2 after 10 (and qualitatively all following) iterations.
The smoothness of the error ofu3 is similar to that ofu2. The errors after 1 iteration look
similar to Fig. 3.1(a).

diagonal30 matricesA−1
(k,k)A(k,l) as shown above. In case ofLS , by construction, the point-

couplings exhibit the same anisotropy asLx:ε. That means, for each variablei, the contri-
bution of the two nearest neighbors, belonging to the same unknown thani, in x-direction
to the sum is smaller by a factor ofε than the contribution of the two nearest neighbors in
y-direction. For both unknowns, BGS thus reflects the anisotropy inx-direction. In case of
LD, however, theA−1

(k,k)A(k,l) are identical besides the fact that for two of them the diagonal
entries are permuted compared to the other two. This has the effect that, for smallε, the error
of a variable belonging tou1 (u2) is the approximate sum of the errors of the two nearest
neighbors iny-direction (x-direction) belonging tou1 (u2).

For theAVLX model (3.3) andδ := 4c2 − ab(1 + ε)2 6= 0, we obtain

A−1
(k,k)A(k,l) =


1
2δ

[
abε(1 + ε)− 2c2 −bc(1− ε)

ac(1− ε) ab(1 + ε)− 2c2

]
for onel < k, l > k each
(“on thex-axis of the stencil”),

1
2δ

[
ab(1 + ε)− 2c2 bc(1− ε)

−ac(1− ε) abε(1 + ε)− 2c2

]
for onel < k, l > k each
(“on they-axis of the stencil”),

Forw ≡ 1 andδ > 0, we obtain31

γp+ = γp− =
1
4δ
(
δ +

√
ab(1− ε)2δ

)
.

30Therefore, only variables belonging to the same unknown than a variablei belongs to contribute toei.
31The software Maple [108] has been used to calculate theA−1

(k,k)
A(k,l) and their eigenvalues.
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(a) (b)

Figure 3.3: ILU relaxation for the DD model withh=1/64 (nv=11 907),(λ, c, ε)=(1,1,1e-3):
Error of unknownu1 after (a) 4, (b) 6 iterations.

In contrast toLS andLD, theA−1
(k,k)A(k,l) are not diagonal; they are not even symmetric

here. Fora = b, we have(A−1
(k,k)A(k,l))12 = −(A−1

(k,k)A(k,l))21. Moreover,γp+, γ
p
− and

thusσ strongly depend ona, b, c, ε. The larger|c| compared toa, b, the more dominating the
unknown cross-couplings,cL. Therefore, for large|c|, the smoothing effect of BGS applied
to LX is similar to the effect of VGS applied toL. If a andb are much larger than|c|, BGS
produces an error for unknownu1 (u2) which is as smooth as the error VGS applied toLx:ε
(Ly:ε) produces. However, ifε is small anda = b is only moderately larger than|c|, for
instancea = b ≈ 2|c|, BGS is not an appropriate smoother any more (see also Table 3.1).

From Section 3.3.3.1 and the numerical results shown in Table 3.2 we know that VGS
and UGS are not appropriate for theRD modelsas soon asc = h2f or nz are quite large.
However, they work - at least for smallnz - also forc = 1 which is considerably larger than
4 (1 − cos(πh)) = O(h2) being the limit forA ∈ Aspd

32. In the following, we show that
BGS is an appropriate smoother even for largenz andc. Assumenz = np andc2 6= 16.
Then observe that, for eachk, there exist four indicesl for which

A−1
(k,k)A(k,l) =

1
c2 − 16

[
4 −c
−c 4

]
,

two l are smaller thank, and two larger. The remainingA−1
(k,k)A(k,l) (k 6= l) vanish. Since

c > 0 and∣∣∣∣∣∣∣∣ 1

c2 − 16

[
4 −c
−c 4

]∣∣∣∣∣∣∣∣
E

= max

{
|4 + c|
|c2 − 16| ,

|4− c|
|c2 − 16|

}
= max

{
1

|c− 4| ,
1

|c+ 4|

}
=

1

|c− 4| ,

32In Table 3.2, numerical results for the quite smallh = 1/512 are presented.
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(a) (b)

Figure 3.4: ILU relaxation for the DD model withh=1/64 (nv=11 907),(λ, c, ε)=(1,1,1e-3):
Error of unknownu2 after (a) 4, (b) 6 iterations. The smoothness of the error ofu3 is similar
to that ofu2.

we obtain, forw ≡ 1, γp+ = γp− = 2
|c−4| , and therefore

σ =
(

|c− 4|
|c− 4|+ 2

)2

.

The system matrixA is symmetric positive definite if and only ifh2f = c < 4 (1 −
cos(πh)) = O(h2). Of course, we then arrive atσ / 4/9. With growing c, we obtain
σ = 1 in the limit. Although Theorem 3.8 cannot be applied any more due toA 6∈ Aspd,
this largeσ reflects that BGS approaches a direct solver for growingc andnz ≈ np. This is
also true for ILU(0) which (at least in terms of convergence) is sometimes more efficient than
BGS here. The above considerations are confirmed by the numerical results shown in Table
3.2. Summarizing, BGS and ILU(0) are appropriate smoothers for the RD models for allc
andnz whereas VGS and UGS are not as soon asc or nz exceed a certain limit.

The DD modelsclearly leave the range of matrices covered by theory. Hence, in par-
ticular Theorem 3.10 cannot be applied any more nor can we expect that AMG stand-alone
converges in all cases. Numerical results for the DD models are given in Table 3.3 and Figs.
3.1, 3.2, 3.3 and 3.4. Both the ARFs and the resulting smooth errors after some BGS relax-
ation steps indicate that BGS is an appropriate smoother for the DD models.

In contrast to BGS, the methods VGS, UGS and also ILU(0) diverge.The divergence
alone is, however, not the decisive criterion whether an approach can efficiently be used as
a smoother. A smoother can help improving the convergence of the overall approach even if
it diverges stand-alone. This can be the case if the divergence of the smoother is only due to
some error frequencies which can efficiently be treated by the AMG approach or, finally, the
accelerator employed.Indeed, this can be observed for ILU(0) smoothing. Figs. 3.3 and 3.4
show that divergence occurs only in a small area. Outside, ILU(0) produces smooth errors. In
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contrast to this, VGS and UGS diverge everywhere and “without a pattern” in the simulation
domain. The divergence is even too strong to be plottable.

For ε = 1, the errors ofu1,u2,u3 are smooth in all directions, regardless of the concrete
(λ, c). If ε� 1, the strong anisotropy ofA[2,1] can only be seen in one corner33 of the domain
in case of(λ, c)=(1,1), but it is the stronger reflected, the largerc and smallerλ are. This has
to be taken into account when constructing coarsening and interpolation later on. Note also
that for largec (and smallλ), the smoothness of the error ofu1 (see Fig. 3.2(a)) one one
hand, and the smoothness of the errors ofu2 andu3 (see Figs. 3.2(b)) on the other hand is
somewhat different.

a c ARF2(VGS) ARF2(UGS) ARF2(BGS) ARF2(ILU(0))
10 1 div (0.107e+1) div (0.107e+1) div (0.108e+1) div (0.126e+6)
2 1 div (0.456e+1) div (0.455e+1) div (overflow) div (overflow)
1 2 div (overflow) div (0.760e+3) 0.998e+0 0.998e+0
1 10 div (overflow) div (0.493e+6) 0.998e+0 0.998e+0
a εit=1e-10 is reached in only 4 cycles. ARF = 0.316e-02.

Table 3.1: ARF2 for VGS, UGS, BGS, ILU(0) applied to different AVLX models.a = b,
ε = 1e-3,h =1/512 (nv=522 242). See Section 2.4.6 for the definition of ARF2.

nz c ARF2(VGS) ARF2(UGS) ARF2(BGS) ARF2(ILU(0))
1 1e0 0.965 0.965 0.965 0.968

1e3 div (0.153e+20) div (0.153e+20) 0.965 0.931
1e9 div (0.153e+68) div (0.153e+68) 0.965 0.826

100 1e0 0.965 0.965 0.965 0.968
1e3 div (0.150e+21) div (0.150e+21) 0.965 0.865
1e9 div (0.147e+69) div (0.147e+69) 0.864 0.867

1000 1e0 div (0.188e+01) div (0.188e+01) div (0.216e+1) div (0.262e+01)
1e3 div (0.176e+21) div (0.176e+21) 0.965 0.853
1e9 div (0.255e+69) div (0.255e+69) 0.659a 0.858

a εit=1e-10 is reached in only 4 cycles. ARF = 0.316e-02.

Table 3.2: ARF2 for VGS, UGS, BGS, ILU(0) applied to different RD models.h =1/512.

λ c ARF2(VGS) ARF2(UGS) ARF2(BGS) ARF2(ILU(0))
1e0 1e0 div (0.221e+16) div (0.382e+15) 0.964 div (0.162e+01)

1e-3 1e3 div (0.435e+40) div (0.363e+39) 0.964 div (overflow)
1e-9 1e9 div (0.948e+73) div (0.327e+73) 0.964 div (overflow)

Table 3.3: ARF2 for VGS, UGS, BGS, ILU(0) applied to different DD models.h =1/512
(nv = 783 363). Shown are results forε=1. Results forε = 1e-3 are slightly better.

33namely the corner wherex andy approach 1. This is due to the definition offn in Section 3.1.3.3.



84 Chapter 3 A General AMG Methodology for PDE Systems

3.4.2 Primary Matrices and Point-Coarsening

A reasonable primary matrixPPP = (pkl) has to reflect the couplingsA(k,l) between the points
reasonably well. Depending on the type of application, there are many possibilities for defin-
ing a primary matrix - at least from a technical point of view: Not all of them lead to an
efficient overall approach (if any). Often, the construction ofPPP can be done automatically
as part of AMG’s setup phase. In other cases, it may be better to let the user of (S)AMG
provide a reasonable matrix himself34, based on his knowledge of the underlying physics
of the given problem. In all cases, a primary matrix can usually be interpreted as describing
the connectivity structure of some auxiliary (scalar) unknown. Clearly, this unknown should
represent the physical connectivity structure of all “real” unknowns in the given system of
PDEs reasonably well, i.e. simultaneously for all of them.

We now describe different processes for defining a primary matrix. In Section 3.4.2.1,
we start with a general discussion of the possibilities to represent the couplings between the
points by means of aPPP . Concrete possibilities for defining the entries ofPPP are described in
Sections 3.4.2.2 to 3.4.2.4. We discuss primary matrices which equal one of theA[n,n], and
we discuss several variants of primary matrices based on norms of theA(k,l) or coordinates of
the grid nodes. In Section 3.4.2.5, some other possibilities are indicated. Afterwards (Section
3.4.2.6), two general possibilities for the recursive definition of primary matrices in case of
a multi-level method are discussed. Finally, in Section 3.4.2.7, the point-coarsening process
is generally explained and, for the concrete types of primary matrices introduced, further
discussed.

3.4.2.1 Representation of Point-Couplings

For setting up a primary matrix, we need to define the connectivity pattern35 of PPP as well as
the concrete valuespkl. Three general approaches are imaginable:

• based directly on information contained in the matrixA and its VU and VP mappings.
The simplest variant is the employment of a submatrix ofA, for example, one of the
A[n,n] if possible (see Section 3.4.2.2). The most natural variant here is the usage of
norms of theA(k,l) (see Section 3.4.2.3). The latter can always be employed, at least
technically. In practice, anautomatic constructionof corresponding types of primary
matrices is possible.

• in addition to the above information, based on coordinates (see Section 3.4.2.4). It
depends on the application whether such information is available. Then, anautomatic
constructionof corresponding types of primary matrices is possible again.

• based on an auxiliary scalar problem (different from the above) representing the physics
of the PDE system in a suitable way (see Section 3.4.2.5). An example might be a dis-
crete Laplacian. In practice, a correspondingPPP needs to be provided externally.

34This will be discussed in Section 4.2.3.1.
35Recall from Section 2.4.2 that the connectivity patternΣ of a matrix is defined to be the distribution of its

nonzero entries.
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Clearly, sinceA is a sparse matrix in all applications considered in this thesis,PPP has also
to be sparse to yield an efficient approach. This directly leads to the general question of an
appropriate connectivity patternΣ of PPP , which is considered now and prior to the discussion
of the three ways mentioned above to define the concrete values of thepkl.

If norms of theA(k,l) are used to define thepkl, or if PPP := A[n,n] (if possible; see also
the next section), this automatically leads to a sparsePPP (“inherited sparsity”). In case of
coordinates, however, the connectivity pattern ofPPP must be determined in addition. It seems
reasonable to assign a zero value to apkl if Pk is not coupled toPl, as in case of norms. This
should also serve as a guideline for most cases where another measure is used to definePPP .

WheneverPPP is defined automatically within the setup phase of an approach belonging to
our framework, the connectivity pattern ofA is the basis for that ofPPP . Two different types of
patterns are considered, the so-calledunknown-pattern (u-pattern) andmaximal pattern,
respectively:

• unknown-pattern (u-pattern): One possibility to define a connectivity pattern forPPP
is copying the connectivity pattern ofA[n,n] for any 1 ≤ n ≤ nu. In this case, we
call then-th unknown theprimary unknown and the corresponding pattern then-th
unknown-pattern.

If we want to stress that then-th unknown-pattern is used, the primary matrix is denoted
byPPPn and its pattern byΣn.

Note that then-th unknown may serve as a primary unknown only if the connectivity
pattern ofA[n,n] is completeor valid, that is, then-th unknown has to be represented
at all points. In practice, it often happens that not all unknowns are represented at a
point, that is, the number of variables may vary from point to point (cf. the applica-
tions discussed in Chapter 5). But a reasonable primary matrix is always required to
representall points and is thus not allowed to contain empty matrix rows. Therefore,
if the connectivity pattern of anA[n,n] is not complete,Un cannot serve as a primary
unknown and then-th u-pattern is said to benot valid.

• maximal pattern: We call the connectivity pattern ofPPP maximal if it reflects the full
point-coupling structure ofA. To be more specific, a(k, l) is in the connectivity pattern
of PPP if Pk is coupled toPl. Obviously, this pattern is valid in all cases.

If the usage of the maximal pattern shall be emphasized, we denote the primary matrix
byPPPmax and its pattern byΣmax.

Examples of different patterns are shown in Figures 3.5 and 3.6. Another possibiliy to visu-
alize the pattern of the primary matrix is to use graphs, if necessary directed. For a coupling
structure as depicted in Figure 2.2, the maximal pattern is shown in Figure 2.3(b) and the first
u-pattern, the only valid one for this example, in Figure 2.3(a).

In the following sections, we describe several possibilities to define the non-vanishing
entries ofPPP .

3.4.2.2 Unknown-Based Primary Matrix

An unknown-based primary matrix simply meansPPP = A[n,n] for any 1 ≤ n ≤ nu. This
selection requires then-th unknown to be complete (|Un| = np). Being natural in this case,
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Figure 3.5: Connectivity pattern of a matrixA corresponding to eleven variables, three
unknowns, and four points. The eleven variables are assumed to be sorted point-wise, and
at each of the four points with increasing unknown number. At the third point, the third
unknown does not exist. Hence, one column and one row are missing.

Σmax Σ1 Σ2 Σ3

Figure 3.6: Corresponding connectivity patternsΣmax,Σ1, . . . ,Σ3. The patternΣ3 is not
valid because the third unknown does not exist at the third point (empty row!).

only Σ = Σn is taken into account here. Whether or not this choice ofPPP makes sense, de-
pends on the application, in particular, whether the connectivity structure of then-th unknown
is also representative for the other unknowns.

Note that employing some externally defined matrix as a primary matrix may be realized
via an unknown-based primary matrix. Externally defined primary matrices will be discussed
in Section 3.4.2.5.

In the following two examples and two remarks, we discuss applications of this simple
variant. We start with an example on how certain Navier-Stokes systems might be solved
by a PAMG approach using an unknown-basedPPP . In the following two remarks, we review
point-oriented aggregative AMG approaches that are used for solving certain CFD problems.
Relationships to our framework are indicated, revealing that the approaches proposed in the
literature correspond to a point-based approach with an unknown-based primary matrix. In
addition, some recent research activities are mentioned. We conclude with Example 3.2 on
an unknown-basedPPP for drift-diffusion systems.

Example 3.1 An unknown-based primary matrix might be reasonable for Navier-Stokes sys-
tems, at least if discretized on non-staggered grids. One possibility might be the following.
If the “pressure” equation in the system (i.e. the equation not corresponding to a velocity)
contains (at least) an artificial viscosity or penalty term (“h2∆”) as an artificial, weak con-
tribution of the pressure, the correspondingA[3,3] might be chosen as the primary unknown.
An investigation of corresponding AMG approaches will be a topic of future research. See
also the following two remarks. Another possibility arises if a pressure-correction equation
is already available or can be created in addition to the Navier-Stokes system to be solved.
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See Section 3.4.2.5. N

Remark 3.19 (Aggregative AMG for Navier-Stokes Equations)For the system of Navier-
Stokes equations, we can find both segregated as well as coupled solution approaches in the
literature. In a segregated approach, scalar PDEs are solved. AMG for this application is
discussed, for example, in [29, 87] and references given therein.

More and more, the Navier-Stokes system is solved fully coupled in CFD36 simulators.
For instance, the point-based approach [63, 64] can be characterized as an AMG/ACM37

method suitable for the coupled, linearized, discrete equations arising from an implicit FV
discretization of the 3D Navier-Stokes equations. It employs an ILU(0) factorization as a
smoother. The coarsening of the finite volumes is done by an agglomeration method with a
strategy based on the strength of pressure coefficients. This measure of strength of couplings
is similar to the one that would be employed by a point-based approach of our framework with
the pressure being the primary unknown (see also Example 3.1 above). However, restriction
and interpolation are simply piecewise constant, classifying this AMG solver to be of the
nonsmoothed aggregation type.

Other nonsmoothed point-based aggregation-type AMG approaches for the solution of the
finite-volume discretized Navier-Stokes systems can be found in [109] and references therein.
Main differences to the approach described before are that an augmented Navier-Stokes sys-
tem, consisting of five equations for the 3D case, is solved, and that these approaches employ
block-Gauss-Seidel smoothers.

Recently, in [101] a new AMG-like concept for the coupled solution of the Oseen prob-
lem38, discretized by a mixed finite element method, has been introduced. The concept em-
ploys techniques known from GMG for saddle point problems such as Braess-Sarazin- or
Vanka-type smoothing and, for two mixed FE discretizations, investigates possibilites for a(n
alternate or “shifted”) coarsening of the velocity and pressure components. This approach is
still in its infancy. N

Remark 3.20 (Oil Reservoir Simulation)Very recently, a straightforward point-based ex-
tension of smoothed aggregative AMG for the solution of FV-discretized oil reservoir sim-
ulation systems is discussed in [60]. Except for the fact that this approach uses smoothing
of aggregation (only applied to the pressure coefficients), it resembles the aggregative AMG
approaches mentioned above for the Navier-Stokes equations. In particular, aggregation of
cells based on a “strong graph of the scalar pressure equation”39 has been found to be robust
and efficient also for the oil reservoir applications considered. Again, this graph of strong
connections resembles the one employed in a PAMG approach of our framework with the
pressure being the primary unknown.

UAMG and certain PAMG approaches with an unknown-based or norm-basedPPP can be
applied successfully to certain PDE systems arising in oil reservoir simulation. Since this is
subject to recent research activities, detailed results will be published somewhere else.N

36CFD = computational fluid dynamics.
37ACM = additive correction multigrid, see references in [63, 64].
38arising from a fixed-point iteration for the nonlinear incompressible Navier-Stokes system.
39In a preprocessing step, an equation that resembles the standard pressure equation is determined.
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Example 3.2 Numerical results for drift-diffusion systems (see Section 5.3.2) have shown
that, in some cases, the selection of the potential as the primary unknown yields an efficient
approach. However, this approach has not proved to be robust. N

3.4.2.3 Norm-Based Primary Matrix

A special point-based approach, sometimes calledblock approach, has already been sketched
in the very early paper [71]40. This approach has to some extent been further investigated,
for instance, in [58, 30]41. In this thesis, we generalize the ideas of [71] and, compared with
[30] and others, develop more practically applicable variants. This will be particularly true
for interpolation, as discussed in Section 3.4.3, but is also true for the variants we propose to
construct a norm-based primary matrix.

In the discussion of norm-based primary matrices, the representation (3.69) is a natural
starting point. The entries ofPPP are then defined based on some norm of the point-coupling
matricesA(k,l) describing the point-wise connectivity. Especially in the norm-based ap-
proach, the primary matrix can thus be interpreted as a “condensation” ofA in the sense
that each point-coupling matrixA(k,l) is reduced to a scalar entrypkl of PPP . Besides the con-
crete selection of a norm, which will be discussed below, this can be done in several ways.
In this thesis, we consider four different variants. Two straightforward possibilities are the
following: for all (k, l) ∈ Σ, k 6= l, define

(1) pkl = −||A(k,l)|| and pkk = ||A(k,k)|| (3.72)

(2) pkl = −||A(k,l)|| and pkk = −
∑
l6=k

pkl (3.73)

with || · || denoting a suitable norm. Both variants are simple to compute and, hence, suitable
for practical use. However, in contrast to scalar AMG, there is no sign-condition here: all
off-diagonal entries are simply defined to be negative, regardless of the sign distribution ofA.
Therefore, one might be attempted to extend these definitions ofPPP , for instance, by assigning
positive entries,||A(k,l)||, to thosepkl, for whichA(k,l) ≥ 0. This leads to the following two
variants: for all(k, l) ∈ Σ, k 6= l, define

(3) pkl =

{
||A(k,l)|| if A(k,l) ≥ 0,

−||A(k,l)|| otherwise,
and pkk = ||A(k,k)|| (3.74)

(4) pkl =

{
||A(k,l)|| if A(k,l) ≥ 0,

−||A(k,l)|| otherwise,
and pkk =

∑
l6=k

|pkl| (3.75)

with || · || denoting a suitable norm. Not unexpectedly, one can observe that these two
approaches are a bit simpler to handle for theoretical considerations as performed in Section
3.4.4. However, at least the question on the correct handling of indefiniteA(k,l) remains.
Anyway, variants (3.72) and (3.73) are much cheaper to compute than (3.74) and (3.75).

40In [71], the idea of a point-wise coarsening and block-interpolation (see Section 3.4.3.1) was outlined, and the
result of a preliminary test was given.

41cf. also Remarks 3.27 and 3.38 for some comments.
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Therefore, only the variants (3.72) and (3.73) are used in practice, even if someA(k,l) (k 6= l)
are positive definite or indefinite.

Remark 3.21 For instance, due to the problems in handling positive semi-definite and indefi-
niteA(k,l) (k 6= l) or the problems in handling anisotropies which are different from unknown
to unknown, it isnot true that a norm-based point approach is a very straightforward or even
the natural extension of AMG to systems of PDEs, an opinion which is nevertheless some-
times advocated in the scientific community. This topic will be discussed a bit further in
Section 3.4.2.7. N

Remark 3.22 A norm-based primary matrix principally inherits the sparsity ofA. N

Remark 3.23 Note that thepkk are always greater than or equal to zero in each of the four
variants.pkk > 0 is true for (3.74) and (3.72) because ofA > 0. In (3.75) and (3.73),pkk
can only be zero if all off-diagonal point-coupling matricesA(k,l) of the row are zero. But
because ofA(k,k) 6= 0, Pk is then anisolated point, and wedefinepkk to be equal to 1. As
in case of Dirichlet variables, such points becomeforced F-points in the coarsening process
and obtain “empty”interpolation formulas as a consequence.As always, such “trivial” points
are tacitly excluded in the discussion of interpolation formulas. N

Norms Regarding the concrete choice of the norm, theEuclideanmatrix norm,||B||E =√
max |λ(BTB)| (= ρ(B) for B > 0), is convenient for theoretical considerations (see

Section 3.4.4), because it is the operator norm induced by the Euclidean vector norm. But
since||B||E is too expensive to evaluate, various “cheaper”norms have been considered for
practical applications, such as the maximum, row sum and Schur norm (see Section 2.4.5).
The Schur norm is compatible to the Euclidean vector norm and often yields similar results
than the Euclidean matrix norm. However, it is case-dependent which norm gives the best
results, i.e. leads to a good representation of the point-coupling structure ofA within PPP .

Remark 3.24 It turns out that, in many applications and especially the ones considered in
this thesis, AMG convergence rates do not significantly depend on the concrete choice of
the norm. This is because often the point-coupling matricesA(k,l) are dominated by one or
more equally large entriesaij each so that the different norms considered above essentially
coincide. Therefore, in order to minimize computational cost, we usually select the maximum
norm in practice. N

Example 3.3 A norm-basedPPP computed for the AVL modelLS always equalsLx:ε, regard-
less which of the above norms has been chosen. For the AVL modelLD, an isotropicL is
obtained. In both cases, it is reasonable to base coarsening on a norm-basedPPP since it reflects
the direction(s) of smoothness resulting from BGS relaxation (see Section 3.4.1.2) correctly.
Therefore, we expect point-based AMG with a norm-basedPPP to yield an appropriate solver
here. This is confirmed by the numerical results shown in Section 4.6. N
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Example 3.4 For the RD models, the situation is comparable42: PPP =̂L. However, we should
have in mind here that in practical applications as presented in Section 5.2.2 large off-diagonal
entries arising from reaction terms disturb the scenario. As discussed in Example 3.10, coars-
ening should still be based on an isotropicL which, however, cannot be obtained from a
norm-basedPPP any more. A way to obtain an “appropriateL” is discussed in Example 3.10.
N

Example 3.5 The matrices corresponding to the DD models are dominated byA[2,1] in the
sense that in the majority of cases the largest entry of anA(k,l) belongs toA[2,1]. For
(ε, λ, c)=(1e-3,1,1), for instance, about 60% of the dominating entries are inA[2,1]. The
remainder corresponds to entries inA[n,n] all of which correspond to the discrete isotropic
LaplacianL. The largerc, that share tends to 100%. Therefore, chosing a norm-based pri-
mary matrix results in a “mixture” ofA[2,1] = fn(c, x, y)Lx:ε andL reflecting that share.
For sufficiently largec, we arrive atPPP = A[2,1], regardless of the concrete norm. As long as
ε ≈ 1, an unknown-basedPPP equals - besides scaling - the norm-basedPPP so that both types
of primary matrices also yield the same coarsening process here:PPP =̂L.

For ε � 1, however, only the norm-based variant correctly reflects the direction(s) of
smoothness resulting from BGS relaxation (see Section 3.4.1.2). We therefore expect a norm-
basedPPP to be the best choice here. Numerical results are presented in Section 4.6. We will
see in Section 5.3 that a comparable situation arises for the drift-diffusion systems.N

3.4.2.4 Coordinates-based Primary Matrices

The original AMG did not exploit any information on the given problem apart from the matrix
A itself. In many PDE applications, this unnecessarily limits the possibilities for an efficient
coarsening and interpolation. As a matter of fact, geometric information such as the coordi-
nates of grid nodes is usually available and simply accessible, and could thus be exploited in
AMG’s setup phase. Note that this does not put any restrictions on the grid’sshape.

If points correspond to real physical grid nodes in space, and if we assume their coor-
dinates to be known,PPP may be constructed easily and automatically based on distances of
points, leading to coarsening processes which are closely related to geometric coarsening (see
also Section 3.4.2.7). A simple definition would be

pkl = −1/δ2kl (∀ (k, l) ∈ Σ, k 6= l) and pkk = −
∑
l 6=k

pkl (3.76)

whereδkl denotes the distance between pointsPk andPl, i.e.

δkl := ||πk − πl||E . (3.77)

with πi being the vector of coordinates corresponding to thei-th point.
As has been mentioned above, unlikeΣmax for a norm-basedPPP , no “natural” maximalΣ

is imposed for coordinates-basedPPP so that the choice of a suitableΣ is particularly important

42for (3.73) and (3.75). In case of (3.72) and (3.74),pkk with 1 ≤ k ≤ nz can be different from the corresponding
diagonal entry ofL.
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in order to ensure the sparsity ofPPP . Since, usually, there is no reason to define an artificial
coupling between points which are not coupled by matrix entriesaij , the maximal pattern,
Σmax, or one of the unknown-patterns, depending on the application, should be chosen.

Remark 3.25 It would also be possible to orientΣ on some reasonable pattern of “strong”
point-couplings, for instance, defined via norms of the point-coupling matrices and a suitable
threshold. This would reduce the sparsity ofPPP further and prevent “weak point-couplings”
from getting too much influence onPPP and thus the coarsening. However, it depends on the
case whether this is advantageous or not. N

The resultingPPP is calleddistance-basedprimary matrix. Compared with1/δkl, the above
variant strengthens the coupling between two nearby points. IfΣ corresponds to the connec-
tivity pattern of a Laplacian second-order discretized by means of, for instance, the five-point
stencil in case of a regular grid or a standard FV discretization on a Delaunay grid (see Sec-
tion 5.3.1.5) or a similar discretization, the employment of a distance-basedPPP would result
in a coarsening strongly related to the one employed in standard geometric multigrid. This
and possible applications of a distance-basedPPP are further discussed in Section 3.4.2.7.

The above distance-based primary matrix does not take positions of the points into ac-
count. Problems may hence arise if a pointPk is coupled to other points not surrounding
Pk. To overcome this limitation of a mere distance-based approach, we might construct a
primary matrix which punishes non-uniformly distributed couplings by appropriate scalings
of the distance-basedpkl. For a two-dimensional simulation domain, such aposition-based
primary matrix can be constructed in the following way: for each rowk of PPP do

1. construct the distance-based entriespkl (k, l ∈ Σ) of this row,

2. if the matrix rowk has more than 2 nonzero entries, scale each off-diagonal entrypkl
by a factorfkl computed as follows:

(a) compute the signed angleα (|α| ∈ [0; 180◦[) betweenπkπl andπkπm for all
m 6= l, k,

(b) determine the smallest angleα1 counterclockwise and the smallest angleα2

clockwise,
(c) fkl = (α1 + α2)/180◦, pnew

kl = fkl p
old
kl .

After having scaled all entries, computepkk = −
∑
l 6=k pkl.

This “two-dimensional cake-scaling” rewards those off-diagonal entriespkl which are far43

from their next neighbors and punishes especially those which lie in between two near neig-
bors. Due to multiplying the distance-basedpold

kl by fkl, distances as well as angles are taken
into account here. Note that this scaling does not punish all cases of non-uniformly dis-
tributed couplings in the three-dimensional case. However, non-uniformly distributed cou-
plings mainly occur near boundaries or in case of a “strange” grid. In the first case, the
position-basedPPP has not performed more efficiently than the distance-basedPPP in practice
so far. In the second case, which is likely to be disadvantageous for a discretization of the
problems we have in mind here, it should make more sense to “repair” the grid instead of
punishing its “failures” afterwards. Therefore, we have not investigated this topic further.

43assuming equal distances toπk.
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3.4.2.5 Other Possibilities

Not in all cases is it possible to construct an (or the most) appropriate primary matrix by
extracting it automatically only from the matrixA. In such a case, if an auxiliary scalar prob-
lem can be defined representing the point couplings in a reasonable way, the corresponding
matrix of the problem would be a natural primary matrix. We now give three examples where
this way of definingPPP is promising.

Example 3.6 If anisotropies in a given problem are mainly due to non-uniform mesh spac-
ings, a suitable primary matrix might be given by a discretization of the Laplace operator. If
coordinates are available, this might be mimiced by a coordinates-based primary matrix. If,
however, coordinates are not available, an approximate discrete Laplacian might externally
be defined to AMG. N

Example 3.7 In Section 3.2.3.4, we have discussed two possibilities to modify standard
coarsening in order to treat the anisotropic Laplacian corresponding to the nine-point stencil
(2.28) with ε = 0 andα = 1/4 correctly. Since an appropriate coarsening corresponds to
the standard coarsening process for the strongly anisotropic five-point stencilLx:0,h, another
possibility is given by a point-based44 approach withPPP = Lx:0,h. If a similar problem is
posed on an unstructured grid, a suitable primary matrix might be obtained from a “suit-
able”45 discretization of the anisotropic Laplacian−εuxx − uyy on that grid. Normally, it
should be possible to set up such a primary matrix in the same part of a simulation code in
which the matrix of the original problem is set up. N

Example 3.8 One can also imagine cases where it makes sense to define a primary ma-
trix based on some natural physical quantity for which there is no reasonable equation con-
tained in the original system of PDEs. An example for such a case might be the pressure
in the context of the Navier-Stokes equations. Instead of choosing aPPP representing an ar-
tificial viscosity term (“h2∆”, see Example 3.1), another possibility could be a (separate)
pressure-correction equation. An advantage might be that this equation typically reflects also
anisotropies and discontinuities (“material contrasts”) which are physically contained in the
system. N

Remark 3.26 (Practical Realization)As has been mentioned in Section 3.4.2.2, employing
some externally defined matrix as a primary matrix may be realized via an unknown-based
primary matrix. This could be done by augmenting the original matrixA by this primary ma-
trix PPP , interpretingPPP as the matrix of a new, artificial unknown in the system and selecting
this unknown as the primary unknown. Implications of this approach and another possibil-
ity will be discussed in the next section and in Section 4.2.3.1. As has been stated above,
externally defined primary matrices will be one direction of future research. N

44Remember that in the scalar case, each point corresponds to one variable.
45producingaij ≤ 0 for all i 6= j. For instance, a finite-volume discretization might be a candidate.
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3.4.2.6 Recursive Definition of Primary Matrices

So far we have described possibilities to set up a primary matrix on a given level. For a multi-
level method, there are essentially two ways for the recursive definition of primary matrices:

• separate definition:Here, on each level,PPP is computed “from scratch”. This is natural
for norm-based as well as coordinates-based primary matrices.

• full integration: Here, a coarse-level primary matrix is computed via a Galerkin pro-
cess. This is especially reasonable if on the finest level a submatrix ofA = Ah (one
of theA[n,n]) has been chosen as primary matrix. On the next coarser level, the corre-
sponding part ofAH can then be chosen as the primary matrix on that level.

For externally defined (user-supplied) primary matrices, both variants might be considered.
We will come back to this in Section 4.2.3.1.

3.4.2.7 Point-Coarsening Strategy

In our framework, point-coarsening is always performed based on a primary matrixPPP . After
having investigated possibilities to set up concrete primary matrices in the last sections, we
now explain the process of coarsening the set of variables by means of a given primary matrix
and discuss the impact of the concrete type of primary matrix chosen on the point-coarsening
process.

As indicated at the beginning of Section 3.4, once we have defined a primary matrixPPP , a
“classical” variable-based coarsening process is applied toPPP to obtain aCp/F p-splitting of
the set of points. To be more specific, the basic criterion (3.24) for the strength of a coupling
is applied to the setP of points and the primary matrixPPP chosen. That is, we define the point
Pk to bestrongly (negatively) coupledto the pointPl (k 6= l) if

−pkl ≥ εstr max
j 6=k

|p−kj | . (3.78)

Remember that criterion (3.24) and variants are used in concrete variable-based coarsen-
ing schemes46 in order to distinguish strong and weak couplings. Based on this, the final
C/F -splitting is computed. Accordingly, in a point-based approach, theCp/F p-splitting
emerges. To obtain the desiredC/F -splitting in terms of variables, theCp/F p-splitting is
then “copied” in a straightforward way to the variables: ifPk has been selected to be an F-
or C-point, all variables attached toPk will become F- or C-variables respectively (at least
in the first step). Details of the implementation and special cases are described in Section
4.2.3.2.

Formally, the point-coarsening process as described above is a simple extension of the
scalar coarsening process. However, whether or not this process is finally reasonable, i.e.
whether it allows good AMG interpolation and, through this, results in efficient AMG solvers,
strongly depends on the application. Moreover, the concrete selection of suitable primary
matrices is very crucial for the success of the resulting AMG solver. It seems that there is no

46The variable-based coarsening schemes implemented in our library SAMG, namely standard and aggressive
coarsening, will be described and discussed in Section 4.2.1.
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general best strategy so that, in practice, one has to make compromises. A few aspects are
discussed in this section. In particular, since (3.78) is central to the resultingCp/F p-splitting,
we investigate this criterion for two important types, namely norm-based and distance-based
primary matrices as introduced above.

Norm Coarsening In the scientific community, the block approach is often considered as
the natural extension of AMG to systems of PDEs. However, this is the case only up to some
extent. There are also cases for which the block approach is not convenient or even fails.
As has been noted in Remark 3.21, questions arise on an appropriate definition of thepkl
if not all A(k,l) ≤ 0 (k 6= l), for instance. Ill-conditionedA(k,l) constitute another field of
problems. We want to discuss this a bit further with the help of criterion (3.78).

The condition number of a matrix is defined by (2.57). The larger the condition number,
the more ill-conditioned the matrix. In particular, a symmetricA(k,l) is ill-conditioned if
|λ|min(A(k,l)) is small compared with|λ|max(A(k,l)) . If a norm-based primary matrix has
been chosen, based on (3.72) or (3.73) without restriction of generality, criterion (3.78) reads

||A(k,l)|| ≥ εstr max
j 6=k, (k,j)∈Σ

||A(k,j)|| (3.79)

for a (k, l) ∈ Σ, k 6= l. Without additional requirements, it may happen now that aPk is
strongly coupled to aPl according to (3.79) even if|λ|min(A(k,l)) is small compared with
the ||A(k,j)|| (j 6= k, (k, j) ∈ Σ). Since, depending on the application, this may give rise to
a bad interpolation later on and thus an inefficient47 overall approach, the goal should be to
avoid situations where

||A(k,l)|| ≥ εstr max
j 6=k,(k,j)∈Σ

||A(k,j)|| ∧ |λ|min(A(k,l)) � εstr max
j 6=k, (k,j)∈Σ

||A(k,j)|| .

(3.80)
This is illustrated with the following example.

Example 3.9 The condition number of anA(k,l) is strongly influenced by scalings of this
matrix. Correspondingly, a norm-based approach reacts very sensitive to scalings ofA. The
largest impact is felt if the rows corresponding to the variables belonging to the same point
are not scaled simultaneously and “uniformly”.

For some matrix classes, norm-based primary matrices are principally invariant to such
scalings, an example being the AVL models (3.1). Not invariant are matrices where off-
diagonal couplings determine the efficiency of the approach as, for instance, in case of the
DD models. In particular, if we scale every row corresponding to the second unknown by
a small factors here, we destroy the dominance ofA[2,1] over the otherA[m,n]. Then, a
norm-basedPPP might not reflect the direction of smoothness any more (for smallε; see also
Example 3.5). N

In case of any norm-basedPPP , the question arises if an incorporation of approximations of
minimal eigenvalues in addition to or instead of norms of theA(k,l) (approximations of max-
imal eigenvalues) could yield better coarsenings and interpolations later on. Clearly, there

47Correspondingly, worse upper bounds for the two-level convergence rate emerge, see Section 3.4.4.
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are ways to avoid the situation (3.80). For instance, in [58] a “min-max-coupling” criterion,

min
||x||=1

||A(k,l)x|| ≥ εstr max
j 6=k

||A(k,j)|| , (3.81)

(sic!) which intends comparing minimal with maximal eigenvalues was proposed. This cri-
terion prevents the problem (3.80) mentioned above, but introduces a new one: It can happen
that there is no strong coupling at all. For example, if thek-th block row ofA contains many
(nearly) singular block matrices with some large entries, then this criterion would define all
point couplings to be weak in the worst case. Such a pointPk would then become a forced
F-point - despite the large entries contained in the row. Therefore, this criterion cannot be
expected to generally give good results or even better ones than a norm coarsening. Addition-
ally, it is more expensive to evaluate and should therefore hardly ever pay (as the convergence
rates for the simple test cases in [58] indicate, too).

In such critical cases as (3.80), the real question is if a norm-based or, in general, a point-
based strategy is a good wayat all to solve the given system. If too many block matrices are
ill-conditioned, we must rather expect that it is at least not the optimal strategy. Therefore,
criteria such as the “min-max-coupling” cannot be expected to help because they do not
remove the real problem.

Up to now, there seems to be no final answer what kind of block approach (in particular,
which norm) is “optimal”. There are more possible approaches to perform the coarsening.
Since not all of them are covered by our point-based framework, we want to list some typical
ones in the following remark and comment on their practical usage.

Remark 3.27 In [58], five coarsening criteria have been investigated. Two of them are equiv-
alent to criteria emerging from suitable primary matrices of our framework:

• The “norm-coupling” criterion corresponds to variant (3.72) with the row sum norm
and a maximal pattern.

• Another criterion corresponds to the same variant but with the maximum norm. How-
ever, no numerical results for this criterion are given in [58].

Besides the “min-max-coupling” criterion discussed above, for another two criteria which
cannot be obtained from a norm-based primary matrix and (3.78), experiments were per-
formed in [58] for some simple model problems.

• One is the “min-coupling” criterion which must read

min
||x||=1

||A(k,l)x|| ≥ εstr max
j 6=k

min
||x||=1

||A(k,j)x||

with the row sum norm and a maximal pattern. Due to the special structure of the
simple model problems in [58], for them it behaves usually very similar to the “min-
max-coupling” criterion. But in general it is problematic becausemin||x||=1 ||A(k,l)x||
cannot be used to define a norm. Additionally, it is usually much more expensive to
evaluate.

• The other, “classical point-coupling” criterion defines a point coupling to be strong if
a coupling of one of the corresponding variables is strong in the sense of the unknown-
based approach. It completely neglects cross-couplings between the different unknowns
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and should therefore only very seldom be useful in a point-based approach, as simple
tests in [58] show. It leads to a similar behavior compared with a coarsening process
based on a primary unknown if the coupling structures of allA[n,n] are similar to each
other. But in this case, coarsening based on a primary unknown - i.e. based onone
A[n,n] - is of course much cheaper.

Since there is no evidence that these criteria and similar ones provide particular advantages,
we stick toour point-coarsening strategy based on a primary matrix. N

Coordinates-Based Coarsening In case of a distance-based primary matrix, (3.78) is equiv-
alent to √

εstrδkl ≤ min
j 6=k, (k,j)∈Σ

δkj . (3.82)

We have stated in 3.4.2.4 that, under certain conditions on the discretization, this leads to a
“geometric” coarsening process. This is simple to see if the underlying grid is regular and
Σ corresponds to the connectivity pattern of a Laplacian FD-discretized by means of the
standard five-point stencil. For instance, a typical value ofεstr = 1/4 then leads to a “red-
black” coarsening. Such a “uniform” coarsening also arises ifΣ represents the connectivity
structure of a FV-discretization on a Delaunay mesh (see Section 5.3.1.5). If the grid causes
anisotropies, a distance-based primary matrix reflects them accordingly. For an illustration,
see Fig. 3.7.

Figure 3.7: Grid of the STI test case for device simulation (see also Section 5.3.2.3). An
enlargement of the marked part is shown in Fig. 3.8.

Example 3.10 A natural area of application of a distance-basedPPP is given by problems the
anisotropies of which (if any) are mainly due to non-uniform mesh spacings, but for which the
matrix itself does not reflect this accordingly. An important practical example where this hap-
pens are reaction-diffusion equations in which the underlying continuous diffusion operator
is isotropic but “disturbed” or “superposed” by reaction equations. Such a situation is posed
by the problem class defined in 3.4, being a model for the semiconductor reaction-diffusion
applications discussed in Section 5.2.2. We have seen that the disturbances caused by the re-
action terms are in principle removed by the smoothing operator chosen (for instance, block
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Figure 3.8: Exemplary point-coarsening with a distance-basedPPP . Shown are the finest
(small) and the next coarse level (large box) for the part of the grid marked in Fig. 3.7.

Gauss-Seidel), see Section 3.4.1. Hence, a coarsening oriented on node-distances tackles the
diffusion problem which essentially remains to be solved48. In contrast to this, the efficiency
of an approach which makes only use of matrix entries in order to define coarsening and
interpolation would be destroyed by large reaction terms. N

3.4.3 Interpolation Strategies for Point-Based Approaches

Given a fine and a coarse level - the latter obtained by one of the point-coarsening strategies
- one has many possibilities to define interpolation now. Which of them may be a good
choice in practice depends, as usually, on the application, the interplay between smoothing
and coarsening, and computational costs.

For ease of description, we simply assume the interpolation operator,IFC , to be ordered
point-wise, that is

IFC = (W(k,l)) (3.83)

with “weights” W(k,l) with k ∈ F p and l ∈ P pk whereP pk are thesets of interpolatory
points. EachP pk contains all the C-points the F-pointPk is interpolating from. Hence, it is a
subset ofCp and, in case of direct interpolation, a subset ofNp

k ∩Cp. We only considerdirect
interpolation here, the correspondingindirect schemes are obtained as described in Sections
3.2.3.5 and 4.3.

48An “ideal” approach for such a PDE system would be a splitting of the corresponding matrix into its “diffusive”
and its ”reactive” part. The “diffusive” part could then directly be used for coarsening instead of an approximation
which can “a-posteriori” obtained by a distance-basedPPP . In practice, however, such a splitting is usually not
available.



98 Chapter 3 A General AMG Methodology for PDE Systems

Analogously to the fact that, in a variable-based approach, an interpolation formula shall
approximate (3.22) for an algebraic smooth error, we here seek suitableW(k,l) for

e(k) =
∑
l∈Pp

k

W(k,l)e(l) (3.84)

so that (3.84) is an approximation of the equation

A(k,k)e(k) +
∑
l 6=k

A(k,l)e(l) = 0 . (3.85)

This equation is equivalent to (3.22) and characterizes an algebraically smooth error as cre-
ated by a smoother obeying both the smoothing property (3.9) as well as the point-smoothing
property (3.71).

For each application, it is important to consider the following questions prior to a decision
on thetype of interpolationfinally employed: Is it important to takeunknown cross-couplings
into account? If not, that is if each unknown should be interpolated only from variables
corresponding to the same unknown, do we need to consider each unknown separately, or
is it sufficient to use the same formulas for all unknowns?If yes, shall the interpolation be
block-wise or not?

The combination “take unknown cross-couplings into account and do not interpolate
block-wise” does not fit to a point-based strategy but suggests a variable-based approach
instead. Hence, we consider the following threegeneral types of interpolationin our frame-
work for point-based approaches:

• block-interpolation (B-interpolation) : couplings between different unknowns are ta-
ken into account, and the interpolation formulas are computed block-wise.

• multiple-unknown-interpolation (MU-interpolation) : the interpolation formulas are
computed variable-wise and separately for each unknown; in particular, F-variables are
only interpolated from variables of the same unknown.

• a single-unknown-interpolation (SU-interpolation): the interpolation formulas are
computed variable-wise, but are “identical” for the variables belonging to the same
point, and F-variables are only interpolated from variables of the same unknown.

In order to completely define any of the above interpolation operators, we need to decide on
its pattern, i.e. the nonzero structure of the interpolation matrixIFC , and then compute the
concreteweights.

In Sections 3.4.3.1-3.4.3.3, we describe details of the different interpolation processes,
assuming a fine and a coarse level to be given. The coarse level is assumed to be the result of a
point-coarsening process with some primary matrixPPP . However, as for all AMG approaches,
it is important to stress that the construction of coarsening and interpolation are closely related
to each other. That is, coarsening and interpolation must “fit together”. In particular, the
pattern ofIFC should be related in a “natural” way to the pattern ofPPP since the definition of
theC/F -splitting has been based on the primary matrixPPP .

In Section 3.4.3.4, we discuss the choice of interpolation for the RD and DD models and
corresponding applications considered in Section 5.
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Remark 3.28 In Sections 3.4.3.1 and 3.4.3.2, we only consider weights based on entries
of A. In all interpolations, however, weights can be based on a part ofA, on PPP , or on
coordinates. The technical possibilities for each interpolation type are discussed in Section
4.3.2. Again, note that this choice has to fit to the remaining components chosen. N

Recall from above that we assumeP pk ⊆ Np
k ∩Cp. We make use of the following definitions

being generalizations of the ones used for the discussion of variable-based approaches:

Np
k := {l ∈ Vp | l 6= k ∧A(k,l) 6= 0} , (3.86)

Np,+
k := {l ∈ Np

k |A(k,l) ≥ 0} , P p,+k :=Np,+
k ∩ P pk , (3.87)

Np,−
k := {l ∈ Np

k | (−A(k,l)) ≥ 0} , P p,−k :=Np,−
k ∩ P pk , (3.88)

Np,0
k :=Np

k \ (Np,−
k ∪Np,+

k ) , P p,0k := Np,0
k ∩ P pk . (3.89)

3.4.3.1 Block-Interpolation (B-Interpolation)

Generally speaking, with block-interpolation we mean any interpolation obtained by a block-
wise approximation of (3.85) in a way which is analogous to the classical “scalar” approaches
to define interpolation. Unknown cross-couplings are taken into account here. At first sight,
the use of a block-interpolation seems most natural, especially ifPPP is defined based on norms,
that is, according to one of (3.72)-(3.75).

Variant (1) One way to approximate (3.85) and a straightforward analog of (3.25) is(∑
j∈N̂p

A(k,j)

)−1(∑
j∈N̂p

A(k,j)e(j)

)
≈
(∑
j∈P̂p

A(k,j)

)−1(∑
j∈P̂p

A(k,j)e(j)

)
(3.90)

with N̂p ⊆ Np
k andP̂ p := N̂p ∩ P pk .

Remark 3.29 Note that (3.90) is well-defined only if the number of variables per point is
constant (equal tonu) and if the inverses exist. N

Applied to bothN̂p = Np
k \N

p,+
k andN̂p = Np,+

k , we obtain the following analog of (3.36):
for all k ∈ F p define

∀ l ∈ P pk \ P
p,+
k : W(k,l) := −A−1

(k,k)

( ∑
j∈Np

k
\Np,+

k

A(k,j)

)( ∑
j∈Pp

k
\Pp,+

k

A(k,j)

)−1

A(k,l) ,

∀ l ∈ P p,+k : W(k,l) := −A−1
(k,k)

( ∑
j∈Np,+

k

A(k,j)

)( ∑
j∈Pp,+

k

A(k,j)

)−1

A(k,l) ,

(3.91)

provided again that the number of variables per point is constant and the inverses exist.
For A > 0, the positive-definiteness of allA(k,k) is ensured so that they are invertible, in
particular. Unfortunately, the

∑
j∈N̂p A(k,j) cannot be expected to be invertible in general.
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In addition, it is not clear how to handle indefiniteA(k,j). Both gives rise to problems, if
not anyway for the efficiency of the approach, at least for its implementation since inverting
(numerically) singular matrices has to be avoided. Moreover, this type of interpolation is very
expensive because of the necessary inversions and eigenvalue calculations, and it is inflexible
according to Remark 3.29.

Remark 3.30 With I denoting the identity operator, observe that

I −
∑
l∈Pp

k

W(k,l) = A−1
(k,k)S(k) with S(k) := A(k,k) +

∑
l∈Np

k

A(k,l) (3.92)

Therefore, if allS(k) = 0, each block-row sum of the interpolation operator equals the iden-
tity operatorI which means that constant vectors are interpolated exactly. N

Remark 3.31 (Straightforward point-based extensions applied to linear elasticity)
The straightforward variant (1) as well as a straightforward generalization of the basic in-

terpolation formula of [71] have been considered in [58, 30]. Results of tests with anisotropic
Laplacians as well as linear elasticity problems have been reported there. They confirm that
the problems indicated in the discussion of variant (1) above are likely to arise even for rather
simple model problems on uniform grids. Depending on the coarsening and concrete matrix,
one or both of the variants discussed in [58, 30] fail because required inversions cannot be
performed.

In [58, 30], a kernel-preserving property of variant (1) has been proved for linear elas-
ticity problems with homogeneous Neumann boundary conditions on simple regular meshes.
Unfortunately, this property can hardly be exploited in more complex geometric situations
(unstructured grids).

Recently, similar straightforward approaches have been suggested in [32]. Whereas [58,
30] advocate straightforward generalizations of the interpolation schemes discussed in [87],
an interpolation based on the “old” version [71] is used in [32]. In addition, simple aggrega-
tion-like components are discussed there. These investigations are still at the beginning.

A straightforwardpoint-based variant of smoothed aggregative AMGis proposed in
[99] for linear elasticity. Scalar operations are simply replaced by block-counterparts (among
them spectral radii of certain matrix products). For a set of “real-life” linear elasticity prob-
lems, the variant which takes all rigid body modes into account has been shown to be more
robust and faster than the variant which takes only the translations into account. Recently,
[62] has demonstrated the efficiency of a point-wise smoothed aggregative AMG approach.
The advocated method corresponds to [99, 53] with some modifications (local approximation
estimators [52]). N

Variant (2) (3.91) can be simplified in a straightforward way if we do not distinguish be-
tween the two classes of point-coupling matrices, namelyA(k,l) ≥ 0 andA(k,l) � 0. This
leads to

∀ l ∈ P pk : W(k,l) := −A−1
(k,k)

( ∑
j∈Np

k

A(k,j)

)( ∑
j∈Pp

k

A(k,j)

)−1

A(k,l) , (3.93)
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for all k ∈ F p (i.e. (3.90) applied toNp
k ) - again provided that the number of variables per

point is constant and that the inverses exist (see Remark 3.29). Also here, inverses have to be
calculated, but eigenvalue computations are not necessary which considerably decreases the
computational cost for the setup of the interpolation weights. As above,

I −
∑
l∈Pp

k

W(k,l) = A−1
(k,k)S(k) . (3.94)

Variant (3) A less critical analog of (3.25) emerges if we replace the inverses in (3.90) by
diagonal matrices thei-th diagonal of which consists of the inverse of the sum of the entries
of thei-th row of allA(k,j) with j ∈ N̂p or j ∈ P̂ p, respectively. To be more specific, define

N̂ := {j ∈ V | ∃k ∈ N̂p : j ∈ Pk} , P̂ := {j ∈ V | ∃k ∈ P̂ p : j ∈ Pk} . (3.95)

Then replace (3.90) by

R−1

N̂,k

(∑
j∈N̂p

A(k,j)e(j)

)
≈ R−1

P̂ ,k

(∑
j∈P̂p

A(k,j)e(j)

)
(3.96)

with RN̂,k = (rN̂,kij)i,j andRP̂ ,k = (rP̂ ,kij)i,j being |Pk| × |Pk|-matrices with all off-
diagonal entries being zero and, for eachi ∈ Pk,

rN̂,kii :=
∑
j∈N̂

aij and rP̂ ,kii :=
∑
j∈P̂

aij . (3.97)

If one of therN̂,kii or rP̂ ,kii is zero, it is replaced by 1.
As above, the inverse matrices serve as scaling factors, but here the factors are chosen so

that the row sums of the matrices49 ∑
j∈N̂p A(k,j) and

∑
j∈P̂p A(k,j) - if not equal to zero

- are scaled to one. In contrast to the above variants, these inverses always exist due to the
modification mentioned above. Moreover, the emerging interpolation formulas are cheaper
to evaluate than (3.93). Another great practical advantage of this variant is that it can easily
handle the case of varying number of variables per point. Applied toN̂p = Np

k , we obtain

∀ l ∈ P p,+k : W(k,l) := −A−1
(k,k)RNp

k
R−1
Pp

k
A(k,l) . (3.98)

Note that, in contrast to variants (1) and (2),I −
∑
l∈Pp

k
W(k,l) is in general not equal to one

if all S(k) = 0.

In practice, even this scheme is very expensive so that simpler types of interpolation often
lead to more efficient AMG processes. Thus, besides the above block-interpolations, we
consider variable-wise defined interpolation formulas which make use of multiple unknowns
(Section 3.4.3.2) or a single unknown (Section 3.4.3.3). These approaches are described in
the following two sections.

49In the following two terms, theA(k,j) are suitably extended and considered as being|Pk| × |nu|-matrices.
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3.4.3.2 Multiple-Unknown-Interpolation (MU-Interpolation)

A multiple-unknown-interpolation is formally identical to the interpolation used in UAMG.
The only difference lies in the level hierarchy, that is theC/F -splitting, the interpolatory sets
Pi are based on. Whereas in UAMG the level hierarchies are computed separately for the
different unknowns, they are (principally) identical in PAMG. In the last case, it is depending
on the concrete matrix considered whether the computedC/F -splitting fits to theA[n,n].

An MU-interpolation may be used in cases where only the coarsening should be computed
point-wise. The employment of this type of interpolation then leads to an AMG approach
which can be regarded as a compromise between an unknown-based and a point-based one.

An application for which a special MU-interpolation works quite efficiently is given by
the reaction-diffusion equations considered in Section 5.2.2. This will be explained in Exam-
ple 3.11 below. Also for DD models and the drift-diffusion matrices considered in Section
5.3.2, an MU-interpolation has advantages depending on the concrete application. See Ex-
ample 3.12 below.

3.4.3.3 Single-Unknown-Interpolation (SU-Interpolation)

We speak of a single-unknown-interpolation if an interpolation is computed for the set of
pointsVp and then transferred point-wise to the variablesV of the target systemAv = b such
that the interpolation formulas are (essentially) the same for all unknowns.

To compute an interpolation for the set of points, a variable-based interpolation scheme
(see Section 3.2.3) is applied to the primary matrixPPP . Recall that we can choose between
interpolation weights based on entries of the matrix - herePPP - or coordinates, depending
on the application. In addition, another possibility is offered for SU-interpolations. If an
unknown-pattern has been chosen withUn being the primary unknown, we might choose the
entries ofA[n,n] as basis for computing the interpolation weights.

Being equivalent to choosing a specific kind of interpolation weights in computing the
interpolation formulas for the points, we can directly apply a “classical” VAMG interpola-
tion to an(np × np)-matrix P̃PP = (p̃kl)k,l=1,...,np

with Σ(P̃PP ) ⊆ Σ(PPP ). Depending on the
interpolation weights chosen, this matrix then equalsPPP orA[n,n] or is coordinates-based50.

We call this aP̃PP -interpolation in the following. Recall that we consider onlydirect interpo-
lation here, i.e.P pk ⊆ Np

k ∩ Cp. Analogously to (3.86), we define:

Ñp
k :={l ∈ Vp | l 6= k ∧ p̃kl 6= 0} , P̃ pk := Ñp

k ∩ P
p
k , (3.99)

Ñp,−
k :={l ∈ Ñp

k | p̃kl < 0} , P̃ p,−k :=Ñp,−
k ∩ P pk , (3.100)

Ñp,+
k :={l ∈ Ñp

k | p̃kl > 0} , P̃ p,+k :=Ñp,+
k ∩ P pk . (3.101)

Note thatÑp
k can be different fromNp

k . Analogously forÑp,+
k and Ñp,−

k . Observe that

P̃ pk = P pk ∩ Ñ
p
k = P̃ p,−k ∪̇P̃ p,+k . Furthermore, sincẽPPP has a subset of or even the same

connectivity pattern ofPPP , Ñp
k ⊆ Np

k holds. This means that only thosẽpkl can be nonzero
whose correspondingA(k,l) are nonzero.

50see also Section 4.3.2.
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Since the interpolation formulas are constructed with the help of a variable-based ap-
proach, the following formulas emerge for direct interpolation:∀ k ∈ F p

∀ l ∈ P̃ p,−k : wpkl := − p̃kl
p̃kk

αpk > 0 with αpk :=

∑
j∈Ñp,−

k
p̃kj∑

j∈P̃p,−
k

p̃kj
> 0

∀ l ∈ P̃ p,+k : wpkl := − p̃kl
p̃kk

βpk < 0 with βpk :=

∑
j∈Ñp,+

k
p̃kj∑

j∈P̃p,+
k

p̃kj
> 0

(3.102)

Remark 3.32 A PPP -interpolation is defined to be an SU-interpolation fully51 based on the
primary matrixPPP . Analogously, anA[n,n]A[n,n]A[n,n]-interpolation is defined. For the latter, note that
the chosenPPP andA[n,n] can be different. N

Transfer of the P̃PP -Interpolation For the SU-interpolation - an interpolation which is “the
same”for all unknowns - the definition of the interpolation formulas for the variables of a
pointPk corresponds to the transfer of the interpolation weightswpkl (l ∈ P pk ) to the “diagonal
elements”ofW(k,l). That means, they are transferred to thewij with i ∈ Pk andj ∈ Pl such
that i andj belong to the same unknown - as long as such variable index pairs(i, j) exist.
We have to distinguish between two cases here:

• Case 1:Each (nonempty) point is attached to all unknowns.

• Case 2:There are (nonempty) points which are not attached to all unknowns.

In the first, “ideal”case, two nonempty pointsPk andPl are always attached to the same set
of unknowns. Hence, each submatrixW(k,l) is square and obtains the following form:

W(k,l) =

 wpkl 0
...

0 wpkl

 . (3.103)

In the second case, not all unknowns are living on the whole domain. Two algorithms are
implemented in SAMG for the definition of theW(k,l) in this case. A more detailed, technical
discussion is postponed to Section 4.3.2.2. However, we want to indicate the probably crucial
point here: the occurrence of anunknown-overlapping interpolationin the neighborhood
of the “interface” of regions with different kind and/or number of variables. Usually, the
impact of such overlaps on the convergence is small. However, for the case that they do
disturb, we want to mention that both of the two algorithms mentioned above provide the
possibility to “skip” unknown cross-couplings. In Example 3.13 below, we will illustrate
a typical resulting interpolation structure for case (2) and the occurrence of an unknown-
overlapping interpolation.

51That is, the interpolation for the variables ofA is based on the SW-pattern (see Section 4.2.1) and the entries
pkl ofPPP .
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Remark 3.33 Another possibility to base the interpolation weights onPPPmax but avoid pos-
sible problems with unknown cross-interpolations (as indicated above) is the employment of
an MU-interpolation. Here, instead of the entries of theA[n,n], the corresponding entries of
PPPmax are used to compute theweightsof IFC . N

3.4.3.4 Examples

In the following, we discuss the choice of interpolation for the RD and DD models and
corresponding applications considered in Section 5.

Example 3.11 (RD models and semiconductor reaction-diffusion equations)
For the semiconductor reaction-diffusion equations considered in Section 5.2.2, a special
MU-interpolation works more efficiently than the other two interpolation strategies, that is
block- or SU-interpolations. Heuristically, this might be explained as follows.

We have already seen in Section 3.4.1.2 and in Example 3.10 that BGS smoothing handles
the unknown cross-couplings of the RD models appropriately and that a coordinates-based
PPP mimicing a discrete Laplacian allows for an appropriate coarsening. However, in the RD
models, unknown cross-couplings can only be found in the diagonal blocksA(k,k) whereas
in general cases unknown cross-couplings can also be located somewhere else. Indeed, this
is the case for the matrices considered in Section 5.2.2.

BGS smoothing is not always able to “remove” the influence of all large couplings which
correspond to reaction terms and are located outside the diagonal blocksA(k,k) so that the
error might locally not be smooth in all directions. Hence, an SU-interpolation which is
“identical” for all unknowns52 has numerically proved to be not robust. This is also the case
for block-interpolation.

However, an MU-interpolation with weights being based on coordinates53 is often able
to address the described “local problems” of BGS smoothing. Strong couplings in theA[n,n]

which are due to reaction terms and not due to the underlying diffusion operator are also re-
flected, and the choice of interpolatory variables is adapted to them. However, the magnitude
of the couplings is determined by distances which prevents the destruction of interpolation by
exceptionally large reaction terms. The resulting interpolation thus resembles the interpola-
tion for a diffusion operator but on the pattern of strong connectivity as reflected by both the
diffusive and the reactive terms. By construction, (at least) constant functions are interpolated
exactly here.

It should be noted that the resulting point-based approach might not always converge
stand-alone. This is mostly due to large unknown cross-couplings which are neither correctly
treated by smoothing nor interpolation. In such cases, the described PAMG approach often
profits substantially from acceleration by BiCGstab or GMRes. Concrete numerical results
for semiconductor reaction-diffusion systems will be discussed in Section 5.2.2. N

Example 3.12 (DD models and semiconductor drift-diffusion equations)
For the DD models, both MU- and SU-interpolation can have advantages and disadvantages,
depending on the concrete problem (for numerical results, see Section 4.6). We know that the

52and can be based on coordinates or matrix entries here, see also Section 4.3.2.
53see also Section 4.3.2.
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system’s smoothing behavior is controlled by two influences. In particular, the largerc, the
stronger it is dominated byA[2,1] (see Fig. 3.1). In addition, a certain isotropic part plays a
role which is the larger the smallerc is (see Fig. 3.2). In Example 3.5, we have explained why
coarsening based on a norm-basedPPP can be expected to be most appropriate here. Hence,
interpolation should also be based on thisPPP as long as smoothing and coarsening go hand in
hand - simultaneously for all three unknowns.

However, as indicated by Figs. 3.2 (a) and (b), for smallε andc ≈ 1, PPP does not fully
reflect the local direction(s) of smoothness simultaneously for all unknowns. Hence, the more
different smooth error looks like for the unknowns, the less efficient an SU-interpolation will
be. We will see in Section 4.6 that indeed the SU-interpolation suffers - but only slightly -
from smallε together withc ≈ 1. If not all error frequencies are sufficiently reduced, us-
ing the resulting PAMG approach as a preconditioner for BiCGstab or GMRes considerably
improves convergence and robustness in many cases and has turned out to be a must for prac-
tical applications here: As will be explained in Section 5.3.2, the situation for semiconductor
drift-diffusion matrices is comparable to the case(λ, c)=(1,1) with anisotropies. N

Example 3.13 (Unknown-overlapping interpolation)
Figures 3.9(a) and (b) show an example of the construction of an SU-interpolation as can hap-
pen in device simulation in a similar manner (see Section 5.3). In this example, the domain
Ω consists of two parts (the interface is indicated by a line): only in one part, the system con-
sists of all three unknowns. Fig. 3.9(b) depicts the resulting structure of interpolation: One
variable of the grey unknown does also interpolate from a black one, a variable of a different
unknown. In general, if not all unknowns are living in the whole domain, the occurrence of
anunknown-overlapping interpolationin the neighborhood of the boundary is very probable.

(a) (b)

Figure 3.9: (a) ExemplarỹPPP -interpolation structure. C-points are dark grey, F-points light
grey. (b) Resulting interpolation structure for the grey unknown (analogous for the white
unknown) after transfer. Here, one variable of the white (grey) unknown does not only inter-
polate from variables of the same unknown but also from a black one.

3.4.4 Two-Level Convergence Analysis

In the following, we generalize the two-level convergence theory for variable-based and
unknown-based AMG to point-based approaches. In addition, the proofs of theorems for
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the variable-based case are given, as far as still pending. To be more specific, generalizations
of the τ -condition (3.21) and of Theorem 3.7 are developed. For the proofs, strong condi-
tions must be fulfilled, in particular, all unknowns must be attached to all points,A must be
symmetric positive definite, and the off-diagonal point matrices must at least be symmetric.
These assumptions are generally made in the following.

The obtained estimates will turn out to be at least structurally similar to the ones of The-
orem 3.7. But, as one might expect, the condition of the point matrices will come into, for
example. The general statements will then be transferred to or itself generalized for concrete
cases, as for instance the block- andPPP -interpolations, which will allow for comparing the
properties of both interpolation types further.

As for VAMG and UAMG, very rough upper bounds for two-level convergence will
emerge which should not be used for quantitative assessments of specific approaches. Their
main importance lies in the fact that they provide valuable insights into what influences the
convergence qualitatively.

Throughout this Section, we only considerdirect interpolations, i.e.P pk ⊆ Np
k ∩ Cp.

3.4.4.1 τττ -Conditions

We proceed in a way similar to the proof of Theorem 3.7, as performed in [87]. Completely
analogously to the proof of Theorem 3.3 we obtain

Theorem 3.11 LetA > 0 and letS satisfy the point-smoothing property(3.71). Further-
more, assume theCp/F p-splitting and interpolation to be such that

∀ e : ||Ke||21 ≤ τ ||Ke||2P,2 (3.104)

with someτ > 0 being independent ofe. Thenτ ≥ σ and||SK||1 ≤
√

1− σ/τ .

The next theorem (the direct analog of Theorem 3.4) provides us with a sufficient condition
for (3.104).

Theorem 3.12 If A > 0 and theCp/F p-splitting and interpolationIFC are such that

∀ e ∈ R(K) : ||eF − IFCeC ||2P,0,F ≤ τ ||e||21 (3.105)

with τ being independent ofe, then(3.104)is satisfied.

The next step is the generalization of some lemmata to the point-based case. We start with a
variant of Cauchy-Schwarz’s inequality.

Lemma 3.9 Let i, n ∈ IN, vl (l = 1, . . . , i) be vectors inIRn, Wl (l = 1, . . . , i) (n × n)-
matrices,|| · || for vectors a norm and for matrices the operator norm compatible to this
vector norm, andµ :=

∑i
l=1 ||Wl||. Then the following inequality holds:∣∣∣∣∣∣∣∣ i∑

l=1

Wlvl

∣∣∣∣∣∣∣∣2 ≤ µ
i∑
l=1

||Wl|| · ||vl||2 . (3.106)
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The proof of this lemma can be found in Section A.2 of the appendix.
The next lemma provides a splitting of(Ae, e)E under certain assumptions. In particular,
the off-diagonal point-coupling matrices,A(k,l) (k 6= l), have to be symmetric. Define a
generalization of theti to the point-case:

T(k) = A(k,k) +
∑

l∈Np
k\N

p,+
k

A(k,l) −
∑

l∈Np,+
k

A(k,l) . (3.107)

Lemma 3.10 (a)LetA be symmetric, andNp
k = Np,+

k ∪ Np,−
k for all k ∈ Vp. Then the

following holds:

(Ae, e)E =
1

2

∑
k,l,l∈Np,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

+
1

2

∑
k,l,l∈Np,+

k

(A(k,l)(e(k) + e(l)), e(k) + e(l))E +
∑
k

(T(k)e(k), e(k))E .

(b) LetA be ofessentially block-positive type, see(2.34). RecallS(k) =
∑
lA(k,l) for all

k ∈ Vp. Then the following holds:

(Ae, e)E ≥
c

2

∑
k,l,l∈Np,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E +
∑
k

(S(k)e(k), e(k))E .

Proof of (a). The assumptionNp
k = Np,+

k ∪ Np,−
k implies that eachA(k,l) (k 6= l) is either≥ 0 or

≤ 0 and in particular symmetric. SinceA is symmetric, too, we haveA(l,k) = AT(k,l) = A(k,l), and∑
k,l,l∈Np,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

+
∑

k,l,l∈Np,+
k

(A(k,l)(e(k) + e(l)), e(k) + e(l))E

= −2
∑

k,l,l∈Np,−
k

(A(k,l)e(k), e(k))E + 2
∑

k,l,l∈Np,−
k

(A(k,l)e(l), e(k))E

+2
∑

k,l,l∈Np,+
k

(A(k,l)e(k), e(k))E + 2
∑

k,l,l∈Np,+
k

(A(k,l)e(l), e(k))E

= 2(Ae, e)E − 2
∑
k

(A(k,k)e(k), e(k))E

−2
∑
k

∑
l∈Np,−

k

(A(k,l)e(k), e(k))E + 2
∑
k

∑
l∈Np,+

k

(A(k,l)e(k), e(k))E

= 2(Ae, e)E − 2
∑
k

(T(k)e(k), e(k))E

which proves (a).
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Proof of (b). We make use of the definition (2.31) and Lemma 2.1 and proceed analogously to (a):

c
∑

k,l,l∈Np,−
k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

≤
∑
k,l,k 6=l

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

= 2
∑
k,l,k 6=l

(A(k,l)e(k), e(l))E + 2
∑
k,l,k 6=l

(−A(k,l)e(k), e(k))E

= 2(Ae, e)E − 2
∑
k

(S(k)e(k), e(k))E .

This proves (b). �

The following lemma gives us lower bounds for(Ae, e)E in terms of theA(k,l) under certain
assumptions. These will be needed in the proof of Theorem 3.13 later on.

Lemma 3.11 (a)LetA be symmetric,Np
k = Np,+

k ∪ Np,−
k andT(k) ≥ 0 for all k ∈ Vp.

Then

(Ae, e)E ≥
∑
k∈Fp

∑
l∈Pp,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

∑
k∈Fp

∑
l∈Pp,+

k

(A(k,l)(e(k) + e(l)), e(k) + e(l))E +
∑
k∈Fp

(T(k)e(k), e(k))E .

(b) LetA be of essentially block-positive type andS(k) ≥ 0 for all k ∈ Vp. Then

(Ae, e)E ≥ c
∑
k∈Fp

∑
l∈Pp,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E +
∑
k∈Fp

(S(k)e(k), e(k))E .

Proof of (a). Because of Lemma 2.1, Lemma 3.10,Vp = Cp∪̇F p, P p,−k ⊆ Cp andP p,+k ⊆ Cp, we
can estimate

(Ae, e)E =
1

2

∑
k,l∈Vp,l∈Np,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

+
1

2

∑
k,l∈Vp,l∈Np,+

k

(A(k,l)(e(k) + e(l)), e(k) + e(l))E +
∑
k∈Vp

(T(k)e(k), e(k))E

≥
∑
k∈Fp

∑
l∈Pp,−

k

(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

+
∑
k∈Fp

∑
l∈Pp,+

k

(A(k,l)(e(k) + e(l)), e(k) + e(l))E +
∑
k∈Fp

(T(k)e(k), e(k))E .

Theproof of (b) is analogous. �

Now we can prove generalized versions of Theorems 3.7 and 3.5 for point-coupling matrices
A(k,l) instead of matrix entriesaij :
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Theorem 3.13 (a)LetA > 0, Np
k = Np,+

k ∪ Np,−
k , andT(k) ≥ 0 for all k ∈ Vp. Select a

Cp/F p-splitting, a setP pk for eachk ∈ F p, and an interpolationIFC . Define

µk =
∑
l∈Pp

k

||W(k,l)||E +
∣∣∣∣∣∣∣∣I − ∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

.

If for all k ∈ F p the inequalities

τ λmin(T(k)) ≥ µk||A(k,k)||E
∣∣∣∣∣∣∣∣I − ∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

(3.108)

∧ ∀ l ∈ P p,−k : τ λmin(−A(k,l)) ≥ µk||A(k,k)||E ||W(k,l)||E (3.109)

∧ ∀ l ∈ P p,+k : τ λmin(A(k,l)) ≥ µk||A(k,k)||E ||W(k,l)||E (3.110)

hold with aτ ≥ 1 not depending onk, l, theτ -condition(3.105)is fulfilled, i.e.

||eF − IFCeC ||2P,0,F ≤ τ ||e||21 .

(b) LetA be of essentially block-positive type, andS(k) ≥ 0 for all k ∈ Vp. Select aCp/F p-
splitting, a setP pk for eachk ∈ F p, and an interpolationIFC with P pk = P p,−k for all
k ∈ F p. Define

µk =
∑
l∈Pp

k

||W(k,l)||E +
∣∣∣∣∣∣∣∣I − ∑

l∈Pp
k

W(k,l)

∣∣∣∣∣∣∣∣
E

.

If for all k ∈ F p the inequalities

τ λmin(S(k)) ≥ µk||A(k,k)||E
∣∣∣∣∣∣∣∣I − ∑

l∈Pp
k

W(k,l)

∣∣∣∣∣∣∣∣
E

(3.111)

∧ ∀ l ∈ P pk : τ λmin(−A(k,l)) ≥ µk||A(k,k)||E ||W(k,l)||E (3.112)

(3.113)

hold with aτ ≥ 1 not depending onk, l, theτ -condition(3.105)is fulfilled withτ/c instead
of τ , i.e.

||eF − IFCeC ||2P,0,F ≤
τ

c
||e||21 .

Proof of (a). Let (·, ·)1:B denote the energy inner product corresponding to a matrixB > 0,
|| · ||1:B the corresponding norm. SinceA > 0, the submatricesA(k,k) are symmetric positive
definite, too. Because ofNp

k = Np,+
k ∪ Np,−

k , we haveP pk = P p,+k ∪ P p,−k for all k. A
straightforward calculation shows that

||eF − IFCeC ||2P,0,F
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=
∑
k∈Fp

(
A(k,k)

(
e(k) −

∑
l∈Pp

k

W(k,l)e(l)

)
, e(k) −

∑
l∈Pp

k

W(k,l)e(l)

)
E

=
∑
k∈Fp

∣∣∣∣∣∣∣∣ ∑
l∈Pp,−

k

W(k,l)(e(k) − e(l))−
∑

l∈Pp,+
k

W(k,l)(e(k) + e(l))

+
(
I −

∑
l∈Pp,−

k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

)
e(k)

∣∣∣∣∣∣∣∣
1:A(k,k)

≤
∑
k∈Fp

||A(k,k)||E
∣∣∣∣∣∣∣∣ ∑
l∈Pp,−

k

W(k,l)(e(k) − e(l)) +
∑

l∈Pp,+
k

(−W(k,l))(e(k) + e(l))

+
(
I −

∑
l∈Pp,−

k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

)
e(k)

∣∣∣∣∣∣∣∣2
E

.

Lemma 3.9 yields now

||eF − IFCeC ||2P,0,F ≤
∑
k∈Fp

||A(k,k)||E µk
( ∑
l∈Pp,−

k

||W(k,l)||E ||e(k) − e(l)||2E

+
∑

l∈Pp,+
k

||W(k,l)||E ||e(k) + e(l)||2E

+
∣∣∣∣∣∣∣∣I − ∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

||e(k)||2E
)
.

Because allA(k,l) and thus allT(k) are symmetric, their eigenvalues are real (cf. Lemma 2.1).
Then,∀ k ∈ F p, assumptions (3.108), (3.109) and (3.110) are equivalent to

τ T(k) ≥ µk||A(k,k)||E
∣∣∣∣∣∣∣∣I − ∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

I

∧ ∀ l ∈ P p,−k : τ (−A(k,l)) ≥ µk||A(k,k)||E ||W(k,l)||EI ,
∧ ∀ l ∈ P p,+k : τ (A(k,l)) ≥ µk||A(k,k)||E ||W(k,l)||EI .

Therefore, we can estimate

||eF − IFCeC ||2P,0,F ≤
∑
k∈Fp

∑
l∈Pp,−

k

τ(−A(k,l)(e(k) − e(l)), e(k) − e(l))E

+
∑
k∈Fp

∑
l∈Pp,+

k

τ(A(k,l)(e(k) + e(l)), e(k) + e(l))E

+
∑
k∈Fp

τ(T(k)e(k), e(k))E .
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Finally, Lemma 3.11 shows that||eF − IFCeC ||2P,0,F ≤ τ(Ae, e)E = τ ||e||21 , which proves
(a). For theproof of (b) proceed analogously. �

Remark 3.34 It is easy to see that1 ≤ µk ≤ 1 + 2
∑
l∈Pp

k
||W(k,l)||E holds. N

Remark 3.35 Because ofA > 0, all D(k,k) > 0. If we now assume the conditions of
Theorem 3.13(a) to hold with eachA(k,k) replaced byD(k,k), we obtain analogously that the
τ -condition (3.21) is fullfilled, i.e.||eF − IFCeC ||20,F ≤ τ ||e||21 . Analogously for Theorem
3.13(b). N

Generally, Theorem 3.13(a) cannot be applied if there areT(k) /∈ Aspd or if there are point-
coupling matrices,A(k,l), which are symmetric but neither positive nor negative semi-definite.
Analogously for Theorem 3.13(b).

Remark 3.36 There are ways to generalize Theorem 3.13 such that the generalizations qual-
itatively correspond to Theorem 3.6 and similar theorems discussed in Section 3.2.3. The
resulting qualitative statements say that a violation of the conditions of Theorem 3.13 leads
to an enlargedτ . N

Even if all T(k) ≤ 0 (or S(k) ≤ 0) and allA(k,l) are semi-definite, problems can occur: if
A(k,l) is singular, the inequalities in (3.109) and (3.110) are equivalent toW(k,l) = 0, even if
A(k,l) 6= 0. Similarly, if λmin(T(k)) = 0 (which means thatT(k) is singular), (3.108) is only
fulfilled if

I −
∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l) = 0 .

In case ofλmin(S(k)) = 0, the more natural conditionI −
∑
l∈Pp

k
W(k,l) = 0 results which

means that constants must be interpolated exactly. As for all interpolations we investigate in
this thesis, this can be enforced.

3.4.4.2 Application to Different Interpolations

In the following sections, we discuss the application of Theorem 3.13 to various concrete
interpolations to get an impression what factors determine the magnitude ofτ .

Block-Interpolations For direct block-interpolations (3.91) and (3.93) the following corol-
lary can be derived from Theorem 3.13:

Corollary 3.1 LetA > 0,Np
k = Np,+

k ∪Np,−
k andT(k) ≥ 0 for all k ∈ Vp. Select aCp/F p-splitting

and a setP pk for eachk ∈ F p.

(a) If IFC can be defined by(3.91), then

µk =
∑
l∈Pp

k

||W(k,l)||E + ||A−1
(k,k)T(k)||E
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with T(k) defined by(3.107). If for all k ∈ F p the inequalities

τ λmin(T(k)) ≥ µkcondE(A(k,k))||T(k)||E (3.114)

∧ ∀ l ∈ P p,−k : τ λmin(−A(k,l))

≥ µkcondE(A(k,k)) ||A(k,l)||Eρ
(( ∑

j∈Np,−
k

A(k,j)

)( ∑
j∈Pp,−

k

A(k,j)

)−1)
, (3.115)

∧ ∀ l ∈ P p,+k : τ λmin(A(k,l))

≥ µkcondE(A(k,k)) ||A(k,l)||Eρ
(( ∑

j∈Np,+
k

A(k,j)

)( ∑
j∈Pp,+

k

A(k,j)

)−1)
, (3.116)

(3.117)

hold with aτ ≥ 1 not depending onk, l, theτ -condition(3.105)is fulfilled.

(b) If IFC can be defined by(3.93), then

µk =
∑
l∈Pp

k

||W(k,l)||E +

∣∣∣∣∣∣∣∣I +A−1
(k,k)

( ∑
j∈Np

k

A(k,j)

)
Φ(k)

∣∣∣∣∣∣∣∣
E

with

Φ(k) :=

( ∑
j∈Pp

k

A(k,j)

)−1( ∑
j∈Pp,−

k

A(k,j) −
∑

j∈Pp,+
k

A(k,j)

)
.

If for all k ∈ F p the inequalities

τ λmin(T(k)) ≥ µkcondE(A(k,k))

∣∣∣∣∣∣∣∣A(k,k) +

( ∑
j∈Np

k

A(k,j)

)
Φ(k)

∣∣∣∣∣∣∣∣
E

(3.118)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥ µkcondE(A(k,k)) ||A(k,l)||E
∣∣∣∣∣∣∣∣( ∑

j∈Np
k

A(k,j)

)( ∑
j∈Pp

k

A(k,j)

)−1∣∣∣∣∣∣∣∣
E

, (3.119)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥ µkcondE(A(k,k)) ||A(k,l)||E
∣∣∣∣∣∣∣∣( ∑

j∈Np
k

A(k,j)

)( ∑
j∈Pp

k

A(k,j)

)−1∣∣∣∣∣∣∣∣
E

, (3.120)

hold with aτ ≥ 1 not depending onk, l, theτ -condition(3.105)is fulfilled.

Proof of (a). BecauseA > 0, allA(k,k) > 0, and we have

condE(A(k,k))||T(k)||E = ρ(A(k,k))ρ(A
−1
(k,k))||T(k)||E

= ||A(k,k)||E ||A−1
(k,k)||E ||T(k)||E

≥ ||A(k,k)||E ||A−1
(k,k)T(k)||E
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= ||A(k,k)||E
∣∣∣∣∣∣∣∣I − ∑

l∈Pp,−
k

W(k,l) +
∑

l∈Pp,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

because of
I −

∑
l∈Pp

k
\Pp,+

k

W(k,l) +
∑

l∈Pp,+
k

W(k,l) = A−1
(k,k)T(k) . (3.121)

Hence, (3.114) implies (3.108). Analogously,

condE(A(k,k))||A(k,l)||Eρ
(( ∑

j∈Np,−
k

A(k,j)

)( ∑
j∈Pp,−

k

A(k,j)

)−1)
= ||A(k,k)||E ||A−1

(k,k)||E || −A(k,l)||E

· ρ
(( ∑

j∈Np,−
k

A(k,j)

)( ∑
j∈Pp,−

k

A(k,j)

)−1)

≥ ||A(k,k)||E
∣∣∣∣∣∣∣∣−A−1

(k,k)

( ∑
j∈Np,−

k

A(k,j)

)( ∑
j∈Pp,−

k

A(k,j)

)−1

A(k,l)

∣∣∣∣∣∣∣∣
E

= ||A(k,k)||E ||W(k,l)||E

which shows that (3.115) implies (3.109). Analogously, (3.116) implies (3.110). The proof of (b) is
straightforward now. �

Remark 3.37 If T(k) > 0, (3.114) is equivalent toτ ≥ µkcondE(A(k,k)) condE(T(k))
according to (2.57) and (2.58). If−A(k,l) > 0 holds, (3.115) is equivalent to

τ ≥ µkcondE(A(k,k)) condE(−A(k,l))ρ

(( ∑
j∈Np,−

k

A(k,j)

)( ∑
j∈Pp,−

k

A(k,j)

)−1)
, (3.122)

analogously for the other inequalities. N

Obviously, the obtained estimates forτ are similar to the ones for the variable-wise interpo-
lation which can be found in Theorem 3.7.

Remark 3.38 If we additionally demand theA(k,l), which are in the same row ofA, to com-
mutate pairwise, i.e.A(k,l)A(k,j) = A(k,j)A(k,l), we can drop (3.114) and replace conditions
(3.115) and (3.116) by

τ ≥ nuρ

(( ∑
j∈Np,−

k

(−A(k,j))

)( ∑
j∈Pp,−

k

(−A(k,j))

)−1)
, (3.123)

τ ≥ nuρ

(( ∑
j∈Np,+

k

A(k,j)

)( ∑
j∈Pp,+

k

A(k,j)

)−1)
. (3.124)

Ideas of a proof (for the case that allA(k,l) ≤ 0 for k 6= l) can be found in [58]. How-
ever, these apparently simpler conditions, which are formally nearly the analogs to (3.38) and
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(3.39), are obtained by paying too high a price because the assumption of commutating matri-
ces doesusually not hold, not even for symmetric matrices. In addition, the above estimates
with nu need not to be better. N

Remark 3.39 In contrast to the estimates obtained for variable-based AMG, the setting
P pk = Np

k does not automatically result inτ = 1 as one whould expect. In the inequali-
ties (3.123) and (3.124),τ = 1 can only emerge fornu = 1. This, however, is in contrast to
the fact that we investigate coupled PDE systems here. For conditions (3.115) and (3.116),
the situation is comparable sinceτ = 1 impliescondE(A(k,l)) = 1 for all k, l here. However,
if only the symmetry ofA(k,l) (k 6= l) is demanded, also coupled systems withA(k,k) = c1I

(c1 > 0) and, for instance,A(k,l) =
[

0 c2
c2 0

]
(with a c2 so thatA ∈ Aspd is still satisfied)

would result incondE(A(k,l)) = 1 for all k, l. N

Variable-Based AMG In case of variable-based AMG where point-coupling matricesA(k,l)

degenerate to matrix entriesakl, we can directly derive Theorems 3.7 and 3.5 from Theorem
3.1:

Corollary 3.2 (a) LetA > 0 and ti = aii −
∑
j∈Ni

|aij | ≥ 0 for all i. With fixedτ ≥ 1 select a

C/F -splitting such that the following holds for eachi ∈ F : If N−
i 6= ∅, there is a setP−

i ⊆ C ∩N−
i

satisfying ∑
j∈P−i

|aij | ≥
1

τ

∑
j∈N−i

|aij | (3.125)

and, ifN+
i 6= ∅, there is a setP+

i ⊆ C ∩N+
i satisfying∑

j∈P+
i

aij ≥
1

τ

∑
j∈N+

i

aij . (3.126)

Then the interpolation(3.23)with weights(3.36)satisfies theτ -condition(3.21).
(b) LetA be a weakly diagonally dominant, essentially positive type matrix. With fixedτ ≥ 1 select a
C/F -splitting so that, for eachi ∈ F , there is a setPi ⊆ C ∩N−

i satisfying∑
j∈Pi

|a−ij | ≥
1

τ

∑
j∈Ni

|a−ij | . (3.127)

Then, interpolation(3.23)with weights(3.31)satisfies theτ -condition(3.21)with τ/c rather thanτ .

Proof of (a): According to (3.36) and the assumptions, we havewij > 0 for all j ∈ P−
i , wij < 0 for

all j ∈ P+
i and∑
j∈Pi

|wij | =
∑
j∈P−i

wij −
∑
j∈P+

i

wij =
1

aii

(
−

∑
j∈N−i

aij +
∑
j∈N+

i

aij

)
=
aii − ti
aii

.

Hence, we haveµi =
∑
j∈Pi

|wij |+ ti
aii

= 1 . The remainder follows from the obvious reduction of
Theorem 3.1(a) to the variable-based case. Theproof of (b) is analogous. �

Different variable-wise interpolations, especially the direct interpolation with weights (3.27),
were already discussed in Section 3.2.3.
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P̃PP -Interpolations ForP̃PP -interpolations (3.103) the following corollary can be derived from
Theorem 3.13:

Theorem 3.14 LetA > 0, Np
k = Np,+

k ∪ Np,−
k andT(k) ≥ 0 for all k ∈ Vp. Select aτ ≥ 1, a

Cp/F p-splitting and a setP pk for eachk ∈ F p. Let

∀ k ∈ F p : 1−
∑

l∈P̃p,−
k

wpkl +
∑

l∈P̃p,+
k

wpkl ≥ 0 . (3.128)

(a) If P p,−k = P̃ p,−k andP p,+k = P̃ p,+k and IFC is defined by(3.103), then, for allk ∈ F p, the
inequalities

τ λmin(T(k)) ≥
||A(k,k)||E

p̃kk
tpk (3.129)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥
||A(k,k)||E

p̃kk

∣∣∣∣
∑
j∈Ñp,−

k
p̃kj∑

j∈Pp,−
k

p̃kj

∣∣∣∣|p̃kl| (3.130)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥
||A(k,k)||E

p̃kk

∣∣∣∣
∑
j∈Ñp,+

k
p̃kj∑

j∈Pp,+
k

p̃kj

∣∣∣∣|p̃kl| (3.131)

imply theτ -condition(3.105). If theA(k,k) are replaced byD(k,k), the above inequalities imply the
τ -condition(3.21).

(b) If Ñp,+
k = ∅ and IFC is defined by(3.103), thenÑp

k = Ñp,−
k , P̃ p,−k = P̃ pk = P pk and, for all

k ∈ F p, the inequalities

τ λmin(T(k)) ≥ ||A(k,k)||E
(

1−
∑

l∈Pp,−
k

wpkl +
∑

l∈Pp,+
k

wpkl

)
(3.132)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥
||A(k,k)||E

p̃kk

∣∣∣∣
∑
j∈Ñp

k
p̃kj∑

j∈Pp
k
p̃kj

∣∣∣∣|p̃kl| (3.133)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥
||A(k,k)||E

p̃kk

∣∣∣∣
∑
j∈Ñp

k
p̃kj∑

j∈Pp
k
p̃kj

∣∣∣∣|p̃kl| (3.134)

imply theτ -condition(3.105).

Theproofs of (a) and (b)are analogous. Hence, we only prove (a) explicitly. Since (3.103) holds for
all k ∈ F p and alll ∈ P pk ,

W(k,l)(e(k) − e(l)) = wpkl(e(k) − e(l))
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holds, and we can evaluate

||W(k,l)||E = |wpkl| =


|p̃kl|
p̃kk

∣∣∣∣
∑

j∈Ñ
p,−
k

p̃kj∑
j∈P̃

p,−
k

p̃kj

∣∣∣∣ , l ∈ P̃ p,−k ,

|p̃kl|
p̃kk

∣∣∣∣
∑

j∈Ñ
p,+
k

p̃kj∑
j∈P̃

p,+
k

p̃kj

∣∣∣∣ , l ∈ P̃ p,+k ,

(3.135)

∣∣∣∣∣∣∣∣I − ∑
l∈P̃p,−

k

W(k,l) +
∑

l∈P̃p,+
k

W(k,l)

∣∣∣∣∣∣∣∣
E

=

∣∣∣∣1− ∑
l∈P̃p,−

k

wpkl +
∑

l∈P̃p,+
k

wpkl

∣∣∣∣ =
|tpk|
p̃kk

with tpk := p̃kk +
∑

l∈Ñp,−
k

p̃kl −
∑

l∈Ñp,+
k

p̃kl = p̃kk −
∑
l∈Ñp

k

|p̃kl| .

According to (3.102) and the assumptions, we have

1−
∑

l∈Pp,−
k

wpkl +
∑

l∈Pp,+
k

wpkl ≥ 0 , (3.136)

∀ l ∈ P p,−k : wpkl ≥ 0 and ∀ l ∈ P p,+k : wpkl ≤ 0 , (3.137)

and therefore

µk =

∑
l∈Ñp

k
|p̃kl|

p̃kk
+

tpk
p̃kk

=

∑
l∈Ñp

k
|p̃kl|

p̃kk
+
p̃kk −

∑
l∈Ñp

k
|p̃kl|

p̃kk
= 1 . (3.138)

The remainder follows from (3.135). �

For all types ofP̃PP , the diagonal entries̃pkk should be as large as possible and the sums (for

instance,|
∑
j∈Ñp,−

k
p̃kj | and|

∑
j∈Pp,−

k
p̃kj |) as similar in magnitude as possible in order to

obtain a smallτ . This corresponds to the results we have obtained for variable-based AMG.

Remark 3.40 A difference, however, lies in the fact that in the estimates above even for
P p,−k = Ñp,−

k (etc.) not automaticallyτ = 1 emerges.τ = 1 would result if, for instance,
p̃kl = |λ|min(A(k,l)) for k 6= l andp̃kk = ||A(k,k)||E andtpk = λmin(T(k)). However, as we
have discussed in Section 3.4.2.7, such a definition of thep̃kl is not advantageous since this
might prevent coarsening totally. N

ForPPP -interpolations with a norm-basedPPP , we can concretize the above results further.

Corollary 3.3 (a) If PPP is defined by(3.74)with the Euclidean norm,

∀ (k, l) ∈ Σ : pkl =

{
||A(k,l)||E for A(k,l) ≥ 0 (k 6= l)

−||A(k,l)||E else (k 6= l)
and pkk = ||A(k,k)||E ,

thenP p,−k = P̃ p,−k andP p,+k = P̃ p,+k , which shows that we can apply Theorem 3.14(a) if the remaining
conditions are fulfilled. The condition(3.128)is equivalent to

∀ k ∈ F p : tpk = ||A(k,k)||E −
∑
j∈Ñp

k

||A(k,j)||E ≥ 0 , (3.139)
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and the inequalities(3.129), (3.130)and (3.131)are equivalent to

τ λmin(T(k)) ≥ tpk (3.140)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥ ||A(k,l)||E

∑
j∈Ñp,−

k
||A(k,j)||E∑

j∈Pp,−
k

||A(k,j)||E
(3.141)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥ ||A(k,l)||E

∑
j∈Ñp,+

k
||A(k,j)||E∑

j∈Pp,+
k

||A(k,j)||E
. (3.142)

(b) If PPP is defined by(3.72)with the Euclidean norm,

∀ (k, l) ∈ Σ : pkl = −||A(k,l)||E (k 6= l) and pkk = ||A(k,k)||E ,

then Ñp,+
k = ∅, which shows that we can apply Theorem 3.14(b) if the remaining conditions are

fulfilled. Define

φk :=

∑
j∈Pp,−

k
||A(k,j)||E −

∑
j∈Pp,+

k
||A(k,j)||E∑

j∈Pp
k
||A(k,j)||E

.

Then condition(3.128)is equivalent to

∀ k ∈ F p : ||A(k,k)||E − φk
∑
j∈Ñp

k

||A(k,j)||E ≥ 0 ,

and the inequalities(3.132)to (3.134)are equivalent to

τ λmin(T(k)) ≥ ||A(k,k)||E − φk
∑
j∈Ñp

k

||A(k,j)||E (3.143)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥ ||A(k,l)||E

∑
j∈Ñp

k
||A(k,j)||E∑

j∈Pp
k
||A(k,j)||E

(3.144)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥ ||A(k,l)||E

∑
j∈Ñp

k
||A(k,j)||E∑

j∈Pp
k
||A(k,j)||E

. (3.145)

(c) If PPP is defined by(3.75)with the Euclidean norm,

∀ (k, l) ∈ Σ : pkl =

{
||A(k,l)||E for A(k,l) ≥ 0 (k 6= l)

−||A(k,l)||E else (k 6= l)
and pkk =

∑
l6=k

|pkl| ,

thenP p,−k = P̃ p,−k , P p,+k = P̃ p,+k . The conditions(3.128)and (3.129)are fulfilled because oftpk = 0,
and the inequalities(3.130)and (3.131)are equivalent to

∀ l ∈ P p,−k :
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τ λmin(−A(k,l)) ≥
||A(k,l)||E ||A(k,k)||E∑

j∈Ñp
k
||A(k,j)||E

∑
j∈Ñp,−

k
||A(k,j)||E∑

j∈Pp,−
k

||A(k,j)||E
(3.146)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥
||A(k,l)||E ||A(k,k)||E∑

j∈Ñp
k
||A(k,j)||E

∑
j∈Ñp,+

k
||A(k,j)||E∑

j∈Pp,+
k

||A(k,j)||E
. (3.147)

(d) If PPP is defined by(3.73)with the Euclidean norm,

∀ (k, l) ∈ Σ : pkl = −||A(k,l)||E (k 6= l) and pkk = −
∑
l6=k

pkl ,

thenÑp,+
k = ∅. Defineφk as in (b). Then condition(3.128)is equivalent to

∀ k ∈ F p : 1− φk ≥ 0 ,

and the inequalities(3.132)to (3.134)are equivalent to

τ λmin(T(k)) ≥ (1− φk)||A(k,k)||E (3.148)

∧ ∀ l ∈ P p,−k :

τ λmin(−A(k,l)) ≥
||A(k,l)||E ||A(k,k)||E∑

j∈Pp
k
||A(k,j)||E

(3.149)

∧ ∀ l ∈ P p,+k :

τ λmin(A(k,l)) ≥
||A(k,l)||E ||A(k,k)||E∑

j∈Pp
k
||A(k,j)||E

. (3.150)

Proof. The statements follow from (3.73) to (3.74), (3.136), (3.138) and (2.57)ff. by straightforward
calculations. �

Remark 3.41 If (−A(k,l)) > 0 holds, inequality (3.141) is equivalent to

τ ≥ cond(−A(k,l))

∑
j∈Ñp,−

k
||A(k,j)||E∑

j∈Pp,−
k

||A(k,j)||E
, (3.151)

analogously for the other inequalities. N

3.4.4.3 Comparison of the Block- andPPP -Interpolations

As can be expected, the “best” conditions emerge for the block-interpolation (3.91) and the
PPP -interpolation (3.103) withPPP being defined by (3.74) or by (3.75). This is because negative
and positive definite point-coupling matricesA(k,l) are distinguished there. However, for the
variants which treat allA(k,l) equally, the lower bounds forτ are comparable. Only these
cheaper variants are used for practical applications.

Regarding thePPP -interpolations, Corollary 3.3 reveals that variants (3.74) and (3.72), in
particularpkk = ||A(k,k)||, should be preferred if||A(k,k)|| is larger than

∑
j∈Ñp

k
||A(k,j)||E .
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Otherwise, variants (3.75) or (3.73) should yield better upper bounds. Since, in addition, the
last two variants ensurePPP being an M-matrix, but (3.73) is cheaper, this variant should be
chosen as a default for practical applications.

By comparing Corollaries 3.1 and 3.3, we can conclude that the conditions on the block-
interpolations and on the “corresponding”PPP -interpolations are quite similar. Hence, the
upper bounds for the two-level convergence rates should be similar for both interpolation
types, and it is problem-, that meansA-, dependent which set of conditions yields a smaller
lower bound forτ . However, keep in mind that all these convergence estimates are only
very rough upper bounds and rather “worst case estimates” since, for instance, geometric
information is not taken into account. In practice, the convergence is usually much faster
than predicted. It can be observed that block-interpolation andPPP -interpolation behave often
similarly. In addition, aPPP -interpolation is usually much cheaper to compute than a block-
interpolation and does not face technical problems. Therefore, we usually prefer thePPP -inter-
polation.
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Chapter 4

Software Issues -
The SAMG Library

In the preceding chapters, we have described our AMG strategies for solving PDE systems
from a methodical point of view. In particular, the range of applicability of the strategies and
their robustness have been discussed. This discussion will be continued in Chapter 5 for three
concrete practical applications. In this Chapter 4, we explain the realization of our strategies
within the Fortran90 librarySAMG [89] and finalize the discussion of the model problems.

SAMG has two faces. One one hand, it is a product-quality library of efficient AMG
approaches for solving matrices arising from different industrially relevant PDEs and PDE
systems. On the other hand, it provides a user-extensible, rich AMG environment for a flex-
ible testing of combinations of various different modules and for tailoring AMG approaches
to even more applications than those already handled efficiently.

The “standard” AMG components are discussed as well as several variants serving the
goal to increase their robustness, or to decrease their computational work or memory require-
ments. We especially show that SAMG provides highest flexibility for adaptations to various
situations arising in practice. We analyze the computational work and memory requirements
of the setup phase and one cycle and show that, in practice, they are usuallyO(N). We also
demonstrate that our AMG solvers exhibit reasonable “magnitude ofO(N)’s constants” re-
garding computational workand memory requirements. AMG approaches withaggressive
coarsening and GS smoothing used as preconditioners often turn out as reasonable compro-
mises for the overall efficiency. Typically, their memory requirements are approximately
equal to or even lower than 1.5 times the requirements for the standard one-level precondi-
tioner ILU(0) 1.

We start with an overview of SAMG. Section 4.1 outlines its key features and the basic
course of each AMG approach. In Sections 4.2 to 4.4, we concentrate on the three main
AMG components, i.e. coarsening, interpolation and smoothing. Section 4.4 also comments
on the usage of AMG as a preconditioner, and which one-level solvers are incorporated in
SAMG. For each of the general AMG strategies, the characteristic factors (complexities)
dominating the computational cost are discussed in Section 4.5. Finally, Section 4.6 presents
the performance of different AMG approaches applied to the model problems.

Remark 4.1 We are not going to describe the “real” implementation of SAMG on Fortran90
level. Due to the rich possibilities SAMG provides, only the most important features are de-
scribed. We concentrate on the principal methods and work out which “routines” the VAMG,

1This means thatcprec defined in Section 4.1.3 is approximately equal to or even smaller than 1.5.
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UAMG and PAMG approaches can use in common, and where different “routines” are nec-
essary. Detailed information on the installation and usage of the SAMG library and an ex-
planation of all of SAMG’s user parameters are given in the “SAMG user’s manual” [89].
N

4.1 Overview

SAMG is a modern, modular Fortran90 library of algebraic multigrid approaches2. It is the
successor of the Fortran90 library RAMG which, in turn, is the successor of the old Fortran77
code AMG1R5. Whereas the AMG approach described in the classical paper [71] has been
implemented in AMG1R5, RAMG is basically the realization of AMG described in [87] (see
also Section 3.2). RAMG’s extension to our current library SAMG incorporates our whole
AMG methodology, in particular our point-based strategy described in Chapter 3.4 with a
variety of different concrete primary matrices and interpolations.

Our overview of SAMG starts with a summary of its key features in Section 4.1.1. At the
end of Section 4.1.1, we emphasize the corresponding new features compared with SAMG’s
predecessor RAMG.

All our AMG approaches consist of two phases, a setup phase and a solution phase. In the
setup phase, the level hierarchy is constructed, the main parts of which are the construction of
coarsening and interpolation. In thesolution phase, standard multigrid cycles are performed
by means of a smoothing process and the constructed coarse level and interlevel transfer
operators. These two phases are outlined in Sections 4.1.2.1 and 4.1.2.2, respectively. In
Section 4.1.3, some additional definitions are made.

4.1.1 Key Features

4.1.1.1 Modularity, Adaptability, Flexibility, Special Features

SAMG’s realization is based on a modular concept. Each of the main components of an AMG
algorithm, that is smoothing, coarsening, interpolation, computation of the Galerkin opera-
tor, and coarsest-level solution, represents a separate “module”. The coarsening module, in
turn, consists of two or three modules, namely the definition ofPPP (only in case of a PAMG
approach), a sorting and a splitting process.

All modules are completely separated from each other, and each has a fixed task (for in-
stance the construction of interpolation) and a fixed type of output (for instance, an interpola-
tion operatorIFC), but consists of several concrete variants (for instance a direct interpolation
based on coordinates) of the respective AMG component. Moreover, in each module, a vari-
ant may be released only for one or two of our strategies (variable-, unknown- or point-based,
respectively) or may require additional data such as coordinates to be available.

The separation and clear interfacing has the important advantage that new variants can
be added quickly to a module when necessary, without touching the other modules. As a

2Clearly, by forcing the number of levels in the hierarchy to be one, also a variety of one-level solvers can be
selected. For details, see Section 4.4. Consequently, the SAMG library can even be regarded as a complete library
containing also classical one-level solvers.
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consequence, we can offer user interfaces for each of SAMG’s main parts to implement their
own variants and to adapt SAMG further to specific situations.

By combining proper modules, very different concrete approaches can be selected, with
or without the employment of additional data such as VU or VP mappings or coordinates.
This makes SAMG a complete and very flexible AMG environment, corresponding to the
general, flexible AMG methodology discussed in the previous chapter. However, it should be
stressed again that the variants have to be selected carefully: the natural technical limits as
well as the dependence on the concrete application have always to be borne in mind.

Special Features If a series of matrix equations with similar or even identical matrices shall
be solved, for instance for time-dependent and/or nonlinear problems, SAMG can be advised
to reuse parts of or even the whole setup. An example is given in Section 5.2.2.

In general, SAMG can be forced to exclude particular variables from the coarsening
process. For each variable, it can be specified whether it is forced to remain on the finest
level or stay in all levels. (see also vectoric set described below). Such an interven-
tion into SAMG’s setup phase is often useful. For instance, it provides simple and powerful
workarounds for cases where a PDE system with a small number of additional (algebraic)
constraints is to be solved, and the algebraic constraints can and shall be handled by (ILU-
type) smoothing and (BiCGstab or GMRes) acceleration only. An example is discussed in
Section 5.3.2. The last row of the respective matrices corresponds to an algebraic constraint
and has a zero diagonal. In the case of zero diagonals, it is usually necessary to force corre-
sponding variables to remain on the finest level. If necessary, they can also be excluded from
smoothing3.

If the input matrixA is positive definite, so are the coarser-level matrices (cf. Lemma
3.1), at least up to round-off. Practically, however, it might happen that some coarse-level
diagonals become (numerically) zero or even negative. For instance, this happens for the
semiconductor drift-diffusion systems discussed in Section 5.3.2. Besides the technical prob-
lems such exceptional matrix rows produce, AMG’s convergence usually suffers from their
occurrence. Ways to handle or avoid nonpositive diagonals are discussed in Appendix A.1.

SAMG features several user-interfaces. Already explicitly provided aresamg user coo
(see below),ic set , a new type of primary matrices, another coarsest-level solver and an
acces to SAMG’s message handler. For user-defined smoothing, coarsening or interpolation,
simply the corresponding controlling parameters and calling sequences would have to be
extended.

4.1.1.2 Data Structure

The matrix data are transmitted to SAMG in the so-called modifiedcompressed sparse row
format4 which consists of three vectors,ia(1: nv+1) , ja(1: nA) , a(1: nA) . nv denotes
the number of variables,nA the number of matrix entries stored. Ina andja the entries of
A and their column numbers are stored. The entries of the first row come first, followed

3This is, in particular, necessary in case of Jacobi or VGS smoothing. Depending on the concrete matrix and its
“arrangement”, BGS- or (M)ILU(T)-smoothing might be able handle them.

4CSR format, also called Harwell-Boeing format.
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by the entries of the second row, and so on. For eachi , ia(i) stores the beginning of
row i in a and ja , and we defineia( nv+1)= nA+1. It is a modifiedCSR format since
diagonals are stored first within a row (i.e.ja(ia(i))=i ). Except of the diagonal entries,
the off-diagonal entries can be stored in any order within a row.

For UAMG approaches, a VU mapping needs to be passed to SAMG, for PAMG ap-
proaches, a VU and a VP mapping. This can be done via vectorsiu(1: nv) andip(1: nv)
containing the mapping of the variable indices to the unknown and point indices, respec-
tively. For VAMG approaches, bothiu andip can be submitted as dummy vectors of length
1. For UAMG approaches,ip(1: nv) can be dummy. The order of the variables can be ar-
bitrary. In particular, an unknown-wise ordering is not necessary. When using a point-based
approach, bothiu(1: nv) andip(1: nv) have to be submitted and have to follow the fol-
lowing rule. Within ip , the values are not allowed to decrease. This means, the variables
have to be sorted pointwise with an increasing numbering of points. To avoid a renumbering
of the concrete point data, passed to SAMG by a simulation code, empty points, i.e.Pk = ∅
for somek, are allowed though. The order of the variables of a pointPk can bearbitrary.
Moreover, the number of variables may vary from point to point. This is very important since
it often occurs in practical applications (for an example, see Section 5.3).

Optionally, if (2D or 3D) coordinates shall be used, the user can provide a subroutine
called
samg user coo which returns, for eachvariable i, the coordinates of the corresponding
grid node.

As mentioned above, SAMG provides an interface for the user to explicitly force some
variables intoF orC. For this purpose, the user has to call an allocation routine for a vector
calledic set , and then to mark the corresponding variables by a set routine.

The five vectors mentioned, optionally the user-defined functionsamg user coo , op-
tionally the vectoric set , and, of course, control parameters (see the SAMG User’s Manual
[89]) are the maximum amount of data that have to be provided to SAMG.

Remark 4.2 With its easy-to-use interface, SAMG can simply be plugged into existing sim-
ulation codes regardless if they are written in Fortran95, Fortran77, C or C++. SAMG runs
on all platforms used today, ranging from Unix systems (tested on Compaq Alpha, IBM, Sun,
SGI, HP) over Linux (on Alpha as well as PC) to Windows systems, and is compatible to all
state-of-the-art compilers. N

Remark 4.3 Compared with RAMG, in particular the whole point-based strategy, the user
interfaces and the support of C and C++ have been added. Most of these features have been
added or substantially extended during the work on this thesis. New features of coarsening,
interpolation and smoothing will be mentioned in Sections 4.2 to 4.4. N

4.1.2 SAMG’s Two Phases

4.1.2.1 The Setup Phase

Fig. 4.1 outlines the general steps which are performed within SAMG’s setup phase. The
algorithm starts with a preparation of some auxiliary quantities and an initialization of pa-
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Figure 4.1: The main steps of SAMG’s setup phase.

rameters which control the different parts of the whole SAMG run. Then5 the recursive
process of constructing the level hierarchy begins, starting on the finest level, numbered by
index 1:

k = 1 , A1 := A , V1 := V .

For the current levelk, the coarsening is then constructed, i.e. theC/F -splitting of the set
Vk is computed. If a reasonable splitting cannot be determined successfully, the setup phase
is terminated, the current levelk is defined to be the coarsest level, and the solution phase
is entered, in which multigrid cycling between the finest level1 and the coarsest levelk is
performed.

Otherwise, if a newC/F -splitting for Vk has been constructed successfully, the set of
variables on the next coarser levelk + 1 is defined to be the setCk = C of coarse level
variables on levelk:

Vk+1 := Ck .

The algorithm continues with the computation of the interpolation operatorIkk+1 and, after-
wards, the computation of the Galerkin operator on levelk + 1:

Ak+1 := Ik+1
k AkI

k
k+1 . (4.1)

Remark 4.4 In SAMG, the restriction operatorIk+1
k is always defined to be the transpose of

interpolation, i.e.

Ik+1
k :=

(
Ikk+1

)T
.

5unless a one-level method has been selected by the user.
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However, it is constructed only temporarily when needed. N

Remark 4.5 There is one exception concerning the definition (4.1) of the coarse-level ma-
trix, namely UAMG’s variant (3.57). This variant is denoted by block-UAMG. N

The coarsening process and the construction of interpolation contain many degrees of free-
dom. However, their interplay as well as the properties of the employed smoother strongly
affect the performance of the coarse-level correction process. Moreover, the differences be-
tween variable-, unknown- and point-based approaches lie in the concrete forms of coarsening
and interpolation. Hence, in Sections 4.2 and 4.3 , we explain coarsening and interpolation
in more detail, in each case starting with the methods implemented for the variable-based
approach because they form the basis for the unknown- and point-based approaches.

4.1.2.2 The Solution Phase

In SAMG’s second phase, the solution phase, standard multigrid cycles of V-, F- or W-type
are performed. Details on these cycling types can be found in [94]. We have already men-
tioned in Section 3.2.5 that, although uniform V-cycle convergence cannot strictly be proved,
V-cycles are typically more efficient than the more expensive F- and W-cycles. Therefore, in
practice, we usually select the V-cycle.

The important degrees of freedom in defining the solution phase are the choice of

• the smoother,

• the type of cycling,

• the coarsest-level solver6,

• the accelerator.

In Section 4.4 all smoothers and accelerators available within SAMG are listed.

4.1.3 Additional Notation

In all graphs of this chapter, items in light grey mark features of SAMG which - compared to
RAMG - are new or substantially different, as has already been done in Fig. 4.1. We usually
omit level indices. The notation introduced in Chapter 2 is used, extended by the following
definitions.

Variable-based AMG is abbreviated by VAMG, analogously are UAMG and PAMG de-
fined. The notation for the concrete variants for coarsening, interpolation, smoothing and
acceleration are explained in Remarks 4.17, 4.21, 4.24, and 4.26.

For any matrixA, we will distinguish its sparsity pattern and its connectivity pattern.
The sparsity pattern Σs(A) is defined to be the set of index pairs(i, j) for which entries
aij of A are stored. The sparsity pattern represents a superset of theconnectivity pattern
Σ(A) = Σc(A), that is, the distribution of its nonzero entries.

6Variants are not explicitly discussed here. Sparse Gaussian elimination is used as a default and has been used
for all numerical tests discussed in this thesis.



4.2 Coarsening 127

Thecardinality of a setS is defined to be the number of elements ofS and denoted by
|S|. TheA-complexity cA, thegrid complexity cg and theaverage “stencil size”(i.e. row
length)sa over all levels are defined as

cA :=
∑nlev
k=1 |Σs(Ak)|
|Σs(A1)|

, cg :=
∑nlev
k=1 |Vk|
nv

, sa :=
∑nlev
k=1 |Σs(Ak)|∑nlev
k=1 |Vk|

=
cA
cg

|Σs(A1)|
nv

,

wherenlev denotes the number of levels in the AMG hierarchy including the finest level.
Analogously, we define thePPP -complexity cPPP and thepoint complexity cp. sp denotes the
average number of interpolatory variables per F-variable. Note that|Σs(A1)| = O(nv)
for all application classes we have in mind here. In case of PAMG, the computational costs
will be seen to be (principally) proportional to the sum of the memory needed for theAk and
(unlessPPP is a part ofA) thePPP k. Hence, we define theAMG-complexity as

cAMG :=
∑nlev
k=1

(
|Σs(Ak)|+ |Σs(PPP k)|

)
|Σs(A1)|

.

In order to compare the memory requirements of an AMG method with the standard one-level
preconditioner ILU(0), we define thepreconditioner’s complexity as

cprec := memAMG/memILU

where memAMG (memILU) denotes the memory necessary for the AMG-method (the ILU(0)
method) stand-alone including the memory necessary for storingA.

4.2 Coarsening

The first setup step in creating a new level is the coarsening process. The corresponding
C/F -splitting constructed in the coarsening process should be suitable for the interpolation
to be constructed in the next step.

In Section 4.2.1, we demonstrate that a basic, so-calledstandard coarseningalgorithm
[71] for VAMG can heuristically be derived from Theorem 3.5 (which indicates the quality
of direct variable-based interpolation for weakly diagonally-dominant Stieltjes matrices).

Standard coarsening as described in Section 4.2.1.1 is the classical coarsening for the
variable-based case. It is particularly based on the assumption that the matrix does not contain
largepositiveoff-diagonal entries. However, for many matrices arising in practice, this does
not hold. Section 4.2.1.2 indicates appropriate extensions of standard coarsening to deal with
such situations.

For typical applications, standard coarsening gives ratios|C|
|V| between 0.25 and 0.5. Re-

garding the efficiency of the overall approach, it is often worthwhile to reduce this further.
For this purpose,aggressive coarseninghas been introduced in [48]7. The explanation of this
accelerated coarsening strategy completes Section 4.2.1.

Also in the core part of the coarsening phases for the unknown- and point-based ap-
proaches, variable-based coarsening algorithms are used, applied to suitable matrices. This
is discussed in Sections 4.2.2 and 4.2.3.

7based on an idea in [71].
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Figure 4.2: Overview of SAMG’s coarsening process.

Remark 4.6 Note that for coordinates-based coarsening a point-based approach has to be
chosen. Point-based coarsenings for scalar problems are discussed in Section 4.2.3.2N

The overall coarsening phase of SAMG can be depicted as shown in Fig. 4.2. The variable-
based coarsening scheme - including all features mentioned above and discussed in Section
4.2.1 - is written in function-like style asCOARS(V,M), whereV denotes the set of variables
which shall be split andM the matrix the coarsening algorithm is applied to.

4.2.1 Variable-Based Coarsening

We now recall heuristic criteria for the definition ofC/F -splittings and appropriate algo-
rithms for their computation. Since the quality of aC/F -splitting cannot be seen indepen-
dently of the interpolation, our criteria are motivated by “consequences” of conditions on
interpolation such as (3.33).

We start with the “ideal case” of symmetric essentially positive type matrices and their
special case Stieltjes matrices since the development of thestandard coarsening algorithm
[71] has been oriented on the last case.

4.2.1.1 The Standard Coarsening Algorithm

Recall from Theorem 3.5 theτ -property ofdirect interpolation for symmetric essentially
positive type matrices: ∑

j∈Pi

|a−ij | ≥
1
τ

∑
j∈Ni

|a−ij | (4.2)
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for eachi ∈ F . Note thatdirect interpolation meansPi ⊆ C ∩N−
i .

The magnitude ofτ directly determines the upper bound
√

1− σ/τ for convergence of
the two-level methodSK (see Theorem 3.3). Obviously, the smallerτ(> 1), the smaller is
this upper bound. On the other hand, the smallerτ , the larger the number of variablesj ∈ Pi
for eachi ∈ F has to be in order to fulfill the inequality above. Because ofPi ⊆ C, this is
directly related to the complexitiescg andcA.

One extreme case, namelyPi = Ni, can be seen to lead to a direct solver (see [87]).
However, this approach is very expensive and thus not practical at all. The other extremum,
|Pi| = 1 for all i, essentially leads to piecewise-constant interpolation8. Generally, this is too
inaccurate to be used directly. We seek for a compromise between both extrema which yields
both a sufficient interpolation and an acceptable complexity.

The sum on the left-hand side of inequality (4.2) “profits” from matrix entriesaij < 0 the
absolute value of which are large compared with the other off-diagonal entriesaij < 0. Such
couplings are said to bestrong. To be more concrete, we recall from (3.24) that a variablevi
is strongly (negatively) coupled(strongly n-coupled) to a variablevj if the following holds

−aij ≥ εstr max |a−ik| (4.3)

with a εstr ∈ [0; 1]. Note that the relation of being strongly coupled is not symmetric.

Remark 4.7 A standard value forεstr is 0.25. Sometimes different values may make sense.
An example where a largerεstr is one possibility to find the correct direction of smoothness
has been discussed in Section 3.2.3.4. However, this is not typical. N

Remark 4.8 In general, if coarsening is based on this notion of strong connectivity, posi-
tive off-diagonal entries, if any, should be small since we declare all positive connections,
regardless of size, as weak here. N

Obviously, we can efficiently decreaseτ only by putting variablesj corresponding to strong
couplings inPi. Since errors are algebraically smooth in the direction of strong negative cou-
plings (forA ∈ Awdd), this essentially means that coarsening is in the direction of smoothness
then.

SAMG’s first step in the coarsening phase is the computation of the setSi of strong cou-
plings for each variablei ∈ V. Given a concrete definition of strong coupling, the definition
of Si is:

Si := {j ∈ V| i is strongly coupled toj } . (4.4)

The set of all(i, Si) defines apattern of strong and weak couplings (SW-pattern)of A.
This SW-pattern is not only needed for constructing the setC but also for computing the
interpolation, as will be discussed in Section 4.3. Computing the SW-pattern is performed by
“sorting” the entries within each matrix row. A correspondingSW-sort algorithm, applied
to a matrixM , is denoted in function-like style asSORT(M ) and returns the SW-pattern of
M . If the sorting is based on (4.3), we obtain thestandard SW-sort algorithm, denoted by
SORTstd(M).

8and corresponds to what is done in aggregation-based AMG.
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Remark 4.9 During this algorithm, the following two degenerate cases have to be han-
dled. Variables with couplings only topositiveoff-diagonal entries are marked asforced
C-variables (FC-variables)in the standard SW-sort algorithm. As already mentioned in Re-
mark 3.6, variables corresponding to strongly diagonally dominant9 rows will always become
F-variables with “empty”interpolation formulas (3.23):wij ≡ 0. In general, such variables
are calledforced F-variables (FF-variables). Obviously, all other potential F-variables will
have at least one strong n-coupling so that theirSi 6= ∅. N

According to the considerations made above and corresponding discussions in Section 3.2.3,
the setsPi of interpolatory variablesshouldhave the following properties:

P1: Necessary fordirect interpolation:|Pi| > 0, that is, for eachi ∈ F , there exists at least
one variable from which it can be interpolated.

P2: EachPi ∩ Si should be reasonably large to ensure a smallτ .

P3: The variables inPi should “surround” the variablevi in order to provide the basis for a
reasonably good interpolation. Geometrically speaking, one-sided interpolation should
be avoided as much as possible10.

P4: The |Pi| should be as small as possible in order to reduce computational cost and to
preserve sparsity.

Recalling that allPi ⊆ C 11, the following set of heuristic criteria for constructing theC/F -
splitting “corresponds” to the set P1-P4:

C1: (Fordirect interpolation:) Each F-variablei should have a strong connection to at least
one C-variable:Si ∩ C 6= ∅.

C2: EachC ∩ Si should be reasonably large.

C3: C-variables should “surround” the F-variables which interpolate from them.

C4: |C| should be as small as possible.

In particular, criteria C2 and C4 cannot both be satisfied at the same time so that a suitable
compromise is necessary. This can be achieved by the following criterion:Prefer variables
with many variables strongly coupled tothemto be put intoC. A measure of the importance
of a variablei being inC is therefore the cardinality of thesetSTi of its strong transpose
couplingsdefined as

STi := {j ∈ V| i ∈ Sj } . (4.5)

Note thatj ∈ STi does not implyi ∈ STj in general. The above criterion can now be
formulated as follows:

C5: Variables with large|STi | should be put intoC.

9defined via one of SAMG’s user parameters corresponding to theδ in (2.26), applied to one row at a time.
10for illustrations, see [87].
11Implications of this and other cases are discussed in Sections 4.2.1.3 and 4.3.1.
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In practice, the accuracy of interpolation (in the sense of C3, in particular) and thus the con-
vergence and theh-independence of completeV -cycles can often substantially be improved -
without sacrificing complexity - by arranging theC/F -splitting carefully. As a rule of thumb,
the set of C-variables should approximately build a set with the following properties:

• The set of C-variables should build amaximally independent set (MIS). “Indepen-
dent” means that the C-variables are not strongly coupled among each other:

C6: For variablesi, j ∈ C we should havei 6∈ Sj andj 6∈ Si: C shall be anindepen-
dent set.

“Maximally independent” means that, if any of the F-variables was made a C-variable,
the independence of the set would be violated.

• Among the sets with the MIS-property, choose amaximal one. Such a set is said to
have themax-MIS property .

This can be ensured to a large extent by using the coarsening algorithm presented now.
Thestandard splitting algorithm 12 is a reasonable compromise which emphasizes the

“quality” of interpolation more than a reduction of the grid complexity. The algorithm is
depicted in Fig. 4.3. In function-like style, it is denoted bySPLIT std( V,SORT(M )) and
returns the setsC andF . Here,V is the index set which will be split intoC andF , and
SORT(M ) is the SW-pattern of the matrixM the splitting is based on. This isA in VAMG,
each of theA[n,n] in UAMG, andPPP in PAMG.

The splitting process is based on the followingmeasure of importanceof a variable to
become a member ofC at the current stage of the algorithm:

λi := |STi ∩ U |+ 2|STi ∩ F | (4.6)

whereU denotes the set of variables which are “undecided” yet. Note that we haveV =
U ∪̇C ∪̇F at any time. Obviously, at the beginning,λi is largest for variables with many
U-variables strongly coupled to them13. Dependent variables (dependent in the sense of
criterion C6) are put inF . At later stages of the coarsening process, variables are favored
with many already decided F-variables strongly coupled to them14. Note that only at the
beginningλ has to be computed “globally”. In subsequent steps, only local updates are
necessary. That is, for instance, if the status of a variable has changed from U to F, its own
λ-value is reset to zero and, for allj ∈ Si, theλj-value is raised by 1.

Standard splitting thus favors variables with a large|STi | to become C-variables according
to criterion C5. At the same time, it aims at arranging theC/F -splitting in such a way that
the C-variables are independent from each other (criterion C6) and even approximately build
a max-MIS set. Hence, standard coarsening aims at buildingC/F -splittings with themax-
MIS-property . Practice has shown that this often fulfills criterion C3, at least approximately.

Remark 4.10 None of the C-variables is strongly coupled to any of those C-variables created
prior to itself in the coarsening process described above. However, since the relation of being

12introduced in [71] as “preliminary C-variable choice” and called “standard coarsening process” in [87].
13towards criterion C5 and, indirectly, criteria C2 and C4 with a preference of C4.
14again towards criterion C5 and, indirectly, criteria C2 and C4, but with a preference of C2 now.
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Figure 4.3: The standard splitting algorithmSPLIT std.

strongly coupled is not necessarily symmetric, criterion C6 does not necessarily hold in a
strict sense. N

Remark 4.11 Before the last step, namelyF := F ∪ U , of SPLIT std (see Fig. 4.3) is
performed, it may indeed happen that the status of some variables remains “undecided”, that
is the setU is not empty. It is easy to see that such remaining variablesi have all the following
properties:

• λi = 0. Therefore, no F-variable is strongly coupled toi, and the undecided U-
variables are not strongly coupled among each other.

• i is not strongly coupled to a C-variable sincei would have become an F-variable
otherwise.

• i is strongly coupled to at least one variable since it would have become an FF-variable
otherwise.

It follows thati can have strong connections only to F-variables and is strongly coupled to at
least one of them. We have at least the following two possibilities now. We can put each of
the remainingi ∈ U intoC, or we can put each of them intoF and interpolate it from the F-
variables to which it is strongly coupled. The latter is done inSPLIT std. How interpolation
formulas for such variables are created, is discussed in Section 4.3.1.1. N

We now define thestandard coarsening algorithmfor a matrixM as follows:

COARSstd := COARSstd(V,M) := SPLIT std(V,SORT(M))
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SORTstd is one possibility for an SW-sort algorithmSORT. An important extension, used as a
default in SAMG, is discussed in the following section. Important other variants forCOARS,
implemented in SAMG, are discussed thereafter.

4.2.1.2 Treatment of Positive Couplings

In practice, we often have to deal with matrices which are not inAess. In fact, they are often
not symmetric, and in many cases at least some large positive couplings occur. Since the stan-
dard SW-sort algorithm explained above defines the the strength of connectivity according to
(4.3),all positive couplings, regardless of their size, are defined as weak. Convergence might
suffer considerably from completely ignoring positive off-diagonal entries, in particular if
they are of comparable size or even larger than the negative ones.

One reason may be that it is no longer sure that error will be smooth in the direction of
large negative connections. A simple remedy for this important case (for an example, see
Section 3.2.3.4) is as follows: SAMG defines a positive coupling as large if

aij > εlpos max |a−ik| . (4.7)

The threshold valueεlpos can be defined by the user, a typical value being0.2 which is used
in SAMG as a default. Now, before a decision on the strength of connectivity is made,
large positive couplings are eliminated (see Section 3.2.3.4). That is, for eachi, we (locally)
eliminate all strong positive couplingsaij by means of thej-th equation:

ej → −
∑
k∈Nj

ajkek/ajj . (4.8)

A new equation forei results:

âiiei +
∑
j∈N̂i

âijej = 0 with N̂i = {j 6= i | âij 6= 0} .

After this elimination,
−âij ≥ εstr max |â−ik| (4.9)

is used to decide which couplings are strong. Other approaches, realized in SAMG, taking
positive couplings into account are described in [89].

4.2.1.3 Aggressive Coarsening

For many (scalar) PDE applications, only a few nonzero entries per matrix row are typical.
Unfortunately, in such cases, standard coarsening and its modifications, as discussed above,
might produceC/F -splittings with a grid size reduction of only|C|/|V| ≈ 0.5. Usually,
this results in Galerkin matrices for the second level which have more entries than the finest-
levelA. For instance, as shown in [87], standard coarsening for the isotropic 7-point stencil
on a regular 3D mesh produces a first-levelC which corresponds to the “black” points of a
“red-black” grid, so that the Galerkin operator on the second level corresponds to a 19-point
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stencil, and the second-level matrix contains approximately 1.36 times more entries than the
finest-level matrixA. Although subsequent coarsening will typically become faster, because
the enlarged matrix typically contains “more” strong connections, the first coarsening step
significantly influences the overall complexitiescg andcA.

The main reason for such an insufficient coarsening is that the algorithm discussed above
relies ondirect strong connections, that is strong connections of F- to C-variables. However,
an incorporation of theindirect strong connections, that is strong F-to-F connections, can
substantially reduce the complexity. For a demonstration, consider the standard 5-point sten-
cil (2D-Laplace). Standard geometrich → 2h coarsening would give a reasonable grid size
reduction of|C|/|V| ≈ 0.25. In the resulting grid, half of the F-points do have strong cou-
plings only to other F-points. However, all F-points can be interpolated if we allow bilinear
interpolation. This means, first all F-points with a strong connection toC will be interpolated,
afterwards the remaining F-points from their strong connections toF .

An algebraic analog and extension of this process is the reduction of complexity by means
of so-calledaggressive coarsening15. As indicated above, we extend the definition of strong
connectivity to also include variables which are not directly coupled. In SAMG, theconcept
of long-range strong connections[71] is used: A variablei is said to bestrongly coupled to
a variable jjj along a path of lengthlll if there exists a sequence of variablesi0, i1, . . . , il with
i = i0 andj = il such thatik+1 ∈ Sik for k = 0, 1, . . . , l − 1. With given valuesp ≥ 1
and l ≥ 1, we then define a variablei to bestrongly coupled to a variablejjj w.r.t. (p, l)(p, l)(p, l)
if at leastp paths of length≤ l exist such thati is strongly coupled toj along each of these
paths (in the above sense). However, it usually does not pay to exploit strong connectivity in
this generality. The cases(p, l) = (2, 2) and(p, l) = (1, 2) have turned out to be the most
efficient so that only these two variants are considered here.

For the implementation, theset of strong couplings w.r.t.(p, l)(p, l)(p, l),

Sp,li := {j ∈ V | i strongly coupled toj w.r.t. (p, l)} (4.10)

might directly be used instead ofSi in SPLIT std. But even forS2,2
i andS1,2

i , this would
require a substantial extra overhead because the computation and storage of the complete
connectivity information contained inSp,li and also its transpose(Sp,li )T are necessary for
eachi. However, basically the same coarsening can be achieved by applying the standard
coarsening algorithmCOARSstd twice (for l = 2) instead. That is, aggressive coarsening
COARSagg proceeds as follows:

1. Carry outSPLIT std( V,SORT(A)) .

2. Only the resulting set of C-variables is thinned out further. For that purpose, we define
strong n-connectivity only between the C-variables (via neighboring F-variables), that
is, for eachi ∈ C, (4.10) is replaced by

Ŝp,li := {j ∈ C | i strongly coupled toj w.r.t. (p, l)} .

With these sets constituting the new SW-patternSORTC for the “old” C-variables
the procedureSPLIT std(C,SORTC) is applied now. The resulting set of “new” C-
variables will then be used as the set of variables on the next coarser level.

15together with the so-calledmulti-pass interpolation which is explained in Section 4.3.1.3.
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In the following, we refer to the aggressive coarsening strategies based onŜ1,2
i andŜ2,2

i as
A1- andA2-coarsening, respectively.

Remark 4.12 It hardly ever pays to employ aggressive coarsening on more than the finest
level since on coarser levels standard coarsening is usually fast enough. Clearly, A1- is faster
than A2-coarsening. Illustrations of both types are shown in [87]. Note that generally A2-
coarsening is effective only in (at least) “plane-wise” isotropic areas while A1-coarsening is
also effective in strongly anisotropic parts of the problem. For the numerical tests reported in
this thesis, always the A1-variant has been used. N

Remark 4.13 In order to show the differences between standard (“std.”) and A1-coarsening
(“A1”; only on the finest level), we summarize values forcg and cA as presented in [87]
for several typical scalar applications (1 = 2D diffusion problems on structured grids, 2 = an
industrial test case from 2D CFD simulation (pressure-correction method), 3 = two industrial
test cases from 3D CFD simulation (pressure-correction method), 4 = 3D diffusion problems
on unstructured grids with strongly discontinuous coefficients16):

(std.) (A1)
application class cA cg cA cg

1 ≈ 2.4 ≈ 1.7 ≈ 1.5 ≈ 1.2
2 ≈ 2.4 ≈ 1.7 ≈ 1.4 ≈ 1.2
3 ∈ [ 2.8, 3.4] ∈ [ 1.5, 1.6] ∈ [ 1.4, 1.5] ∈ [ 1.1, 1.2]
4 ∈ [ 2.5, 2.9] ∈ [ 1.6, 1.8] ∈ [ 1.4, 1.8] ∈ [ 1.1, 1.3]

4.2.2 Unknown-Based Coarsening

The coarsening schemeCOARSfor the variable-based case can be employed for the unknown-
based case as well, with all of its features. However, as discussed in Section 3.3.1.2, the
unknowns are coarsened separately. Within SAMG, this means thatCOARS(V[n], A[n,n]) is
performed for eachn = 1, . . . , nu separately (see Fig. 4.2).

An important characteristic of this procedure is that during the coarsening phase all un-
known cross-couplings are completely ignored, regardless of sign and size. The range of
applicability of UAMG has been discussed in Section 3.3.3. If applicable, an advantage is
that unknown-based coarsening is among the cheapest coarsenings for the system’s case.

Remark 4.14 It should be noted that the submatricesA[n,n] are never explicitly set up in
SAMG. Instead, the vectoriu is used to identify the corresponding matrix entries. N

4.2.3 Point-Based Coarsening

We recall from Section 3.4.2 and Fig. 4.2 the basic steps of coarsening in case of PAMG
approaches, namely the setup of the primary matrixPPP and point-coarsening. All variants
implemented in SAMG for the setup ofPPP are described in Section 4.2.3.1. Important remarks
on SAMG’s implementation of point-coarsening are made in Section 4.2.3.2. Also the special
case of point-coarsening for scalar problems is discussed there.

16[87] presents results, e.g., for a test case from industrial oil reservoir simulation based on a streamline method.
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4.2.3.1 Definition of the Primary Matrix

Connectivity and Sparsity Pattern ofPPP A primary matrix suitable for the problem which
shall be solved should reflect two things, namely, which points are connected, and how strong
these connections are. Which points are connected is described by theconnectivity patternof
PPP . As discussed in Section 3.4.2.1, several such patterns can be considered. In SAMG, the
maximalor anunknown-patterncan be chosen. Formally, then-th u-pattern can be selected
only if it is completein the sense that then-th unknown is represented at all points.

It has to be noted that, in SAMG, patterns are actually derived from thesparsity patternof
the matrixA and are only sparsity patterns,Σs(PPP ), themselves. That is, they might contain
zeros and are thus only supersets of the actually desired connectivity patternsΣc(PPP ). An
obvious drawback is that zero entries stored inA or PPP waste memory. However, searching
and expunging zeros fromA would mean extra computational effort and an interference in
the data structure and is therefore left to the user. Ideally, the two types of patterns coincide.

Implemented Types of Primary MatricesPPP In Section 3.4.2, several types of primary
matrices have been introduced, and areas of applicability have been discussed for each of
them. The following list shows which types of primary matrices can automatically be con-
structed by SAMG.

• norm-based primary matrix: According to the discussions in Sections 3.4.2.3 and
3.4.4, the variants (3.72) and (3.73),

pkl = −||A(k,l)|| and pkk = ||A(k,k)|| (4.11)

and pkl = −||A(k,l)|| and pkk = −
∑
l 6=k

pkl (4.12)

respectively, have been implemented. Selectable are the maximum, row sum or Schur
norm. These variants and norms are favored because the computation of the corre-
sponding entriespkl ofPPP is cheap and much cheaper than for variants (3.74) and (3.75)
or for more expensive matrix norms as, for example, the Euclidean matrix norm. In ad-
dition, possible problems with non-squareA(k,l) are avoided.

• coordinates-based primary matrix: Two variants are implemented. The entries can
be computed based on distances or positions of the points. The corresponding formu-
las have been described in Section 3.4.2.4. The only prerequisites for both variants are
that (two- or three-dimensional) coordinates are available for all variables, and that one
of SAMG’s user-accessible subroutines,samg user coo , provides these data accord-
ingly.

• unknown-based primary matrix: This is the simplest type possible. SincePPP =
A[n,n] (for an1 ≤ 1 ≤ nu), PPP needs not to be computed or stored additionally (see
Section 3.4.2.2). The only technical requirements for thisPPP are that then-th unknown-
pattern has been chosen, (i.e.n has been chosen to be the primary unknown), and that
the underlying connectivity pattern is complete. It depends on the application whether
such a simple primary matrix makes sense.
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The next paragraph describes how the user can provide a primary matrix to SAMG
himself.

User-Provided Primary Matrix As has been mentioned in Section 3.4.2.5, the user him-
self can provide any reasonable primary matrix to SAMG. There are two ways to submit the
corresponding data.

• One way is to augment the original matrixA by an(np × np)-matrixA[nu+1,nu+1]

(see Fig. 4.4), and the vectorsv andb by vectorsv[nu+1] and (an arbitrary)b[nu+1]

of lengthnp. Additionally, thek-th new variable must be attached to pointPk (by
augmenting the vectorip correspondingly), and the new variables must be attached to
an artificial unknown with numbernu + 1 (by augmenting the vectoriu ), so that the
resultingn + 1-th u-pattern is complete. The new unknown can then obviously serve
as a primary unknown and is called thedummy unknown.

(a) (b)

Figure 4.4: An augmented system: The “black part” represents the original matrixA (already
point-wise ordered), the “part in light grey” the submatrixA[nu+1,nu+1] belonging to the
dummy unknown. Shown are the augmented system (a) before and (b) after a point-wise
ordering.

In the current SAMG realization, the augmented system must be reordered point-wise,
as in Fig. 4.4(b), before a point-based SAMG approach can be applied. Then, we can
simply chooseA[nu+1,nu+1] to be the primary matrix.

Remark 4.15 Since the dummy unknown does not have couplings to other unknowns,
it is possible and natural to exclude it from the solution phase and, in particular, from
the computation of residuals in order to avoid misleading results. This corresponds
to applying the solution phase only to the original matrixA. To use this exclusion
process, we just have to declare the unknownnu + 1 to be “dummy” by setting an
SAMG parameter properly. N

• The second possibility to provide a primary matrix to SAMG is to implement a new
setup routine forPPP . SAMG provides a corresponding user-interface. In this case, not
onlyA[nu+1,nu+1] must be defined, but also all coarse-level primary matrices.



138 Chapter 4 Software Issues - The SAMG Library

Remark 4.16 Note that internally defined primary matrices (e.g. norm- or distance-based)
are usually constructed “from scratch” on each level. Therefore, such coarse-level primary
matricesPPP k are hardly ever identical to the corresponding Galerkin operators which depend
onPPP 1 and the interpolation. In general, this is the main difference between an SAMG ap-
proach with internally definedPPP k and an approach where SAMG is applied to a system which
has “physically” been augmented by the finest-level matrixPPP 1. N

4.2.3.2 Point-Coarsening

Point-coarsening consists of coarsening the set of pointsVp by means ofCOARS(Vp, PPP )
and transferring the resultingCp/F p-splitting to the setV to obtain itsC/F -splitting. All
variants implemented for variable-based coarsening (see Section 4.2.1) can also be employed
for COARS(Vp, PPP ) .

Thetransfer then proceeds in two steps. In the first step, all variables belonging to points
in Cp (F p) are put intoC (F ). In the second step, it is checked whether some variables
shall become (additional) forced F- or forced C-variables. This can be the case ific set
has been set correspondingly by the user, or if an MU-interpolation has been selected. In the
latter case, an SW-pattern forA has been computed, and theSORT(A) algorithm may have
returned (additional) forced C- or F-variables. If, according to such additional information,
a variable shall be forced intoF , this variable - but not automatically the whole point - is
forced intoF . However, if a variable shall be forced intoC, the whole point is forced intoC.
This takes precedence over possible forced F-variables.

Also in the special case ofscalar problems, a distance-based or position-basedPPP can
be chosen. Possible applications include reaction-diffusion equations (cf. Section 3.10). It
should be noted that a norm-basedPPP does not make sense since it would only result in flipping
signs of all positive off-diagonal entries. However, special variants sorting out or modifying
positive off-diagonals might be appropriate for special applications and can be implemented
via the user interface.

Remark 4.17 (Notation): The type of coarsening used - “std” or “agg” - is added as first
parameter in the list defining the AMG approach, e.g. VAMG(std,. . . ) for variable-based
AMG with standard17 coarsening, UAMG(agg,. . . ) for an unknown-based variant with ag-
gressive coarsening. In the case of a point-based approach, we add the type of primary matrix
before the “type” of coarsening. We write “A[n,n]” for PPP = A[n,n], “ns” for norms (3.73),
“nf” for norms (3.72), “dist” for distances, and “pos” for positions18 . Example: we write
PAMG(ns,std,. . . ) for PAMG with a primary matrix based on norms (3.73) and standard
coarsening. N

17Note that positive off-diagonals are treated as described in Section 4.2.1.2.
18In the numerical tests presented, we only use variant A1 in case of aggressive coarsening and only on the finest

level and always choose the maximal pattern for allPPP except ofPPP = A[n,n].
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4.3 Interpolation

After having computed theC/F -splitting for levelk successfully, the algorithm proceeds
with constructing the interpolation formulas for all F-variables. An overview of the interpo-
lation process is depicted in Fig. 4.5. It shows that the main branching is due to the overall
type of AMG approach employed, that is variable-, unknown- or point-based. Figs. 4.5
and 4.6 indicate that in all three branches the same “scheme”VINT( F , C,t pat,t weights)
is employed19. VINT computes interpolation formulas for a givenC/F -splitting, based on
an SW-patternSORT(M ) for a matrixM (specified byt pat=M ), and with interpolation
weights of the typet weights.

Figure 4.5: Overview of interpolation.

In the following section, we explain interpolation schemes for VAMG and thus directly the
main features ofVINT . Afterwards, only the interpolation schemes for PAMG need to be
discussed in more detail.

4.3.1 Variable-Based Interpolation

In this section, we assume for simplicity that we want to compute an interpolation operator
for our basic systemAv = b in case of a variable-based approach. For other matrices, for
exampleA[n,n] orPPP , all possibilities discussed here work analogously.

All variable-based interpolation schemes considered in this thesis are derived from the
following basic formulas for the interpolation weights,

wij =

{
−αiaij/aii (j ∈ P−

i )
−βiaij/aii (j ∈ P+

i )
(4.13)

with αi =

∑
j∈N−i

aij∑
j∈P−i

aij
and βi =

∑
j∈N+

i
aij∑

j∈P+
i
aij

. (4.14)

19VINT stands forvariable-basedinterpolation.
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These formulas have been derived from theτ -properties (3.38) and (3.39) in Section 3.2.3.
The different schemes mainly differ in the way strong F-to-F couplings are treated. In Sec-
tions 4.3.1.1 to 4.3.1.3, the variants implemented in SAMG are explained, starting with the
simplest variant, the so-calleddirect interpolation, continuing with(extended) standard in-
terpolationand concluding withmultipass interpolation. Afterwards, possibilities to incor-
porate other kinds of interpolation weights, for example based on coordinates, are explained.
The realization of different means to improve efficiency, namely smoothing of interpolation,
scaling and truncation, is explained in Section 4.3.1.5.

Remark 4.18 It should be noted in advance that in case of aggressive coarsening only multi-
pass interpolation can be used. N

4.3.1.1 Direct Interpolation

Direct interpolation assumes that theC/F -splitting has been constructed by means of stan-
dard coarsening. At the beginning, the setsPi of interpolatory variables are set to

Pi = P−
i ∪ P+

i with S−i = Si ∩N−
i , S+

i = Si ∩N+
i , (4.15)

P−
i = S−i ∩ C , P+

i = S+
i ∩ C , (4.16)

based on the setsSi constructed bySORT. Then, the interpolation weights are directly com-
puted by means of the equations above. Due to the definition of the setsP−

i andP+
i , the

interpolation formulas (4.13) are well-defined ifPi 6= ∅. However, two exceptional cases can
arise for particular F-variablesi (see also Remarks 4.9 and 4.11 in Section 4.2.1.1):

• Pi = ∅ and i is an FF-variable. Forced F-variables receive an empty interpolation
formula.

• Pi = ∅ andi is not an FF-variable. Such a variable is calledexceptional F-variable
(XF-variable). It has at least one strong F-to-F coupling. These are used for inter-
polation. Hence, the computation of the interpolation formula is postponed until all
regular F-variables have been treated. Then, analogously to (4.8), we (approximately)
eliminate allej with j ∈ Si ⊆ F in the equation

aiiei +
∑
j∈Ni

aijej = 0 (4.17)

by means of the correspondingj-th equations. By applying (4.13) to the resulting
equation, but withP−

i = S−i ⊆ F andP+
i = S+

i ⊆ F , the interpolation weights for
the XF-variables are then computed.

Remark 4.19 If an XF-variable has strong connections only to FF-variables, an empty
interpolation formula would result. Such variables are forced into C. This is also the
case for XF-variables which have strong connections only to F-variables for which no
interpolation formula has been computed at the current stage of the algorithm.N
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4.3.1.2 (Extended) Standard Interpolation

A straightforward enhancement of direct interpolation is the inclusion of allstrongF-to-F
couplings in the construction of the interpolation operator. This is calledstandard interpo-
lation - “standard” because it is more robust and usually more efficient than direct interpo-
lation. Standard interpolation is used as a default in SAMG (unless aggressive coarsening
has been selected). It assumes that theC/F -splitting is obtained from standard coarsening
and is defined in the following way. Analogously to the treatment of XF-variables in direct
interpolation, we first (approximately) eliminate allej with j ∈ F si := F ∩Si in the equation
(4.17). By definingPi as the union ofCsi := C ∩ Si and allCsj (j ∈ F si ), we now define
interpolation analogously to (4.13).

Extendedstandard interpolation then denotes the variant whereall F-to-F couplings are
taken into account, regardless if strong or weak. Advantages of theseindirect interpolations
have already been discussed in Section 3.2.3.5. The incorporation of couplings to F-variables
increases the quality of the approximation of (4.17). In addition, it contributes to the objective
of having F-variables nicely “surrounded” by interpolatory variables.

4.3.1.3 Multi-Pass Interpolation

The previous types of interpolations require that theC/F -splitting has been obtained from
standard coarsening. In particular, they require that each F-variable which is not an FF-
variable has at least one strong connection. Moreover, for computing the interpolation for-
mula for an F-variablei which has strong connections only to F-variables, they require that
at least for one of these F-variables a “regular” interpolation formula has been constructed
before. Otherwise, this F-variablei is forced intoC (see also Remark 4.19 above). Even in
case of standard coarsening, depending on the concreteC/F -splitting (including user-forced
F- or C-variables) and the order of the variables, such situations can happen.

Multi-pass interpolation has been designed to “release” the requirements on theC/F -
splitting and the order of the variables. If aggressive coarsening has been chosen, SAMG
enforces the use of multi-pass interpolation. It proceeds as follows:

1. First pass: For all i ∈ F for whichC ∩ Si 6= ∅ holds, use direct interpolation and
define the setF ∗ to contain all these variables. IfF = F ∗, stop the process.

2. Next pass: For all i ∈ F \ F ∗ for which F ∗,s
i := Si ∩ F ∗ is not empty, we base

their interpolation formulas on those already computed forj ∈ F ∗,s
i . For this purpose,

we replace in thei-th equation (4.17) allej with j ∈ F ∗,s
i by the interpolatory term∑

k∈Pj
wjkek. This leads to a new equation forei. DefiningPi as the union of all

Pj for j ∈ F ∗,s
i , the interpolation formula forei is then computed as in case of stan-

dard interpolation. UpdateF ∗ by all variablesi which have obtained an interpolation
formula now.

3. If F = F ∗ stop, otherwise go back to step 2.

Note that, in order to preserve the locality of interpolation, the update ofF ∗ in each pass is
done in a Jacobi and not a Gauss-Seidel fashion.
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In principle, multi-pass interpolation can always be selected, but has been designed for a
use in connection with A1- and A2-coarsening20. If coarsening and interpolation are based
on the same matrix21 the multi-pass process can be seen to terminate after at most 4 passes
(besides some very exceptional cases).

Remark 4.20 If multi-pass interpolation has not finished after 4 passes or has even run into a
deadlock, the remaining variables without an interpolation formula are forced intoC, and (by
default) the complete process is started from scratch based on the newC/F -splitting. If again
a deadlocks occurs, the remaining variables are again forced intoC, but - by default - no new
process is initiated. Instead, SAMG continues with the interpolation formulas computed.N

4.3.1.4 Types of Weights

So far, we have only consideredVINT (F,C,A,t weights) with t weights=“A” (see Remark
4.21 below). That means, in particular, that the interpolationweightshave been based on the
entries ofA.

Alternatively, if for each variable coordinates are given, then interpolation weights might
also be computed via the distances or positions of these grid nodes. Another possibility is
to utilize the entries of a suitable matrixB instead of those ofA, simply by exchangingaij
by bij when computing the interpolation weights. IfUn has been chosen to be the primary
unknown in a PAMG approach (butPPP 6= A[n,n]), this matrixB might equalA[n,n]. This
option is built into SAMG, other choices might be supplied by the user via an interface.

What remains to be explained here is the way interpolation weights are computed based
on coordinates. In the distance-based case, during the construction of a particular interpola-
tion weight, the squared reciprocal Euclidean distance||πi−πj ||−2

E is used instead of a matrix
entryaij . Instead of scaling byαi/aii andβi/aii according to (4.13), each weight of a row
is scaled by the row sum. In the position-based case, first the interpolation for the distance-
based case is computed (without performing a scaling). Afterwards the resulting weights are
multiplied by penalty factors as explained in Section 3.4.2.4, and finally each weight of a row
is scaled by the row sum. Note that coordinates-based interpolation interpolates constants
exactly.

Remark 4.21 (Notation): The type of weights is denoted by the parametert weights and
appended to VAMG’s and UAMG’s “parameter list” as follows: we write VAMG(·,t weights)
and UAMG(·,t weights). In case of VAMG and UAMG,t weights can be equal to “A” (entries
of matrixA; default), “dist”(ances), or “pos”(itions). For instance, VAMG(agg,dist) denotes
a VAMG approach with aggressive coarsening and multi-pass interpolation22 with weights
being based on distances. We make use of the abbreviations VAMG(·) for VAMG( ·,A) and
UAMG(·) for UAMG(·,A). See Remark 4.24 for the general type of interpolation (direct,
(extended) standard, multi-pass) being used. N

20Corresponding illustrations for a 5-point Poisson stencil can be found in [87].
21This is the case for VAMG, UAMG and PAMG withPPP -interpolation.
22see also Remark 4.18 above.
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4.3.1.5 Improving the Interpolation

(Extended) Standard interpolation is a means to improve direct interpolation. Different pos-
sibilities to “improve” any of our interpolation schemes are Jacobi interpolation, scaling, or
truncation. All of these three means have a different objective. They can be combined.

Jacobi interpolation23 can be seen as an a-posteriori improvement of direct, (extended)
standard or multi-pass interpolation: first, one of these interpolation schemes is computed.
Afterwardsµ Jacobi interpolation steps are performed with the interpolation weights con-
structed in the first step as an initial guess.

In practice,µ ≤ 2 is usually enough to improve the convergence without sacrificing the
overall performance. Note that per Jacobi interpolation step not only the computing time of
the setup phase but also the radius of interpolation is increased which is likely to blow up the
complexities. However, since usually a lot of small entries are created, atruncation24 of in-
terpolation limits the increase of complexity considerably so that the method works feasibly
again. Hence, Jacobi interpolation should always be used in combination with truncation.

Not only Jacobi interpolation, but also standard or multi-pass interpolation tend to in-
crease theradiusof interpolation and thus theA-complexity. Again, truncation is a feasible
remedy in all these cases.

Remark 4.22 Note that truncation of interpolation is a “safe” process whereas, for instance,
a truncation of the final Galerkin operator is not. This is due to the fact that the variational
principle25 for K is usually destroyed by modifying the Galerkin operator. N

AMG’s interpolation schemes interpolate constant functions exactly ifA is a zero row
sum matrix (unknown-wise). However, for matrices with non-vanishing row sums (near
boundaries for example), this is not necessarily the case (unless coordinates-based weights
are used). In fact, forcing the constants to be always interpolated exactly might or might
not result in a less accurate approximation of algebraically smooth error and thus reduced
efficiency.

For matrices with some rows stronglyviolating diagonal dominance, an example being
reaction-diffusion equations (cf. Sections 3.1.3.2 and 5.2.2), care has to be taken. In such
cases, the interpolation schemes might suffer considerably from “critical” matrix rows. A
cheap means to bring back a reasonable convergence in many such cases isscaling the inter-
polation: the original interpolation weights are scaled so that all row sums ofIhH equal one.
Constants are always interpolated exactly then. Experience shows, however, that more robust
coarsening and interpolation schemes (for instance elimination of positive entries or Jacobi
interpolation) should be tried first.

4.3.2 Point-Based Interpolations

Fig. 4.6 outlines SAMG’s realization of interpolation for PAMG. MU-interpolation is com-
pletely defined sinceVINT is used, applied to each unknown separately. All features available

23For a definition and discussion, see Section 3.2.4.
24Truncation is here defined as a dropping of weights which are below a certain user-definable threshold.
25holding in case ofA > 0, see Section 3.1.1.
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in the variable-based case can be employed here and, in addition, the interpolation weights
can also be based on the entries ofPPP if the maximal pattern has been chosen. A possible
application for the latter has been mentioned in Remark 3.33.

In case of the block-interpolation, we still have to definePINT . This is done in Section
4.3.2.1. Afterwards, in Section 4.3.2.2, we explain variants for the concrete transfer of inter-
polation weights to the variables in case of an SU-interpolation. Finally, the special case of
scalar applications is discussed in Section 4.3.2.3.

Figure 4.6: Overview of the three general types of interpolation for point-based AMG.

4.3.2.1 Block-Interpolation

Due to the fact that variant (3.93) is likely to produce problems in practice and is consider-
ably more expensive than (3.98), the algorithmPINT is based on the variant (3.98). Great
advantages of this algorithm are that it can easily handle the case of varying number of vari-
ables per point, and that only theA(k,k) have to be inverted. If anA−1

(k,k) cannot be inverted
numerically, the variables of thek-th point are forced intoC.

There are essentially two possibilies for the generalization of “elimination” processes
used inVINT for an incorporation into block-interpolation. It could be done fully block-wise
in a direct analogy to the scalar variants (if|Pk| is constant), or it could be performed variable-
wise before the application ofA−1

(k,k) (i.e. the solution of the corresponding block-systems)
in (3.98). Only the variable-wise variants are implemented in SAMG to limit computational
work and avoid problems with a varying number of variables per point.
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4.3.2.2 Single-Unknown-Interpolation

In an SU-interpolation, the interpolation weights are most naturally based on the primary
matrixPPP (default). Other possibilities areA[n,n]

26, or coordinates if available.
The SW-pattern, the SU-interpolation is based on, is denoted byVINT ’s parametert pat

(see Section 4.3). The choicet pat=PPP is always possible and always used for the numerical
tests with SU-interpolation presented in this thesis. Note that, if then-th unknown-pattern
has been chosen, SAMG also allows fort pat=A[n,n].

The general way to transfer the interpolation weights resulting fromVINT has already
been explained in Section 3.4.3.3. The only open point here is the concrete transfer of weights
in the case that in parts of the simulation domain not each unknown is defined on each point.
The following methods are implemented in SAMG:

• “Cheap” method: For the transfer of a concretewpkl to a variablevi belonging to the
pointPk a “position shifting”is attempted: ifvi belongs to then-th unknown and is the
t-th variable on pointPk, check if thet-th variable (vj) on pointPl also belongs to the
n-th unknown. If this is true, definewij := wpkl. If not, simply use the first variable on
pointPl (instead ofvj) regardless of its unknown-type. This is possible sinceCp does
not contain empty points.

• More expensive method: Proceed as in the cheaper variant but search for a suitable
variable, i.e. one with the desired unknown-number, within the point. Only if this fails,
use the first variable attached to the current point.

There is another option for both methods in case a suitable variable is not found at the point
in question. Instead of using the first variable on that point, simply skip the weight (maybe
with a rescaling of the remaining weights).

Remark 4.23 Note that skipping can result in empty interpolation formulas for some vari-
ables and should be used with care. In general, it is an open question whether unknown
cross-couplings should be taken into account in interpolation. Whereas this is fairly natural
in the context of block-interpolation, it depends in case of SU-interpolation on the concrete
application27 which of the above methods makes sense, and whether skipping should be
allowed or not. N

Remark 4.24 (Notation): In all numerical tests, standard interpolation is used in connection
with standard coarsening, and multipass-interpolation in connection with aggressive coarsen-
ing. This is not explicitly added to the “list” defining the concrete AMG approach.

The parametert weights, defined in Remark 4.21, is extended by the choice “P” (pri-
mary matrixPPP ) in case of a PAMG approach. For instance, in case ofPPP -interpolation, we
havet pat=PPP andt weights=“P”, and in case ofA[n,n]-interpolation, we havet pat=A[n,n] and
t weights=“A” (see also Remark 3.32).

The type of interpolation (“B”, “MU”, or “SU”), and the value oft weights follow the
type of coarsening in the parameter list for VAMG, UAMG, PAMG. For instance, we write

26possible only if then-th u-pattern has been selected, different only ifPPP 6= A[n,n].
27cf. Section 3.4.3.3.
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PAMG(ns,std,SU,P) for a point-based approach with aPPP based on norms (3.73), standard
coarsening, and aPPP -interpolation. Another example: we write PAMG(dist,agg,MU,dist)
for a point-based approach with a distance-basedPPP , aggressive coarsening, and an MU-
interpolation with weights being based on distances.

Note that we do not explicitly addt pat to the parameter list since in all numerical
tests presented in this thesis SAMG’s standard choice oft pat is used:t pat=A for VAMG,
t pat=A[n,n] for UAMG, t pat=PPP for PAMG. N

4.3.2.3 Point-Based Interpolations for the Scalar Case

In the scalar case (nu = 1), B-, MU- and SU-interpolation are reduced to one interpolation
scheme, namelyVINT( F , C,t pat,t weights) . The parametert weights can be set to the
types “A”, “P”, “dist”, or “pos”, t pat to the typesPPP andA.

4.4 Smoothing, Acceleration, One-Level Solvers

The following smoothers are available in SAMG:

• Jacobi relaxation.

• variable-, unknown, block-wise Gauss-Seidel (VGS, UGS, BGS) relaxation.

• (M)ILU(0): (modified) incomplete LU decomposition without fill-in outside the spar-
sity pattern ofA, see [74]. For ILU(0), we also write ILU.

• ILUT(lfill, τdroptol) [72, 74]: ILU with a dual-dropping strategy controlled by two pa-
rameters, namely the parameterlfill, determining the maximum level of (absolute!)
fill-in per row of the incomplete inverse, and the dropping toleranceτdroptol. Entries
which are smaller thanτdroptol are dropped.

• (M)ILUTP(lfill, τdroptol) [74]: (modified) ILUT(lfill, τdroptol) with a column pivoting
strategy.

By default, one pre- and one post-smoothing step is performed, both in CF-ordering in case
of a Gauss-Seidel variant (see Section 3.2.4.2). Note that, for symmetric matrices, “symmet-
ric” variants of Gauss-Seidel relaxations are employed: in post-smoothing, the variables are
passed through in the reverse order of what has been selected for pre-smoothing. This is done
in order to obtain a symmetric iteration matrix.

Compared with RAMG, ILU(0) has substantially been accelerated28, and MILU(0) and
(M)ILUTP have been added. The “M” variants add positive values to the diagonal entries of
the matrixU of the incomplete LU decomposition in order to prevent ILU(TP) from failing
due to zero diagonals inU , see also [59, 74]. This stabilizes ILU(TP) and can be useful, for
instance, for matrices containing some (nearly) zero diagonals (see also Section 4.1.1). In
Remarks 5.15 and 5.16 we mention planned extensions which might increase the robustness
and efficiency of smoothing further for certain applications.

28for the price of only one additional working vector with lengthnv .
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AMG as a Preconditioner For many applications, the convergence of stand-alone AMG
approaches is slowed down by just a few eigenvalues of the iteration matrixM which are
close to or even larger than 1. Typical eigenvalue distributions for such cases are depicted in
Figs. 4.7 (a) and (b)29. It is provenly efficient for such situations to employ the AMG method
not stand-alone but as a preconditioner. This is particularly true for matrices considerably
deviating from the ideal weakly diagonally-dominant Stieltjes-matrix case, as is the case for
many industrially relevant PDE systems. But even VAMG applied to a discrete Poisson’s
equation might profit considerably, in particular, if aggressive coarsening is used.

In SAMG, right-preconditioning is used (see [74], for instance). The one-level iterative
method which is preconditioned that way is calledaccelerator. The following accelerators
are implemented in SAMG:

• CG: conjugate gradient method (cf. [74]).

• BiCGstab [96]: stabilized biconjugate gradient method. Note that during one BiCGstab
iterationtwoAMG cycles are performed.

• GMRES(k) [75, 74]: restarted method of generalized minimal residuals with a Krylov
space of dimensionk.

For the examples mentioned in Figs. 4.7 (a) and (b), a drastic improvement of convergence is
achieved by acceleration (see Table 5.5). Noteworthily, the stand-alone variant with ILU(0)
smoothing diverges in contrast to the one with GS smoothing for this case but, when acceler-
ated, the variant with ILU exhibits a better convergence rate than the variant with GS.

Remark 4.25 The iteration matrixM for a stand-alone AMG method can numerically be
constructed by applying, for alli = 1 . . . nv, one cycle of the respective AMG method to the
systemAe(i) = 0 with e(i) being thei-th standard unit vector (e(i)i = 1, all other components
being 0). Combining the resulting approximation vectorsv(i) yields the iteration matrix
M = [Me(1) . . . Me(nv) ] = [ v(1) . . . v(nv) ]. N

One-Level Solvers By limiting the number of levels to 1, that is, preventing SAMG from
creating a hierarchy, only smoothing and acceleration are performed. This way, several stan-
dard iterative methods, namely CG, BiCGstab and GMRES(k), preconditioned by any30 one
of the “smoothers” mentioned above, can be selected. Therefore, SAMG does not only pro-
vide a whole AMG environment but also a broad collection of classical one-level solvers.

Remark 4.26 (Notation): The selected smoother precedes, the selected accelerator follows
the AMG approach chosen. For instance, ILU-PAMG(dist,std,MU,A)-BiCGstab denotes a
PAMG approach with a distance-basedPPP , standard coarsening, an MU-interpolation with
weights being based onA, ILU(0) smoothing and BiCGstab acceleration. N

29The corresponding iteration matricesM have numerically been constructed according to Remark 4.25.
30Among the reasonable combinations are CG with Jacobi, symmetric VGS/UGS/BGS or (M)ILU(0), and

BiCGstab or GMRES(k) with Jacobi, VGS, UGS, BGS, (M)ILU(0) or (M)ILUT(P).



148 Chapter 4 Software Issues - The SAMG Library

(a) (b)

Figure 4.7: Eigenvalue distributions of exemplary iteration matrices for the SILO2 example
(stress simulation, see Section 5.2.1). SAMG approaches employed: (a) GS-UAMG(std),
ρ ≈ ARF = 0.532 for nit = 36. (b) ILU(0)-UAMG(std),ρ = ARF2 = 0.315e+7 (strong
divergence!).

4.5 Computational Cost

The computational cost, that is memory requirements and computational work, of AMG1R5’s
setup phase has been discussed in [71]. That SAMG usually needsconsiderably less mem-
ory than AMG1R5, due to reduced complexities, has been demonstrated in [90]. However,
the estimates for the computational work remain qualitatively valid so that the work for con-
structingCOARSstd andVINT( F , C,std,A) sums up tonv p2(sa, sp) and for the Galerkin
operators tonv p3(sa, sp) wherepm(sa, sp) denotes a polynomial of in totalm-th order in
sa, sp with small coefficients. Note that typicallysa = O(cA/cg) andsp < 3 holds. For
aggressive coarsening, more work has to be invested first, but the size (|Ak| and|Vk|) of the
following levels is usually considerably reduced. See also Section 4.2.1.3.

The work for UAMG’s coarsening and MU-interpolation depends oncg and theA[n,n]-
complexities. For the PAMG components,cp andcPPP come into in addition tocg andcA so
that PAMG’s memory requirements and computational work are essentially proportional to
cAMG. The more physical unknowns the system contains and the larger the number of entries
in A[m,n] (m 6= n) compared toA[n,n], the smaller are theΣ(A[n,n]) compared toΣ(A), and
the less matters the additional memory forPPP - if it has to be stored - relatively to the overall
memory requirements. WhereasΣ(A[n,n]) typically equalsΣ(A) multiplied by 0.25 up to
0.5 in case of two unknowns, for three unknowns this factor typically lies between0.1̄ and
0.3̄. A similar estimate holds forΣ(PPP k)/Σ(Ak) so that we typically obtaincAMG = fAcA
with fA ∈ [1.1, 1.5] (see Table 4.1).

Due to the inversions and incorporation ofall entries ofAk, B-interpolation is the most
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expensive variant. MU-interpolation needs principally the sum of the costs ofVINT applied
to allA[n,n], SU-interpolation is even cheaper. Often, if reasonably working, a cheap PAMG
approach is PAMG(A[n,n],agg,SU,P) both in terms of memory requirements and computa-
tional work. In general, the incorporation of coordinates in one or more components of the
setup can add a considerable amount of computing time.

Since usually only (at most) one of VAMG, UAMG, and the PAMG types is reasonable
for a fixed problem class, we skip a more detailed comparison of the different approaches.

The work for each cycle is dominated by smoothing and acceleration. The latter only
affects the finest-level matrix so that the work for each SAMG accelerator is proportional to
|Σs(A1)|. The total work for smoothing is in principle proportional to the number of entries
stored in all matrices,

∑nlev
k=1 |Σs(Ak)|. Therefore,cA + 1 is a convenient approximation of

the ratio of the total work per V-cycle including the accelerator to the relaxation work on the
finest level.

The complexities strongly depend on the nature of the problem and the concrete AMG ap-
proach. For a fixed application class and AMG approach, however, they should principally
be constant. The costs of both the setup phase and each cycle areO(nv) then.

As a general rule of thumb, the setup phase needs approximately the same time as 3-10
cycles. This strongly depends on the application class and the concrete approach chosen.
For instance, a coordinates-basedPPP adds a considerable amount of work to the setup phase,
ILU(0)-smoothing or acceleration a considerable amount of work to each cycle.

Concrete complexity values for SAMG are given in Remark 4.13 for typical scalar ap-
plications, in Table 4.1 for our model problems and in the next chapter for industrial test
cases.

In all cases, the costandconvergence rates for AMG approaches with aggressive coarsening
are very reasonable so that very efficient preconditioners result. For (B)GS smoothing, a
considerable speedup for the price of 1.0 up to 1.5 times more memory compared with the
standard one-level preconditioner ILU(0) (i.e.cprec ∈ [1.0, 1.5]) is typically obtained. For
ILU(0) smoothing, we typically obtaincprec ∈ [1.5, 2.0].

4.6 Numerical Results for the Model Problems

In this section, we complete our discussion of the models with numerical results31 of runs
with different AMG approaches. Memory requirements have already been shown in Table
4.1. We concentrate on robustness now. The investigations made in Sections 3.3.3.1 and
3.4.1.2 and Examples 3.3, 3.4, 3.5 and 3.10 are confirmed by the results presented here.

The AVLS models are very simple to solve - in principle all PAMG variants and (if
c2 < ab) even VAMG and UAMG work here very efficiently stand-alone32. In contrast to
this, theAVLD models need acceleration. As long asc2 < ab, a variety of AMG approaches

31Notation: GS: VGS,UGS, or BGS. I: ILU. Bi: BiCGstab. V: VAMG, U: UAMG. Remainder: PAMG with a,n,d:
PPP = A[1,1], “ns”, “dist”. m,s,b: MU-,SU-,B-interpolation (with default type of weights). In all cases, standard
coarsening and interpolation have been used. In all tables, the numbers of cycles to reachεit=1e-10 are shown. div
= divergence, stag = stagnation,>h = more than 100 iterations.

32PAMG(dist,·,MU, ·) needs the least memory. However, VAMG, UAMG and norm-based PAMG are faster.
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model parms. crs. cg cA fA sp cprec

AVLS ε=1e-1 std.a,b 1.87, 1.67 3.49, 2.20 1.06, 1.41 1.94, 2.39 2.56, 1.69
AVLS ε=1 std. 1.66 2.16 1.25 2.32 2.60
AVLD ε=1e-3 std. 1.67 2.81 1.36 2.89 2.39

RD all nz, c std.c 1.67, 1.67 2.20, 2.20 1.71, 1.71 2.39, 2.39 2.11, 2.11
DD ε=1e-3 std. 2.00 2.88 1.27 1.52 2.31
DD ε=1 std. 1.67 2.58 1.29 2.40 2.06

AVLS ε=1e-1 agg.a 1.28, 1.13 1.51, 1.24 1.15, 1.43 1.33, 1.61 0.97, 1.03
AVLD ε=1e-3 agg. 1.17 1.30 1.43 1.72 1.06

RD all nz, c agg.c 1.17, 1.67 1.30, 2.20 1.74, 1.71 1.71, 2.39 1.31, 2.15
DD ε=1e-3 agg. 1.48 1.96 1.29 1.35 1.51
DD ε=1 agg. 1.21 1.74 1.28 1.76 1.32

a First value: (nearly) identical for VAMG(·), UAMG(·), PAMG(ns/nf/A[1,1],·,MU/B,A) and
PAMG(ns/nf/A[1,1],·,SU,P); second value: PAMG(dist,·,SU,P).

b Theworstvalues are a bit less than the ones presented in [58] for comparable tests.
c First value: PAMG(dist,·,MU,A) and PAMG(dist,·,SU,P); second value: PAMG(dist,·,B,A).

Table 4.1:Complexities for the model problems and the BGS-PAMG approaches marked bold-face
in Tables 4.2-4.5 below (for AVLS, see footnotea; for RD, see footnotec). parms.=parameters,
crs.=coarsening.fA := cAMG/cA. Here alwayscg=cp andcPPP ≤ cA.

yields quite efficient preconditioners (see Table 4.2). With increasingc2/(ab), however, VGS
and UGS are no appropriate smoothers and VAMG and UAMG no appropriate precondition-
ers any more. Only the PAMG(n,·,SU,P) preconditioners33 show a stable convergence be-
havior. Due to the shape of algebraically smooth error, produced by BGS and also ILU (see
Section 3.4.1.2), a coarsening iny-direction would be most suitable foru1, and a coarsening
in x-direction most suitable foru2. PAMG(n,·,SU,P) performs a coarsening which yields a
compromise of both. SU-interpolation fits best to the norm-based coarsening here so that,
in total, this PAMG-approach is the most robust and efficient one for the AVLD models.
ILU-PAMG(ns,·,SU,P)-BiCGstab turns out to be the best variant here.

As could be expected from the discussion in Section 3.3.3.1, VAMG and UAMG are
not suitable for theAVLX models (see Table 4.2). Similarly to what we have observed for
the AVLD models, PAMG(n,·,SU,P) as a preconditioner should also be suitable for AVLX
models - in contrast to the AVLD models, however, only for “extreme” parameter settings
such asab > c2 or ab < c2 or ε = 1 (in the last case, AVLX, AVLD and AVLS coincide, of
course). This is indeed the case. To be more specific, for PAMG to be applicable,ab has to
be much larger or at least moderately smaller thanc2.

Not unexpectedly, the picture for theRD modelsis more complicated (see Tables 4.3 and
4.4). GS-VAMG and GS-UAMG usually fail even with BiCGstab. Also with ILU smoothing,
the situation remains unsatisfactory, and the results are quite unpredictable: BiCGstab can
even make it worse! Using PAMG approaches with distance-based coarsening increases the
robustness considerably. B-interpolation shows the most robust behavior here. In general, the
performance of the variants with BGS smoothing increases with increasingc. Only the case of
a largenz together withc ≈ 1 shows very slow convergence. For PAMG, the performance of

33Both variants for a norm-basedPPP , “ns” and “nf”, give nearly the same results here.
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a c GS-V I-V GS-U I-U GS-nm I-nm GS-ns I-ns GS-nb I-nb
10 1 9 4 4 2 5 2 84 7 4 2
2 1 43 div 6 div 8 div 82 8 9 div
1 2 div div div div >h div 82 8 div div
1 10 div div div div 18 div 87 8 div stag

10 1 >h stag >h stag >h stag >h div div stag
2 1 div div div div div div div div div div
1 2 div div div div div div 5 3 div div
1 10 div div div div 7 stag 4 3 div div

Table 4.2:AMG-BiCGstab applied to AVLD (first) and AVLX models (second block of results).a=b,
ε=1e-3,h=1/512, nv=522 242, nA=5 214 244. Error reduction approx. 1e-8 or better in all cases
where the method converges.

the runs with BGS smoothing qualitatively “corresponds” to BGS’ stand-alone performance
(see Table 3.2). In contrast to this and to Table 3.2, ILU smoothing suffers from increasing
nz andc which might be due to the fact that a variable-based ILU is used. A corresponding
block-variant can be expected to perform comparably to BGS (cf. also Remarks 5.15 and
5.16).

For theDD models, VAMG and UAMG diverge in most cases. Only ILU-UAMG-
BiCGstab forλ = c = 1 works quite efficiently. As discussed in Example 3.5 and as can
be seen from Table 4.5, PAMG with a norm-based coarsening yields a robust and efficient
approach here - however, in case ofε � 1, only with SU-interpolation (see also discussions
in Example 3.12). Note that using B-interpolation leads to divergence here. ILU-smoothing
does not increase PAMG’s performance for the DD models. However, it can again be ex-
pected that block-variants of ILU-type smoothers do lead to better convergence rates (cf. also
Section 5.3.2.2).

The results presented here together with the investigations made in Section 3.3.3.1 and
3.4.1.2 show that UAMG can handle strong anisotropies which are different from unknown
to unknown but is likely to fail if the cross-unknown couplings are strong. In contrast to
this, PAMG can handle strong cross-unknown couplings as long as the smoother employed
(BGS or ILU, for instance) produces an algebraically smooth error which allows for a point-
coarsening strategy.
The AVLX models show a limit of our AMG methodology: PDE systems with unknown
cross-couplings which are too strong for UAMG and for which a point-coarsening and thus
PAMG is not suitable as well cannot be handled by our AMG methodology.
The other model examples as well as real-life applications (see next chapter) show that, in
particular, PAMG can handle very strongly coupled, practically very relevant PDE systems
which exhibit very different numerical properties.
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nz c GS-V I-V GS-U I-U GS-dm I-dm GS-ds I-ds GS-db I-db
1 1e0 10 7 10 7 10 7 26 13 10 7

1e3 div 11 div 11 10 11 26 13 10 11
1e9 div 18 div 18 4 18 7 16 4 18

100 1e0 >h 65 >h 65 98 64 26 13 10 7
1e3 div 19 div 19 31 >h 32 71 21 17
1e9 div 28 div 28 3 div 4 div 2 div

1000 1e0 div div div div div div div div div div
1e3 div div 33 div >h div 75 div 32 28
1e9 div div div div 2a div 2a div 1a div

a Too less cycles: error reduction only one order of magnitude.
However, after 11 (13 for GS-db) iterations, the error is reduced by 1e-14.

Table 4.3: AMG applied to RD models.h=1/512, nv=522 242, nA=3 129 364. Error reduction
approx. 1e-8 or better if the method converges, with the exception of case “a”.

nz c GS-V I-V GS-U I-U GS-dm I-dm GS-ds I-ds GS-db I-db
1 1e0 div 3 div 3 4 3 6 4 4 3

1e3 >h 4 >h 4 4 4 6 5 4 4
1e9 >h 8 >h 8 2 9 3 10 2 8

100 1e0 14 10 11 8 11 8 6 4 4 3
1e3 div 9 div >h 7 >h 7 15 5 7
1e9 >h >h div div 2a div 2a >h 1a >h

1000 1e0 >h >h >h div >h div >h div div div
1e3 div 13 div div 14 >h 11 >h 7 11
1e9 >h >h div div 2a div 2a div 1a >h

Table 4.4:AMG-BiCGstab applied to RD models. Parameters and “a” as in Table 4.3.

λ c ε I-U-Bi GS-am GS-as GS-nm GS-ns
1e+0 1e+0 1e+0 32 10 4 10 4 10 4 31 7
1e-3 1e+3 1e+0 div 10 4 10 4 10 4 10 4
1e-9 1e+9 1e+0 div 10 4 10 4 10 4 10 4
1e+0 1e+0 1e-3 stag >h 53 >h 51 >h 56 >h 25
1e-3 1e+3 1e-3 div >h 62 >h 66 >h 62 >h 13
1e-9 1e+9 1e-3 div >h 68 >h 69 >h 67 >h 10

Table 4.5:AMG applied to DD models.h=1/512, nv=783 363, nA=7 562 289. For PAMG variants,
left column: AMG stand-alone, right column: with BiCGstab. Again, error reduction approx. 1e-8 or
better.



Chapter 5

Industrial Applications

The general AMG methodology described in Chapters 3 and 4 formally allows the definition
of various concrete algorithms. It seems clear that there exists no unique AMG approach
which will work satisfactorily for all systems of PDEs. Instead, major work still needs to be
invested to compose and optimize concrete algorithms for certain classes of industrial appli-
cations. In this chapter, we consider the application of AMG to semiconductor simulation.

Semiconductor circuits play a central role in nearly all areas of our life. Popular exam-
ples of semiconductor circuits are microprocessors and memory chips. They can contain up
to millions of single semiconductor devices, such as transistors, fabricated on the same die, a
small piece of a semiconductor substrate (a wafer). The design and test of both single semi-
conductor devices and whole circuits is very expensive and due to the ever decreasing size
very difficult. Therefore, great efforts are spent in replacing the iterative experimental process
of constructing, testing and optimizing of hardware prototypes by computer simulations as
far as possible. By now, semiconductor simulation can assist this experimental process and
is able to reduce the number of expensive prototypes to an increasingly large extent.

Section 5.1 gives a short survey on semiconductor simulation. As discussed there and
in more detail in the remaining sections of this chapter, two important and computation-
ally expensive parts are process and device simulation. They mainly aim at the approximate
computation of the final shape and doping profile of a single semiconductor device and its re-
sulting electrodynamic behavior, respectively. Due to the complexity of the models and grids
used, industrial process and device simulation are increasingly recognized as important and
challenging areas for numerical simulation. Occurring PDE systems includestress governing
equations, reaction-diffusion equationsanddrift-diffusion equations. Brief explanations of
the terms diffusion, drift and reaction can be found in Section 2.2.2. All these systems exhibit
different numerical properties and difficulties. As one consequence, different strategies are
necessary to solve the arising linear systems efficiently by means of AMG.

That a simple unknown-based AMG approach as a preconditioner is suitable to speed up
stress simulations will be shown in Section 5.2.1. For reaction-diffusion and drift-diffusion
equations, the situation is more complicated. Where classical iterative solvers often converge
only slowly (or even break down) and variable-based or straightforward unknown-based
AMG are no sufficient preconditioners any more, suitable point-based AMG approaches,
accelerated by BiCGstab or GMRes, can cause remarkable speedups. In Section 5.2.2, we
will demonstrate that some typical reaction-diffusion problems can efficiently be solved by
using a primary matrix based on geometric distances. As can be seen in Section 5.3, typi-
cal drift-diffusion problems, on the other hand, are efficiently solved by selecting a primary
matrix based on norms.
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We have performed concrete tests with the following simulation codes:

• FLOOPS [50] for stress analysis,

• DIOS [39] for reaction-diffusion simulation,

• TAURUS [92] for drift-diffusion simulation.

One should point out that the concrete industrial test cases, we had at our proposal, are rather
small or only of medium size w.r.t. number of variables, compared to what industry can
run today. They are too small to demonstrate “real” advantages of SAMG over one-level
preconditioners in terms of computational speed. Nevertheless, compared with typical one-
level solvers, a speedup of 2 is achieved for the largest stress analysis matrix. Compared with
the iterative one-level solver used as a default in DIOS, a speedup of 2 is also achieved for the
complete reaction-diffusion simulation run. For the largest drift-diffusion problem, SAMG is
a bit faster than the iterative one-level solver used as a default in TAURUS. However, since
SAMG clearly shows a robust behavior for all three applications and a considerably faster
performance with increasing problem size, it can be expected that for larger problems than
the ones presented here the observed trends will continue. Hence, we can expect that SAMG
clearly outperforms the one-level solvers which are commonly used in commercial simulators
in case of large(r) problem sizes.

Remark 5.1 We use the definitions and descriptions of our AMG approaches made in the last
chapter. Descriptions of the standard one-level iterative approaches, our AMG approaches are
compared with in this chapter, can be found in [74]. In Section 2.4.6, the definitions of ARFs,
stopping criteria etc. can be found. Remember, in particular, thatnu denotes the number of
physical unknowns,np the number of points,nv the number of variables, andnA the number
of matrix elements stored (nA ≥ number of nonzeros). N

5.1 Semiconductor Simulation

The main purposes of semiconductor simulation are twofold:

1. circuit design: the design of a suitable “logic” and layout of a circuit serving a specific
application,

2. circuit simulation: the validation of the design and the computation of physical prop-
erties of a concrete circuit.

The knowledge about the properties of single semiconductor devices, such as resistors, ca-
pacitors, diodes, transistors, et cetera, which are used to construct whole circuits, forms the
basis for both parts. Therefore, a simulation of the manufacturing process, the so-calledpro-
cess simulation, and afterwards a simulation of electrodynamic properties of the device, the
so-calleddevice simulation, have to be carried out for each type of device used in mod-
ern circuits before the process of circuit design and circuit simulation can be performed. The
steps (re-)design and simulation have typically to be performed in an iterative fashion in order
to optimize the circuit layout for a specific application.
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An overview of semiconductor simulation is depicted in Figure 5.1. It shows the four
main steps involved, namelyprocess, deviceandcircuit simulation, andcircuit design, indi-
cating their dependencies. Short characterizations of the four steps are given in the following.

Figure 5.1: Overview of semiconductor simulation. The parts in dark grey indicate the prob-
lem classes discussed in this chapter.

Process Simulation Figure 5.2(a) shows a schematic view of an (n-)MOSFET1. In order to
fabricate the different material layers, in the example the gate oxide and the contacts, on the
semiconductor wafer, several steps of pattern definition (lithography), pattern transfer (etch-
ing), layer formation (oxidation, deposition, metalization), and layer modification (diffusion,
ion implantation) have to be performed. Hence, during the manufacturing process of a de-
vice, several different configurations (i.e. the composition and geometry) of material layers
develop until the final configuration is reached.

1MOSFET is an abbreviation of “metal oxide field effect transistor”. “n” stands for “with an n-channel”. A more
detailed description of the different MOSFET regions can be found in Section 5.3.1.3.
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(a) (b)

Figure 5.2: (a) Sketch of an n-MOSFET. For explanations, see Section 5.3.1.3. (b) Layout
and doping profile of a p-MOSFET. Courtesy of Synopsys Inc.

The main tasks of a process simulation are the computation of these configurations, in
particular the final configuration of the device, the stress and strain distributions inside the
layers and across their interfaces, and the doping profile of the device (i.e. the distribution of
electrons and holes within the device). The final shape and doping profile for an exemplary
MOSFET are depicted in Figure 5.2(b). Such results serve as input for a device simulation.

As indicated in Figure 5.1, two problem classes play an important role in nearly all steps
of a process simulation, namely the stress analysis and the simulation of reaction-diffusion
processes. The corresponding models and their efficient numerical treatment are topics of
Section 5.2.

Device Simulation A device simulation takes the above-mentioned results of a process
simulation for a particular device as input and computes its electrodynamic properties. That
means, based on the geometry and the doping profile, local functions including the electro-
dynamic potential and electron and hole concentrations are computed for each relevant bias
applied to the contacts of the device. For this purpose, a series of drift-diffusion systems is
solved. A detailed description of these systems can be found in Section 5.3. In particular, the
difficulties in their numerical treatment will be discussed. The systems are strongly coupled,
highly nonlinear and usually very ill-conditioned, and the efficient solution of the arising
linear systems by means of iterative solvers is a great challenge.

From the local functions computed, the net currents of the device are determined for each
bias applied, resulting in so-called IV-characteristics2. These are of particular importance
for industrial purposes since they determine the behavior of a device within a circuit to a
large extent. For instance in case of a transistor, the IV-characteristics yield information on
its switching behavior. Hence, device simulations have to be performed for each relevant
semiconductor device before the design and simulation of whole circuits can take place.

2“IV” stands for current-voltage (or current-bias) characteristics!
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Circuit Design Having a specific application in mind, engineers decide on the components
of a suitable circuit and its principal layout. The computation of an optimal placement of all
devices and their interconnects within a three-dimensional structure which can be fabricated
on a wafer is the objective of CAD3 tools for (up to) ULSI4 layout design.

Remark 5.2 In [71, 65], the application of AMG to certain two-dimensional placement prob-
lems in VLSI layout design is considered. The arising matrices are similar to a system con-
sisting of two discrete Laplacians (with some additional algebraic constraints). In [65], the
two parts are decoupled, in [71] they may be weakly coupled. In the first case, VAMG (with
a suitable treatment of the constraints) can be applied, in the second case a straightforward
UAMG approach yields an efficient solver.

Circuit Simulation Assuming a layout of a particular circuit to be given and its electro-
dynamic properties (and maybe other properties such as heat distributions) for each device
involved to be computed, a simulation of the whole circuit can be performed. Circuit sim-
ulation aims at the validation of the layout design, i.e. answering the question “Does the
manufactured circuit work as it has been designed to?”. Time-dependent, nonlinear systems
of differential-algebraic equations have to be solved.

Remark 5.3 AMG is able to efficiently solve certain subclasses of matrices arising in circuit
simulation. However, these problems are not in the scope of this thesis.

5.2 Process Simulation

Two principal classes of PDE systems are involved in process simulation5. The first class
describes the mechanical deformation of fabricated multi-layer material structures. The cor-
respondingstress governing equationsaccount for the distribution of the stresses and strains
for the constellations of material layers arising during the manufacturing process of a device.
Systems of stress governing equations are essential for the analysis of native film growing
processes (such as thermal oxidation and nitridation) as well as the analysis of mechanical
properties of the wafer after deposition and etching processes.

The second class of PDE systems models the redistribution of dopants and point defects
in thermal processes (for example, an annealing step after an implantation) and requires the
solution of multi-speciesreaction-diffusion systems. Simulations of reaction-diffusion pro-
cesses are of major importance for determining the final doping profile of the device, and
their results are therefore an important input for a subsequent device simulation, as already
pointed out.

We will see in the following chapters that both stress systems and reaction-diffusion sys-
tems - or at least important parts of them - exhibit an “elliptic nature” and are ill-conditioned.

3CAD = computer aided design.
4LSI = large scale integration. An integrated circuit that uses very-large-scale integration (VLSI) contains

100,000 up to 1,000,000 transistors, an integrated circuit that uses ultra-large-scale integration (ULSI) more than
one million transistors.

5A general survey on semiconductor process modeling can be found in [42], for example.
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Whereas this makes them critical for the application of classical, one-level iterative solvers,
hierarchical approaches provide a possibility to speed up the computations. We will discuss
suitable AMG approaches for these problem classes in Sections 5.2.1 and 5.2.2, respectively.
In particular, we will demonstrate that efficient methods can be obtained by choosing an
unknown-based strategy for stress governing equations and a point-based strategy with a
distance-based primary matrix for reaction-diffusion equations.

For stress simulation, we concentrate on an analysis of ill-conditioning and convergence
based on eigenvalue calculations. This is possible since the matrices investigated here are
rather small and, hence, allow for accurate eigenvalue computations. For reaction-diffusion
systems, the focus lies on the performance of SAMG compared with iterative one-level
solvers used in a commercial process simulator. For this purpose, a typical simulation run
with about 200 matrix solves for a 3D test layout is considered.

5.2.1 Stress Simulation

After a description of the system of stress governing equations in the following Section
5.2.1.1 and our test cases (Section 5.2.1.2), we will characterize the matrices stemming from
such systems (Section 5.2.1.3) and discuss their efficient solution by means of a suitable
AMG approach (Section 5.2.1.4). Numerical results for two selected problem classes are
presented and discussed in Section 5.2.1.5. In particular, results on the efficiency and robust-
ness of AMG in comparison with classical one-level linear solvers are presented.

5.2.1.1 Governing Equations

The stress analysis in process simulation is essentially based on the momentum equation

−∇ · σd +∇p = f in Ω (5.1)

whereΩ is a bounded domain with boundaryΓ, σd is the symmetric deviatoric stress tensor,
p is the mean pressure andf is the body force. The boundary conditions are given by

(−pI + σd) · n = g on Γg (5.2)

u = h on Γu , (5.3)

whereg is the surface traction of the boundary segmentΓg ⊂ Γ, h is the displacement of
the boundary segmentΓu ⊂ Γ (Γu ∩ Γg = ∅), n is the outward unit normal vector on the
boundary andI is the identity tensor.

Mechanical properties of the materials involved in the semiconductor fabrication vary
from purely elastic solids to viscous fluids. Silicon and poly-silicon are assumed to be elastic
materials whereas nitrideSi3N4 and oxideSiO2 are assumed to be viscoelastic compress-
ible fluids. The mechanical properties are quite accurately modeled with the constitutive
relationship of the Maxwell viscoelasticity (cf. [83]). The Maxwell viscoelasticity is com-
monly implemented in process simulation in its incremental form based on the constitutive
relationships of linear elasticity

σd = 2Geff

[
1
2
(
∇u + (∇u)T

)
− 1

3
(∇ · u) I

]
in Ω̄ (5.4)
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p = −K∇ · u in Ω̄ (5.5)

where the viscoelastic material properties are introduced by an effective shear modulus (ef-
fective rigidity)Geff given by

Geff = G
τ

∆t

(
1− exp

(
−∆t
τ

))
. (5.6)

Here,u is the incremental displacement vector,G > 0 andK > 0 are the shear and bulk
moduli (rigidity and compressibility, respectively),∆t is the time step size, andτ is the
Maxwellian relaxation time defined asτ = V/G, whereV is the material viscosity.G and
K are assumed to be known constants.

Geff provides a continuous modeling of the mechanical behavior of a material from purely
elastic deformation to viscous flow. Namely, forG� V it reduces to Hooke’s law for elastic-
ity (Geff = G) while for V � G, we obtain Newton’s law for viscous fluids. However, note
that only the incremental deviatoric stress component exhibits stress relaxation, accounted for
byGeff , while the incremental dilatational stress component is assumed to be purely elastic
in this model.

In general,u is a vector of three scalar-valued functions, namely the displacements in
x-, y- andz-direction, in the following denoted byu1, u2 andu3, respectively. By inserting
equations (5.4) and (5.5) into (5.1), and by assuming the full elastic caseGeff = G, we arrive
at the classical Laḿe equations (3.66). The parametersE, ν, λ, µ from (3.66) and (3.68) are
related toG andK as follows:

G = µ =
E

2(1 + ν)
,

4G
3

+K = 2µ+ λ ,
G

3
+K = µ+ λ . (5.7)

For all test examples investigated here, the stress analysis is based on a plane-strain formu-
lation (3.67). Hence, the following PDE system has to be solved for the unknownsu1 and
u2:  −

(
4G
3 +K

)
u1,xx −Gu1,yy −

(
G
3 +K

)
u2,xy

−Gu2,xx −
(

4G
3 +K

)
u2,yy −

(
G
3 +K

)
u1,xy

 =
[
f1
f2

]
. (5.8)

Also the boundary conditions can be formulated in terms of theu1, u2 (andu3 in 3D).
Table 5.1 gives values6 for E andν, reported in [83], and resultingλ andµ for the layer

materials discussed here. In the viscoelastic case (oxide and nitride), one has to be aware
of the fact that the parameterG has to be replaced by the functionGeff = Geff(G,V,∆t)
defined in (5.6).V is temperature- and material-dependent7 and decreases, for instance, for
the oxide8 from 9e5 GPa s at 800◦ C to 4e3 GPa s at 1100◦ C. Values for nitride are (a bit)
higher. SinceG = µ is (considerably) smaller thanV here, we arrive at aGeff ≈ G so
that, in principle, the computed values forλ, µ can be used for the following discussions of
numerical properties of the arising matrices.

6Throughout this chapter, values for physical constants are given in basic SI units (used are the following five
out of seven: A,K,kg,m,s) or typical derived SI units (for example: 1 C = 1 A s,x◦C = (x+ 273.15) K, 1 Pa = 1 kg
m−1 s−2, 1 V = 1 kg m2 s−3 A).

7for concrete values, see [83].
8in the “wet processing” case. Values for the “dry processing” case are approximately 10 times higher.
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material E [GPa] ν λ [GPa] µ [GPa] µ+ λ [GPa] 2µ+ λ [GPa] µ
2µ+λ

SiO2 660 0.17 145.3 282.1 427.4 709.4 0.40
Si3N4 3890 0.30 2244.2 1496.2 3740.4 5236.5 0.29
Si and poly-Si 1870 0.28 929.7 730.5 1660.2 2390.6 0.31

Table 5.1: Material constantsE, ν from [83] and resultingλ, µ etc.

5.2.1.2 Test Cases

The test problems for the numerical experiments have been generated by the process simula-
tor FLOOPS [50]. For several material systems, stress simulations have been performed and
typical global stiffness matrices been extracted. To be more specific, we have considered two
general classes of problems very relevant for the manufacturing process:

• The first one corresponds to the “single full integration stress solving step” in the sim-
ulation of the “sealed interface local oxidation” (SILO) process. Originally, SILO is
an evolutionary problem on a time-dependent domainΩ = Ω(t). To be more specific,
during this oxidation process, theSiO2-layer is permanently growing at the expense
of the silicon layer. This results in a permanent change of the layer topology and, in
particular, moving layer interfaces. Since aSiO2 molecule needs considerable more
space than aSi atom, stresses and strains emerge in particular at the layer interfaces,
resulting in material displacements. Due to the tight coupling of the two processes ox-
idation and displacement of material, they have to be solved in a coupled way, usually
by an “incremental approach”9. We consider one particular stress analysis step here.
The underlying grid structure of one of the two SILO examples chosen is shown in
Figure 5.17(a).

• The second class of simulation examples, DEPO, is related to the stress distributions
in multilayer material regions after thin film deposition processes. Origins of the stress
are intrinsic stress distributions in the material films deposited. In order to test differ-
ent problem scales, one particular DEPO problem, containing four different material
layers, is formulated with four differently refined grids. Fig. 5.17(b) shows one of the
corresponding grid structures. Inside and in the neighborhood of the very thin poly-
Si layer contained in the concrete DEPO class chosen, the stresses are largest. This
demands a very fine discretization grid in and around this layer.

As common for process simulators as, for instance, FLOOPS [50], the system of stress gov-
erning equations is discretized using standard piecewise linear finite elements on a triangu-
lation of the domainΩ. Usually, an unstructured grid is employed, see Fig. 5.17. Table 5.2
compiles data on the magnitude of the six arising grids and matrices10.

5.2.1.3 Characterization of the Arising Matrices

Important numerical properties of the matricesA arising for the plane-strain problem (5.8)
to be solved have already been discussed in Section 3.3.3.2. From there we know that the

9For more details and an illustration of a SILO process, see [83], for instance.
10It was only possible to test rather small examples with less than 25.000 variables. This is because the version of

FLOOPS used for the tests did not allow for a finer discretization of the test cases.
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example layers np nv nA
SILO1 5 716 1 432 15 912
SILO2 5 905 1 810 23 079
DEPO1 4 528 1 056 13 577
DEPO2 4 4 477 8 954 121 868
DEPO3 4 8 418 16 836 230 896
DEPO4 4 10 897 21 794 299 593

Table 5.2: Description of the test matrices.

matricesA are ill-conditioned and, hence, classical one-level solvers face problems in solving
the matrices efficiently. For instance, the larger11 λ/µ or the smallerrDir, the less efficient
they are. We recall thatrDir is defined as the number of Dirichlet variables divided by the
total number of boundary variables.

UAMG is a good preconditioner for linear elasticity matrices on appropriate FE grids if
the raterDir is large enough. Regarding the two problems classes SILO and DEPO, quite
a large part of the boundary is fixed by Dirichlet conditions. To be more specific, for all
test cases considered here,rDir is between 0.5 and 0.6 so that we expect the convergence of
UAMG to be only a bit worse than for the full Dirichlet case,rDir = 1.

In both problem classes, SILO and DEPO, we have to deal with at least one nitride layer,
at least one oxide layer and a silicon layer. The DEPO class contains an additional poly-Si
layer. From Table 5.1 it can be seen that, for all four layers,ν is far from the critical value
0.5. Therefore, the material properties lead to only a slight anisotropy of the two PDEs.

However, the parameters of neighboring layers can be quite different. This is particularly
true for the oxide compared to the nitride, since here the values ofE, λ, µ of the nitride
are approximately one order of magnitude larger than those of the oxide (see Table 5.1).
Hence, especially the SILO2 example (see Fig. 5.17(a)) suffers from this parameter “jump”
and, physically interpreted, large stresses around its two oxide-nitride interfaces can occur.
Together with the fact that the mesh around these interfaces is not particularly refined (see
Fig. 5.17(a)), this might explain to a large extent the fact that SILO2 has by far the worst
condition number here12 (see Table 5.3).

As indicated above, the very thin poly-Si layer in the DEPO structure causes large stresses
and could numerically be an origin of ill-conditioning, although poly-Si andSi have the same
E andν values. However, the DEPO meshes are refined in and around this layer (see Figs.
5.3 and 5.17(b)) so that the effect is lessened, and the condition number of the DEPO matrices
is rather high but considerably lower than for SILO2 (see Table 5.3). The coarsening structure
produced by UAMG(std) for DEPO2 is shown in Fig. 5.3. Also an enlargement of the area
“between” the nitride and oxide and around the critical thin poly-Si layer is shown there. As
can be seen from Table 5.4, the coarsening is equally fast in all four material layers so that,
in particular, the critical thin poly-Si layer is not “neglected” but handled as the other layers.

We have computed the strength of unknown cross-couplings as described byρ(AuA−1),

11This is equivalent to growingν, approaching0.5 from below.
12In contrast to SILO2, SILO1 is refined at the interfaces. The overall discretization grid of SILO1 is, however,

rather course.
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example nu condE ρ(AuA
−1) ρ(A−1Au) ρu ρt ρ11 ρ22

(3.67),ν=0.20 2046 1382 2.23 1.55 3.46 0.20 0.07 0.03
(3.67),ν=0.33 2046 1978 2.59 1.61 4.18 0.26 0.06 0.06
(3.67),ν=0.45 2046 5322 5.50 1.82 10.01 0.60 0.05 0.05
DEPO1 1056 4091 3.62 1.72 6.25 0.69 0.62 0.26
SILO1 1432 2137 2.63 1.62 4.27 0.25 0.15 0.04
SILO2 1810 49675 4.67 1.79 8.34 0.57 0.44 0.48

Table 5.3: ρu and asymptotic convergence rates (i.e. spectral radii of the corresponding iter-
ation matrices)ρt = ρ[GS-UAMG(std)(A)], ρ11 = ρ[GS-VAMG(std)(A[1,1])], ρ22 = ρ[GS-
VAMG(std)(A[2,2])] for (3.67) with three differentν and the three smallest stress matrices. Remark 4.25
explains how the iteration matricesM have been computed. All eigenvalue computations have been
performed with LAPACK’s [1] direct eigensolver.

layer nodes cg,1 cg,2
oxide 1013 1.55 1.49
nitride 799 1.54 1.49
poly-Si 587 1.56 1.47
silicon 2424 1.55 1.51
in total 4477 cg=1.52

Table 5.4:Grid complexities for the DEPO2 example. For the current layer: nodes = number of nodes
in layer including layer boundary nodes,cg,n = grid complexity w.r.t. then-th unknown.

ρ(A−1Au) and ρu (3.65), in order to show that the matrices are indeed not too strongly
coupled for UAMG to work, and that they have properties similar to the plane-strain problem
(3.67) (see Section 3.3.3.2) on standard grids with a standard FE discretization. Table 5.3
shows these values for the three smallest stress examples, and for model (3.67) on the unit
square, discretized using bilinear finite elements,h = 1/32, with Dirichlet conditions on
two sides of the unit square and with three differentν. The values for the stress matrices
are indeed comparable with the ones for the linear elasticity models - this is also true for
SILO2, by far the most ill-conditioned matrix here - so that UAMG should exhibit a similar
convergence behavior. In particular, we expect UAMG to be a more efficient preconditioner
than classical one-level solvers. However, since the SILO and DEPO problems exhibit only
a slight anisotropy, we also expect PAMG to show similar convergence properties here. That
these expectations hold is demonstrated below.

5.2.1.4 Efficient AMG Approaches

As mentioned in Section 3.3.3.2 and Remark 3.31, unknown-based as well as certain point-
based AMG approaches with block-interpolation have been investigated in the literature for
linear elasticity problems. We have thus tested both UAMG as well as PAMG variants with
GS13 as well as ILU(0) for smoothing. We have also compared standard coarsening with

13which means UGS for UAMG and BGS for PAMG.
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(a) (b)

Figure 5.3: Coarsening for the x-displacement in case of the DEPO2 problem. (a) Full grid
without FE edges, (b) enlargement of the critical area, with FE edges.

A1-coarsening. In addition and according to the following Remark 5.4, we have tested, for
UAMG, both the block-Galerkin and the full-Galerkin variant.

Remark 5.4 In [56], AMG1R5 [71] as a block-diagonal preconditioner for BiCGstab or
GMRes has been investigated for stress governing equations. This approach corresponds14

to block-UAMG, that is an unknown-based AMG approach with block-Galerkin coarse level
operators (3.57). The deterioration of convergence usually caused by using block-UAMG
instead of full-UAMG is often compensated by the reduction of computational work and also
memory requirements of the setup phase and each cycle. That this also holds for SAMG
applied to our test cases will be demonstrated below. N

Table 5.3 also gives the spectral radiiρ of the iteration matrices, that is the asymptotic
convergence rates, of GS-UAMG(std) applied toA as well as its two diagonal blocksA[n,n],
n = 1, 2. These asymptotic convergence rates show that stand-alone UAMG converges
with “acceptable”15 but varying rates. The convergence of UAMG applied toA is always
worse, sometimes considerably, than that of VAMG applied to theA[n,n]. However, for the
SILO and DEPO matrices, the performance of VAMG for theA[n,n] (the maximum ofρ(GS-
VAMG(std))(A[n,n])) is not too far from UAMG’s behavior.

As a generally expected trend, for comparable problem sizes,ρt is increasing withρu,
though this does not hold strictly, most probably due to the different properties of the materi-
als and grids. Nevertheless, two well-separated “levels” can be observed for the six matrices
listed in Table 5.3: very roughly,ρt ∈ [0.2, 0.3] corresponds toρu ∈ [3, 5], andρt ∈ [0.5, 0.7]

14besides the fact, that in [56] also (Gauss-Seidel) smoothing is performed separately for each unknown, i.e. GS
is applied to theA[n,n], whereas we use UGS smoothing.

15for a stand-alone AMG variant. Acceleration is discussed below.
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to ρu ∈ [6, 10] here. It is subject to further investigations whether such “level formation” can
also be found in more general situations.

preconditioner bd it. ARF cA cP time mtot cprec sp.

ILU(0)-UAMG(std) 17 0.25 2.3 0.0 1.53 19.44 2.38 1.8
ILU(0)-UAMG(std) x 23 0.35 1.6 0.0 1.53 14.82 1.79 1.8
ILU(0)-PAMG(ns,std,t,P) 20 0.28 1.8 2.1 1.50 19.95 2.45 1.8
ILU(0)-UAMG(agg) 32 0.48 1.2 0.0 1.59 11.33 1.34 1.7
ILU(0)-UAMG(agg) x 32 0.48 1.1 0.0 1.41 10.49 1.23 1.9
ILU(0)-PAMG(ns,agg,t,P) 33 0.48 1.2 1.3 1.63 14.95 1.81 1.7
GS-UAMG(std) 21 0.32 2.3 0.0 2.25 11.86 1.50 1.2
GS-UAMG(std) x 27 0.39 1.6 0.0 2.25 8.86 1.11 1.2
GS-PAMG(ns,std,t,P) 24 0.34 1.8 2.1 1.94 13.55 1.54 1.4
GS-UAMG(agg) 42 0.58 1.2 0.0 2.28 6.73 0.77 1.2
GS-UAMG(agg) x 46 0.58 1.1 0.0 2.34 6.30 0.68 1.2
GS-PAMG(ns,agg,t,P) 45 0.59 1.2 1.3 2.31 10.39 1.18 1.2

Table 5.5: Results for the DEPO4 example. Accelerator always BiCGstab. bd: block-
diagonal Galerkin, it.: number of BiCGstab-cycles, time: wall-clock time [sec], mtot

[MBytes]: total memory needed, sp.: speed-up compared with fastest one-level solver.

For the larger matrices, namely DEPO2-4, stand-alone AMG variants stall or diverge
after a few iterations. Eigenvalue distributions for the iteration matrices of GS-UAMG(std)
and ILU(0)-UAMG(std) applied to the SILO2 matrix (see Figs. 4.7 (a) and (b), respectively),
show that only a few eigenvalues are between 0.25 and 0.57 (UGS smoothing) or are even
larger than 1 (ILU smoothing), preventing AMG stand-alone from being more efficient. We
can assume a “similar picture” also for the other matrices. Hence, acceleration16 by BiCGstab
or GMRes should considerably enhance the convergence. Indeed, this is always the case
as can exemplarily be seen for DEPO4 in Table 5.5 where results for the different AMG
variants mentioned above, accelerated by BiCGstab17, are collected: each of the accelerated
approaches shows a reasonable ARF whereas stand-alone GS-UAMG(std) stalls after a few
iterations.

As expected, UAMG- and PAMG-preconditioned BiCGstab yield similar convergence
rates here, but due to the facts that PAMG’s setup phase is more expensive and PAMG needs
more memory, UAMG is the more efficient preconditioner. In all cases, approaches with
standard coarsening yield a smaller, better ARF but are not faster than the corresponding
variants with aggressive coarsening which are clearly preferable overall. Whereas ILU(0)-
UAMG diverges (see Fig. 4.7(b)), ILU(0) smoothing helps improving thepreconditioning
properties considerably so that its use also pays in total computational time here. However,
the memory requirements are of course higher as for the GS variants. The qualitative results
for the other five examples are basically the same. An interesting result is that the block-AMG
variants are more efficient than the corresponding full-AMG variants, confirming Remark 5.4.

16Note that the matrices are asymmetric due to the boundary conditions.
17For the matrices considered, BiCGstab has turned out to be a more efficient accelerator for AMG than

GMRes(k).
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Remark 5.5 For all six test cases, it has turned out that PAMG variants with B-, MU- or
SU-interpolation, a norm-based or distance-basedPPP converge with very similar ARFs here.
This indicates that, for “real-life” grids, PAMG approaches even with block-interpolation do
not tackle the rotational rigid body modes better than UAMG (as sometimes hoped in the
literature). N

one-level solver it. ARF time mmat mtot

ILUT(3;0.005)-BiCGstab > 500 (stag)
ILUT(9;0.005)-BiCGstab 135 0.84 2.7 3.9 10.1
ILUT(9;0.005)-GMRes(4) > 500 0.98 > 5.3 3.9 10.7
ILUT(9;0.005)-GMRes(20) > 500 0.96 > 5.9 3.9 16.1

Table 5.6: Results for the DEPO4 example. Fastest one-level solver (ILUT(9;0.005)-
BiCGstab) and best GMRes-solvers. it.: number of cycles, time: wall-clock time [sec],
mmat: memory [MBytes] needed for original matrixA, mtot: total memory needed. “stag”
means stagnation of the approach. Note that the overall speed depends only very slightly on
τdroptol here.

5.2.1.5 Comparison with One-Level Solvers

Among the iterative one-level methods implemented in SAMG, ILUT(9;5e-3)-preconditioned
BiCGstab has turned out to be the fastest one-level solver. Corresponding results for the
DEPO4 example are shown in Table 5.6. Hence, our yardstick for comparisons with UAMG-
BiCGstab approaches is ILUT(9;5e-3)-BiCGstab.

Figs. 5.4 and 5.5 show comparisons of the fastest AMG approach, ILU(0)-UAMG(std),
with the best one-level solver, ILUT(9;5e-3)-BiCGstab. In addition, the performance of GS-
UAMG(std) is shown. The results clearly demonstrate that UAMG-BiCGstab reduces both
residuals and errors quickly and much more stable than ILUT(9;5e-3)-BiCGstab. Whereas
the classical iterative solvers become inefficient or even stagnating with increasing problem
size, in case of AMG-preconditioned BiCGstab and also GMRes(20) the ARFs are bounded
from above by a constant substantially smaller than 1, and the computing times are (nearly)
proportional to the number of variables. Therefore, they are efficient preconditioners and
exhibit a nearly optimal behavior here. Even for DEPO4, the largest matrix in the set, but in
absolute terms rather small, already a speedup of nearly 2 has been achieved in comparison
with classical one-level solvers. It can be expected that the speedup considerably grows with
increasing problem size.

5.2.2 Reaction-Diffusion Processes

Reaction-diffusion processes18 play a key role in layer modification steps such as oxidation,
nitridation, silicidation, ion implantation and the like (cf. Fig. 5.1), and in thermal annealing

18more precisely, drift-diffusion-reaction processes.
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Figure 5.4: Reduction of (a) residuals and (b) errors for DEPO4.

steps following the aforementioned steps. We restrict the subsequent discussions to thermal
annealing steps which do alter the constitution but do not alter the shape of the layers.

According to [37, 36], the present understanding of reaction-diffusion processes of do-
pants and point defects in silicon is as follows. The interaction of substitutional dopants19

and silicon point defects20 is believed to be the elementary physical process that causes dopant
redistribution. Dopants on lattice sites and silicon interstitials or vacancies react with each
other. The created dopant-point defect pairs are assumed to diffuse, resulting in dopant re-
distribution. A large number of ionization and other chemical reactions is assumed to occur
at the same time, involving both dopants and point defects. Usually, the electrical processes
(charge transport and generation and ionization reactions) are assumed to be very fast in com-
parison with the chemical reactions and dopant transport phenomena so that equilibrium for
the electronic reactions is assumed for process simulation runs.

The task of reaction-diffusion simulations is then to determine the concentration of each
relevant species as a function of space, time and outer process conditions. The most important
species which have to be treated are substitutional and interstitial impurities, intrinsic silicon
point defects (interstitials and vacancies) in various charge states, impurity-point defect pairs
in various charge states and immobile configurations of dopants and point defects.

19Dopantsare species (atoms, ions, clusters) different from the basic wafer material (e.g. silicon). Examples are
atoms of the third or fifth group of the periodic table as boron or phosphorus, respectively.

20Siliconpoint defectsare interstitial silicon atoms or vacancies in the silicon crystal lattice.
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Figure 5.5: (a) Average residual reduction rates and (b) computing times for the 6 examples
and 4 different solvers.

5.2.2.1 System of Reaction-Diffusion Equations

A system of reaction-diffusion equations consists of a sequence of balance equations of the
form (see [37, 36])

∂Ci
∂t

+∇ · Ji = Ri (i = 1, . . . , N) (5.9)

where theJi denote (diffusion and field driven) fluxes given by

Ji = −Di

(
∇Ci +

q

kBT
Ci∇ψ

)
. (5.10)

q denotes the elementary charge,kB the Boltzmann constant,T the absolute temperature,
ψ the electrostatic potential, andN the number of species with a magnitude of about 30 to
40 typically. For thei-th species,Ci denotes the concentration,Ri = Ri(C1, . . . , CN ) the
reaction term, andDi the diffusivity. The reaction termsRi are polynomials inC1, . . . , CN
where the powers of theCi are determined by stoichiometry, and the coefficients correspond
to the reaction rates. The latter are constants depending onT and considered as known in
the scope of the “direct problem” which is posed here. Note, however, that most of them are
subject to “inverse problems”, that is parameter extraction problems.
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(a) (b)

Figure 5.6: (a) Layout and (b) grid of a 3D test example withSiO2 on top of the wafer.

After inserting (5.10) into (5.9) for eachi, the PDE system consists ofN equations.
By employing some equilibrium assumptions, a reduction to a system of typically 3 to 6
equations of a form similar to (5.9) can be performed (see [37]). To be more specific, the
substitutions can be performed so that we end up with a system ofnu PDEs each of which of
the form

∂Pi
∂t

−∇ ·

(
nu∑
k=1

Qik∇uk

)
= R̃i (i = 1, . . . , nu) . (5.11)

Theu1, . . . , unu serve as unknowns of the reduced system. Among typical examples are the
total concentration of interstitials,Itot, the total concentration of vacancies,Vtot, and con-
centrations of impurity dopants such as arsenic, boron or phosphorus.Pi andR̃i are poly-
nomials inu1, . . . , unu , theQik rational expressions in these unknowns. Initial conditions
for the system (5.11) are obtained from an initial distribution of dopants which is obtained
as output from a simulation of the previous process step. For the potentialψ, an additional
Poisson equation can be solved, which could be coupled to the above system. We have only
investigated the typical, uncoupled case.

5.2.2.2 Discretization

In common process simulators, such as DIOS being part of the GENESISe suite [39], the
discretization of the time-dependent, nonlinear PDE system to be solved is performed as
follows. An implicit approach is chosen for the time discretization. The spatial discretization
is performed by the so-called “box method”on Delaunay grids (cf. [36] and Section 5.3.1.5),
and the resulting nonlinear system is linearized by a modified Newton(-Raphson) method.
ILU-preconditioned BiCGstab or GMRes are commonly used as solvers for the resulting
linear systems. More precisely, modified ILUT or ILU(0) preconditioners are employed.
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Since for each time step a nonlinear system and for each nonlinear system a series of
linear systems has to be solved, we end up with a large series of linear systems to be solved in
each reaction-diffusion simulation. Normally, the smaller the time step, the better converges
the Newton iteration and the smaller the condition numbers of the corresponding matrices.
In DIOS, a run-time evaluation of the necessary number of linear and nonlinear iterations is
used for adaptation of the time step.

5.2.2.3 Exemplary Test Case

For the tests, the SAMG library has been integrated into DIOS. The performance of SAMG
has then been investigated for the simulation of an annealing step after an ion implantation
step for the 3D model shown in Fig. 5.6. The model consists of a silicon layer with a small
silicon oxide layer on top and an inert gaseousN2 phase as ambient. Therefore, no additional
material21 can enter the layer system. In the annealing process, only the already available
silicon point defects and the implanted dopants arsenic and boron react with each other. In
the concrete simulation considered, the temperature, starting from 750◦C, is increased in each
time step and reaches 925◦C finally.

The physical unknowns to be determined by the simulation are the total concentrations
of interstitials (Itot), vacancies (Vtot), and the dopants arsenic (Astot) and boron (Btot). The
Delaunay grids used for the simulation contain approximately 181 500 tetrahedra, 38 500
pyramids (with a base of four sides), 2 500 bricks andnp=61 319 points. The arising matrices
havenv=245 276 rows andnA ∈ [ 7 028 004, 7 046 780 ] nonzero matrix entries.

5.2.2.4 Reaction Front and Matrix Properties

Of particular interest are the concentration profiles in and near thereaction front, a narrow
region, moving from the “implantation surface” of the wafer towards the interior, where fast
reactions occur due to large concentration gradients (see [61] for example). Hence, for each
unknownun, there exists a subdomain with strong variations in space and time, whereas on
the complementary subdomain only small changes are observed. Although these “subdo-
mains of strong variations” do not coincide for the individual functions, they all lie inside one
narrow reaction front for all applications we have in mind here. For our example (see Fig
5.6), the “implantation surface” is the part on top of the silicon layer which is not covered
by the oxide layer. From this surface, the reaction front is moving downwards, in normal
direction to the surface, and is more and more spreading out sideways under the oxide layer.

The large concentration gradients inside the reaction front are reflected on matrix level
in the magnitude of off-diagonal entries: inside the reaction front, the reaction terms cause
very large positive or negative off-diagonal entries in the corresponding rows of the matrices
A. Hence, even for reasonable time steps, the matrices become ill-conditioned, leading to
serious problems for the standard, one-level iterative solvers used in process simulators. It
can be observed that these solvers become less efficient or even stagnate in an unpredictable
way. The difficulties often increase during later time steps of a simulation. For our exemplary
test case, this is demonstrated in Section 5.2.2.6.

21for instance, oxygen, if present, would enlarge the silicon oxide layer.
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The individual PDEs (5.11) in the stationary case are “harmless” diffusion equationsin
the total absence of the reaction front. Outside the reaction front, the concentrations change
only slowly so that a relatively “harmless” diffusion-dominated system remains to be solved.
The reaction terms, however, destroy the dominance of the diffusion terms locally inside the
reaction front due to the large concentration gradients. As a result,A and their submatri-
cesA[n,n] are far from being M-matrices and, hence, VAMG or a straightforward UAMG
approach do not make sense here.

5.2.2.5 Efficient AMG Approaches

Numerical experiments have shown that, by introducing a very simple modification of AMG’s
coarsening process, one can make UAMG often work again. The only problem for UAMG is
the narrow reaction front corresponding to just a small amount of matrix rows compared with
nv. Therefore, it is tempting to simply not coarsen at all inside this front. To demonstrate
this, we have forced all those variablesvi to stay in the coarse levels, whose corresponding
rows strongly violate diagonal dominance,∑

j 6=i

|aij | > σvio|aii| . (5.12)

Depending on the threshold parameterσvio > 1, the resulting UAMG approach, employed as
a preconditioner, often converges quite reasonably. However, the choice ofσvio is crucial and
matrix-dependent, and the above criterion is not always suitable for reliably distinguishing
the reaction-dominant from the slow-diffusion part. This is because violation of diagonal
dominance can also be due to the Laplacian-type unknown cross-couplings which are also
contained in the matrix. Numerical tests reported in the next section will confirm that this
modified UAMG approach is not robust enough for a use in practice.

The reaction-diffusion matrices considered here and the RD models discussed in the pre-
ceding chapters (see Sections 3.1.3.2, 3.4.1.2 and 4.6 and Examples 3.4 and 3.11) have some
important properties in common. Similarly as for the RD models, the fact that the dominance
of diffusion is “only disturbed” due to reaction terms can be exploited in order to define
efficient PAMG approaches. As can be seen in Fig. 5.7(a), the underlying grids are adap-
tively refined in the reaction front. Since, for the problem considered, anisotropies are due
to non-uniform grid spacings only, a primary matrix based on distances yields an appropriate
coarsening for the underlying diffusion problem, as has been discussed in Section 3.4.2.4.
Fig. 5.7(b) depicts a typical coarse level created by distance-based coarsening.

It is promising now to use an accelerated PAMG approach in order to address all distur-
bances caused by the reaction terms. Similarly as for the RD models, BGS (or ILU) smooth-
ing helps to handle the large unknown cross-couplings. However, an important difference to
the RD models is that these couplings also occur outside theA(k,k). As has heuristically been
explained in 3.11, a distance-based primary matrix together with an MU-interpolation with
weights also based on distances makes PAMG an efficient preconditioner here. Numerical re-
sults, presented in Section 5.2.2.6, show that the proposed method treats the “pure” diffusion
outside the reaction front as well as the fast reactions inside properly.
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(a) (b)

Figure 5.7: (a) Part of a 2D cross section of the 3D grid of Fig. 5.6 which is adaptively refined
near an edge of the interface oxide/wafer. Apparently missing edges are due to the fact that
3D elements have been cut. (b) Finest and, depicted by filled black boxes, the next coarser
level for the grid on the left.

Since, particularly due to the Newton process, series of similar matrices have to be solved,
it is feasible to reuse parts of SAMG’s setup22. Therefore, a control mechanism has been
integrated into the DIOS-SAMG interface. It performs a full setup at the beginning of a new
Newton process. For the following matrices belonging to the same nonlinear problem, the
level hierarchy is reused, and only the Galerkin operators are calculated from scratch. The
control mechanism also checks if convergence problems arise. However, for the simulation
run with the test case described above, no problems occur. Numerical results illustrating the
effectiveness of the proposed overall approach are discussed in the next Section 5.2.2.6. Let’s
make a remark first.

Remark 5.6 It should be mentioned that in the past also geometric multigrid methods have
been developed for certain problems involving diffusion processes. For instance, nonlinear
geometric multigrid methods (FAS) with adaptive multilevel grid selection strategies for cer-
tain diffusion-oxidation evolution processes are the topic of [41]. Since the extension of such
geometric multigrid techniques to the describedreaction-diffusion problems onunstructured
grids is not straightforward, if feasible at all, they are not discussed here. N

5.2.2.6 Numerical Results

We now demonstrate for the test case described in Section 5.2.2.3 that SAMG outperforms
standard iterative preconditioners with respect to both stability of the convergence as well as

22This belongs to SAMG’s features, see Section 4.1.1.
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computing time. For this purpose, we investigate the performance for both the solution of
single matrices and the whole DIOS simulation run.

Efficiency of AMG for Individual Matrices We start with investigations for individual
matrices. They have been extracted from the simulation run performed with DIOS’ standard
iterative solver, an ILU(T)-GMRes method with certain parameter adaptations dynamically
reacting on the solver performance during the run. DIOS usesε=1e-4 as a default. Results
are discussed in detail now for two matrices:

• Ard1 denotes the first matrix arising in the Newton process for timet = 0.004 (752.4◦C).

• Ard2 denotes the last matrix of the Newton process for timet = 0.058 (785.0◦C).

Whereas the DIOS solver needs 24 iterations forArd1 to reachε=1e-4, it needs 104 forArd2.

Remark 5.7 It does not make sense to choose matrices from late time stepst since the con-
crete linear solver chosen has a large impact on all matrices evolving in the current Newton
process and also all Newton processes for subsequent time steps. N

preconditioner cg cPPP cA cprec mtot ctot time

ILU(0)-UAMG(agg) 1.21 0 1.44 1.58 283.63 3.26 21.7
ILU(0)-UAMG(std) 1.61 0 3.07 3.18 557.66 6.42 38.1
UGS-UAMG(agg) 1.21 0 1.44 0.90 163.77 1.88 (stag)
UGS-UAMG(std) 1.61 0 3.07 2.22 384.39 4.42 108.8
ILU(0)-PAMGRD(agg) 1.36 1.69 1.68 1.93 345.49 3.97 22.8
ILU(0)-PAMGRD(std) 1.86 3.13 3.23 3.63 638.72 7.35 39.2
BGS-PAMGRD(agg) 1.36 1.69 1.68 1.18 204.58 2.35 31.0
BGS-PAMGRD(std) 1.86 3.13 3.23 2.40 414.47 4.77 44.0
ILU(0) 1 0 1 1 184.98 2.10 31.1

Table 5.7:Complexities and timings for theArd2 example.σvio=1.2 for UAMG. Accelerator always
BiCGstab. mtot = overall memory requirements [MBytes] including mem(A) = memory needed for
finest-level matrix = 86.93 MBytes,ctot = mtot/mem(A), time = wall-clock time for whole run. “stag”
means stagnation of the approach. In particular for comparing timings, see explanations in the text!

Corresponding to a general experience, also here the AMG approaches achieve their best
performance in terms of computational time when used as preconditioners. It has turned out
that the performance of both BiCGstab and GMRes(20) is comparable here. This is also
true when used with ILU(0) or ILUT preconditioning. However, since BiCGstab needs less
memory, this accelerator is more efficient and is thus chosen for the following tests.

Regarding PAMG variants, approaches with a norm-basedPPP and scaling of interpola-
tion (see Section 4.3.1.5) work sometimes, but they are less stable than approaches with a
distance-basedPPP . Whereas approaches with a block-interpolation often diverge here, and
approaches with an SU-interpolation show an inconsistent behavior, MU-interpolation with
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Figure 5.8: (a) Dependence of UAMG’s and PAMG’s convergence behavior onσvio for the
Ard1 example. (b) Error histories of several solvers for theArd1 example. BiCGstab with 1:
ILU(0)-PAMGRD(agg), 3: BGS-PAMGRD(agg), 5: ILU(0), 6: ILUT(3), 7: ILUT(5).

weights based on distances has been found to be robust23. Therefore, among the point-based
approaches, PAMG(dist,·,MU,dist) is the most robust solver and preconditioner. In the fol-
lowing, we refer to this approach asPAMGRD(·). Both ILU(0) and BGS yield efficient
smoothers for this approach. ILU(0), however, needs much more memory. As can be seen in
Table 5.7 for matrixArd2, aggressive coarsening considerably reduces memory requirements
and often also the overall computing time compared to the respective variant with standard
coarsening.

Exemplarily for matrixArd1, convergence rates of UAMG(std) and PAMGRD as func-
tions ofσvio (5.12) are depicted in Fig. 5.8(a). Obviously, the choice ofσvio is very crucial
for UAMG. Whereas PAMGRD’s performance is stable for allσvio even without BiCGstab,
UAMG in the stand-alone version converges only in a small intervall. BiCGstab is able to
improve UAMG’s convergence, however, the convergence quickly deteriorates with increas-
ing σvio. Unfortunately, with decreasingσvio, the complexity24 and thus the computing time
suffers considerably. Qualitatively the same trends are obtained with ILU(0)-smoothing.

23In contrast to this, an interpolation with coordinates-based weights does not help improvingUAMG’s perfor-
mance.

24For very smallσvio, too many variables are forced intoC.
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Figure 5.9: (a) Residual and (b) error histories for theArd2 example. Preconditioners 1,3,5
as in Fig. 5.8(b), 2: ILU(0)-PAMGRD(std), 4: BGS-PAMGRD(std).

UAMG(-BiCGstab)’s performance strongly depends on bothσvio and the concrete ma-
trix. For instance, whereas the optimal25 σvio for Ard1 is 1.5, it is 1.2 forArd2. Moreover,
for Ard2 for instance, UGS-UAMG(std)-BiCGstab is slow and UGS-UAMG(agg)-BiCGstab
even stagnates for this matrix (see Table 5.7). In contrast to this, PAMGRD-BiCGstab with
both BGS and ILU(0) shows qualitatively the same stable behavior for all matrices tested.

Regarding computing times, ILU(0)-UAMG-BiCGstab for the optimalσvio is a bit faster
than ILU(0)-PAMGRD-BiCGstab for the two matricesArd1 andArd2 (see Table 5.7). How-
ever, for only nearly-optimalσvio, the speed of ILU(0)-UAMG-BiCGstab considerably de-
teriorates due to either a higher complexity or a worse convergence so that PAMGRD ap-
proaches outperform UAMG then. In particular, PAMGRD-BiCGstab with aggressive coars-
ening and BGS-smoothing leads to a cheap and quite fast variant, whereas the same approach
but with ILU(0) smoothing needs more memory but needs considerably less overall comput-
ing time.

Comparison with One-Level Solvers In the following, we present a comparison of the
four PAMGRD-BiCGstab variants mentioned above with classical one-level solvers. For
all matrices tested, the performance of the PAMGRD-BiCGstab variants and of ILU(0)-

25in terms of the convergence of the stand-alone ILU(0)-UAMG(std) approach.
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Figure 5.10: Comparison of ARFs: (a) DIOS’ standard solver and SAMG, (b) SAMG only.

BiCGstab essentially lies in the “range” defined by Figs. 5.8(b) and 5.9. That is, the results
for the other matrices tested correspond to 5.8(b) or 5.9 or lie somewhere in between. It
can be seen that all PAMGRD-BiCGstab variants tested here converge much faster than the
ILU(T)-preconditioned ones26.

Fig. 5.9 indicates27 a typical behavior: It is a general observation that ILU(0)-BiCGstab
does typically not reduce errors and residuals simultaneously. The error reduction is behind,
in particular if only a residual reduction ofε=1e-4, say, is demanded, which is the default in
DIOS. In contrast to this, PAMGRD-BiCGstab reduces residuals and errors nearly “simulta-
neously”.

Complexities, total memory requirements and total timings for different AMG approaches
and ILU(0) are shown in Table 5.7. The PAMGRD-BiCGstab variants with aggressive coars-
ening show reasonable complexities. In particular, we havecprec < 2 here, that is, both
variants need only less than twice more memory than ILU(0)28. Both variants are faster than
or as fast as ILU(0)-BiCGstab. Note that here the time required to reduceresidualsis mea-

26ILUT-BiCGstab does not always converge. Interestingly, if it converges, the larger the levellfill of fill-in, the
worse the convergence of ILUT(lfill)-BiCGstab - at least for small fill-ins. ILU(0) has turned out to be both the best
one-level preconditioner as well as the best smoother for PAMGRD in terms of convergence rates.

27even if Fig. 5.9 is still rather advantageous for ILU(0)-BiCGstab here. For matrices arising at later time steps
we can expect ILU(0)-BiCGstab to perform worse, see also Fig. 5.10.

28Recall from Table 4.1 thatcprec < 2 has also been obtained for our model problems.
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Figure 5.11: Total wall-clock computing time before computations for the current simulation
time step have startedversussimulation time step for the 3D reaction-diffusion example.

solver SAMG DIOS
number of time step reductions 0 5
number of nonlinear solvesNns 23 41
number of linear solvesNls 170 239
ratioNls/Nns 7.39 5.83
number of new matrix structures 25 37
total computing time [sec] 9242.1 18907.4
ratio of computing times 1 2.05

Table 5.8: Results of a DIOS simulation run for the 3D reaction-diffusion example. Shown
are performance data of the SAMG solver chosen, BGS-PAMGRD(agg)-BiCGstab, and the
standard iterative DIOS solver, respectively.

sured. However, as mentioned above, DIOS stops a linear solve step if the residual is reduced
by ε=1e-4. As can be seen in Fig. 5.9 forArd2, ILU(0)-BiCGstab has then reduced the error
by approximately 5e-2 only, whereas the PAMGRD-BiCGstab variants have reduced the er-
ror by approximately 5e-4. Therefore, even if ILU(0)-BiCGstab is seemingly not slower than
BGS-PAMGRD(agg)-BiCGstab and needs a bit less memory, BGS-PAMGRD(agg)-BiCGstab
is more favorable due to the much bettererror reduction. In summary, the PAMGRD(agg)-
BiCGstab approaches are clearly the favorable choices here. BGS-PAMGRD(agg)-BiCGstab
is a good compromise of error reduction, speed and memory requirements.

Results of the Full DIOS Simulation Run The behavior described for single matrices is
typical for a whole simulation: PAMGRD-BiCGstab yields stable and superior convergence
rates for residualsanderrors in all Newton iterations foreachtime step. The PAMGRD(agg)-
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BiCGstab variants are faster29, more robust, and thus considerably more efficient than ILU(0)-
or ILUT-preconditioned one-level solvers. This is true even if only the slower, but less
memory-consuming of both favorable PAMGRD(agg)-BiCGstab approaches is chosen, name-
ly the one with BGS smoothing. This is shown for the full DIOS simulation run now.

In Table 5.8 and Figs. 5.10 and 5.11, the performance of DIOS’s original run is com-
pared with a run where BGS-PAMGRD(agg)-BiCGstab has been chosen as the linear solver
for all matrices. The following conclusions can be drawn. Whereas in the original DIOS
run 5 time-step rejections occur, each of which with a complete remeshing step, this does
not happen when SAMG is chosen. Due to this and its generally better error-reduction prop-
erties, SAMG reduces the number of nonlinear iterations considerably. Since the average
number of linear solves necessary per nonlinear step is just a bit higher for SAMG than for
the DIOS solver, the total number of linear solves necessary is substantially reduced when
using SAMG. Also the number of new matrix structures which have to be set up by DIOS is
reduced. Altogether, these results demonstrate clearly that SAMG stabilizes the whole sim-
ulation. Whereas the performance of the DIOS solver substantially degrades in later steps of
the simulation, SAMG’s performance improves. As a consequence, SAMG clearly outper-
forms the DIOS solver in the second half of the simulation run, as can be seen, in particular,
in Fig. 5.11. In total, SAMG performs the full simulation more than twice as fast as the DIOS
solver.

5.3 Device Simulation

Semiconductor device simulation aims at the computation of the electrodynamic behavior
of a self-contained semiconductor device under various operating conditions. These can be,
for example, different voltages applied to contacts of the device. The results of a device
simulation are time- and spatially dependent functions as well as net quantities. The former
are the electrostatic potential, the concentration of electrons and holes (and, depending on
these three functions, the electron and hole current densities), and - if not assumed to be an
input to the simulator - the device temperature distribution. The latter are typicallycurrent-
voltage characteristics(IV-characteristics30).

There exists an extended hierarchy of semiconductor models, ranging from quasi-hydro-
dynamic to kinetic and classical to quantum models. In [43] in form of a survey and in [55]
in more detail, a hierarchy of the most important models is presented and discussed. On
the highest level in this hierarchy are the kinetic models, i.e. the semi-classical semicon-
ductor Boltzmann equation and the quantum Boltzmann equation. The numerical simulation
of Boltzmann systems has been carried out by Monte-Carlo or deterministic particle meth-
ods. Since they are very expensive, simpler fluid dynamical models have been derived, one of
them being the hydrodynamic equations. The quasi-hydrodynamic models range from (quan-
tum) hydrodynamic and Schroedinger-Poisson over (quantum) energy-transport to (quantum)
drift-diffusion models, which is the lowest level considered here.

The simplest quasi-hydrodynamic model is the standard drift-diffusion system. Com-
pared with higher dimensional, more involved models, it provides less accurate local poten-

29if not only the residual reduction but also the error reduction is taken into account, as explained above.
30see Section 5.3.2.4 for an example.
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tials and concentrations, but often predicts (current densities and) net quantities similarly re-
liably with much less computational effort. Although the local potentials and concentrations
would give a more detailed insight into the functioning of the device considered, engineers
are typically interested in current densities and global IV-characteristics31. In the engineering
environment, the quite complex energy-transport equations are used mainly to compute data
for model parameters in the drift-diffusion equations, whereas the simpler, “cheaper” drift-
diffusion systems are commonly used to determine current densities and IV-characteristics.

It should be pointed out that, with increasing miniaturization of the devices and the use of
novel device structures and other materials instead of silicon, drift-diffusion models reach the
limit of their validity. However, since the microscopic effects not described by them occur
only locally, in some small parts of the device, it might be feasible to use more sophisticated
models also only locally. An example for such an extended model might be the consideration
of quantum mechanical effects only in the channel of a MOSFET. Therefore, drift-diffusion
systems will remain an important tool for investigating the behavior also of the coming gen-
eration of semiconductor devices.

This part of the thesis is concerned with the efficient application of AMG approaches to
the linear systems arising in the numerical solution of drift-diffusion systems for semicon-
ductor devices. The focus lies entirely onstationarysimulations since these are typically
performed in an industrial environment.

In the next section, the standard drift-diffusion model for semiconductor device simu-
lation is described. In Section 5.3.2, we discuss properties and the efficient solution of the
arising matrix equations. In particular, we will show that point-based AMG approaches em-
ploying a norm-based primary matrix can yield preconditioners which are more robust and
often more efficient than the standard one-level preconditioners commonly used in (indus-
trial) device simulation.

5.3.1 The Standard Drift-Diffusion Model

In the following, a description of the transient and the stationary drift-diffusion models for
semiconductor devices, the spatial simulation domain and boundary conditions is given. We
then concentrate on aspects with a large impact on the arising systems of linear equations. In
particular, we discuss - in brief - appropriate scalings and the singular perturbation character
of the system, layer behavior and conditioning. Finally, the commonly used discretization
and linearization techniques are outlined. With the exception of Section 5.3.1.1, we consider
the stationary case.

5.3.1.1 The Transient Basic Semiconductor Equations

The standard drift-diffusion model consists of a set of so-calledbasic semiconductor equa-
tions. They can be derived, for instance, from Maxwell’s equations, several relations ob-
tained from solid-state physics and some further (rather simplified) assumptions. Details on
their derivation are given in [82, 55], for example. The basic semiconductor equations can be

31to use the latter as input for circuit simulations, for example.
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written as follows:

−∇ · (εs∇ψ) + q(n− p− C) = 0 Poisson(-type) equation, (5.13)

q
∂n

∂t
−∇ · Jn + qR(ψ, n, p) = 0 electron continuity equation, (5.14)

q
∂p

∂t
+∇ · Jp + qR(ψ, n, p) = 0 hole continuity equation, (5.15)

Jn = −q(µnn∇ψ −Dn∇n) electron current relation, (5.16)

Jp = −q(µpp∇ψ +Dp∇p) hole current relation. (5.17)

ψ = ψ(x, t) denotes the electrostatic potential, andn = n(x, t) andp = p(x, t) the electron
and hole carrier concentrations, respectively.x denotes the independent spatial variables
(usually three-dimensional), andt the time.Jn andJp are the densities of the electron and
hole current, respectively.εs represents the permittivity32. q is the elementary charge33, and
C = C(x) the net impurity concentration34. R = R(ψ, n, p) denotes the recombination-
generation term,µn andµp the mobilities, andDn andDp the diffusivities. Often, Einstein’s
relations are assumed to hold:

Dn = UTµn ∧ Dp = UTµp (5.18)

whereUT = kBT/q is the thermal voltage,kB the Boltzmann constant35, andT the device
temperature, which is often treated as a constant36 (see below).

There are various models for the mobilities and the recombination-generation. Mobilities
and diffusivities are always positive. In general, they are functions. Typically, we can assume
µn to vary between 50 and 1500 cm2 V−1 s−1 andµp between 50 and 500 cm2 V−1 s−1

for silicon at room temperature. The most basic recombination-generation process, namely
two-particle transition, is described by the Shockley-Read-Hall term,

RSRH =
np− n2

intr

τ lp(n+ nintr) + τ ln(p+ nintr)
, (5.19)

whereτ ln andτ lp denote the electron and hole life-times, respectively, andnintr the intrin-
sic carrier concentration37. Three-particle transition is modeled by Auger recombination-
generation38,

RAU = (CAUn n+ CAUp p)(np− n2
intr) , (5.20)

32a three-dimensional tensor, but usually assumed to be a scalar constant whose approximate value in silicon is
1.594 · 10−10 As V−1 m−1.

33q = 1.6021892 · 10−19 As.
34i.e. the doping profile.C is defined to be the difference of the concentrationsndp andpdp of the electron and

the hole carriers, respectively, contained in the device after its fabrication:C(x) = ndp(x)− pdp(x).
35kB = 1.380662 · 10−23 V As K−1.
36Assuming an ambient temperature ofT = 300 K, we obtainUT = 0.025852 V then.
37For silicon at room temperature,τ ln =1e-6 s,τ lp=1e-5 s, see [54]. The intrinsic carrier concentration is defined

to be the geometric average
√
n0p0 of the carrier concentrationsn0, p0 in a semiconductor in equilibrium.nintr ≈

9.65 · 109 cm−3 for silicon at room temperature.
38with CAUn =2.8e-31 cm6s−1 andCAUp =9.9e-32 cm6s−1 for silicon at room temperature [54].
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and impact ionization, which is extremely significant at high electric fields, by the impact
ionization (or avalanche) generation rate,

RI = −αn
|Jn|
q
− αp

|Jp|
q

(5.21)

with some constantsαn, αp. If necessary, the three rates are linearly superimposed, that is
R = RSRH + RAU + RI . OftenRI and quite oftenRAU are neglected. If onlyRSRH or
RSRH +RAU are considered, we writeR = RSRH,AU .

By inserting equations (5.16) and (5.17) into (5.14) and (5.15), respectively, and multiply-
ing the resulting equations by1/q we obtain the following set of partial differential equations
of second order which shall be solved forψ, n andp:

−∇ · (εs∇ψ) + q(n− p− C) = 0 , (5.22)

∂n

∂t
+∇ · (µnn∇ψ −Dn∇n) +R = 0 , (5.23)

∂p

∂t
−∇ · (µpp∇ψ +Dp∇p) +R = 0 . (5.24)

If thermal effects (for instance, thermal breakdown phenomena) are to be investigated, the
device temperatureT (see (5.18)) cannot be assumed to be a known input to the device
simulator any longer, but has to be computed. For this purpose, the above system is extended
by a heat flow equation:

ρc
∂T

∂t
−H −∇ · k(T ) · ∇T = 0 (5.25)

whereρ is the specific mass density,c the specific heat of the material,H the thermal gen-
eration (depending onJn andJp), andk(T ) the thermal conductivity (usually modeled as a
rational function ofT ). However, since in most device simulations the device temperature is
assumed to be known (T = 300 K), we will restrict ourselves to the system (5.22)-(5.24).

A detailed description of all physical models and parameters mentioned can be found
in [82, 54, 55] where also mathematical analyses of the models are carried out, and some
results on existence and (non-)uniqueness of solutions are given. We want to note here that
(local) uniqueness of the solution of the drift-diffusion system (5.22)-(5.24) can be proved
if µn, µp > 0 andR = RSRH,AU , that is if avalanche phenomena are excluded, and if
the potentials applied to the device are sufficiently small. However, there are physically
relevant cases where the solution is not unique, a prominent example being the snap-back
phenomenon (hysteresis) in thyristor technology.

5.3.1.2 The Stationary Basic Semiconductor Equations

In general,ψ, n andp are functions of positionx and time t. Since the mobilities and dif-
fusivities are positive, each of the three equations (5.22)-(5.24) is parabolic (under natural
conditions onψ, n, p andR). However, if all potentials which are externally applied to the
device contacts are time-independent, that is if the boundary conditions forψ (see also Sec-
tion 5.3.1.3) are time-independent, the problem is reduced to the following set of stationary
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basic semiconductor equations

−∇ · (εs∇ψ) + q(n− p− C) = 0 , (5.26)

∇ · (µnn∇ψ −Dn∇n) +R = 0 , (5.27)

∇ · (−µpp∇ψ −Dp∇p) +R = 0 . (5.28)

Each individual equation is elliptic now (under natural conditions onψ, n, p andR). In [54],
a detailed analysis of the system (5.26)-(5.28) is performed.

Simulations of the stationary case are carried out to investigate steady states of devices
sufficiently long after switching processes.Since these are the typically performed simula-
tions in industry, we concentrate only on them in the following.

5.3.1.3 Simulation Domain and Boundary Conditions

The simulation domainΩ ⊂ IRd, which is normally three-dimensional (d = 3) and only in
simple cases two-dimensional (d = 2), consists of two parts,Ωs andΩo. Ωs represents the
union of all material layers where the above-described coupled system of stationary semicon-
ductor equations shall be solved. This is typically the case in the semiconductor layers, in
particular the wafer (often a doped silicon substrate).Ωo is defined as the union of layers for
which it is assumed that (nearly) no charge carrier currents can occur. In particular, insulating
layers belong toΩo. In Ωo, the above system degenerates to Laplace’s equation,

−∇ · (εo∇ψ) = 0 , (5.29)

whereεo represents the permittivity of the corresponding material layers. In case of a MOS-
FET, Ωo represents the gate oxide. Here, the interface betweenΩs and Ωo is the semi-
conductor/oxide-interface. The simplified sketch in Figure 5.2(a) depicts different domains,
interfaces and boundaries of an n-MOSFET. Some explanations follow.

An n-domain (or n-region) is defined as a subdomain ofΩs in whichC(x) > 0 holds.
Analogously, ap-domain (or p-region) is defined as a subdomain in whichC(x) < 0 holds.
The interface between an n- and an adjacent p-domain is calledpn-junction . The junction is
called abrupt ifC exhibits a jump across the interface.

The n- and p-domains determine the electrical behavior of the device to a large extent
since they form local diodes at the pn-junctions. For instance in case of an n-MOSFET, a
p-domain is located between two n-domains as shown in Fig. 5.2(a). Hence, two diodes (or a
triode “NPN”) are formed in such a way that a current cannot flow from one n-domain to the
other. However, under appropriate conditions on the bias applied to the contacts of the device,
a new n-domain connecting the two other n-domains is formed inside the p-domain. This n-
domain is called achannel since it allows electrons to move from one (original) n-domain
to the other. Basically, by means of the bias applied to gate/bulk, the “height” (measured
perpendicular to theΩs/Ωo-interface) of the channel is determined.

The boundary ofΩ can be split into two disjoint parts,∂Ω = ∂Ωp ∪̇ ∂Ωa. ∂Ωp represents
those parts of∂Ω which correspond to real “physical” boundary segments, that is interfaces
with insulating material and contacts.∂Ωa consists of artificial boundary segments, which
are introduced, for example, to reduce the simulation domain by cutting off the “bottom” part
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of the bulk as much as possible - the wafer is rather thick -, and to obtain a “self-contained”
device, that is to separate it from adjacent devices if it is is embedded in an integrated circuit,
for instance.

Different types of boundary and interface conditions are prescribed on different parts of
∂Ω and the interfaces betweenΩs andΩo. Details can be found in [82], for instance. We
want to mention only the conditions usually employed:

• Dirichlet conditions are defined on the parts of∂Ωs corresponding to purely voltage-
controlled Ohmic contacts (for example, the source and drain contacts of a transistor).

• For voltage-driven Schottky contacts39, a highly simplified model is often used, result-
ing in a Dirichlet condition forψ and Neumann boundary conditions forJn andJp,
which can be transformed into mixed boundary conditions forn andp, or Dirichlet
conditions forn andp, too.

• On artificial and insulating boundaries, homogeneous Neumann boundary conditions
for ψ, Jn andJp are usually prescribed.

• On the interfaces betweenΩs andΩo, (homogeneous) Neumann conditions forJn and
Jp and a Neumann condition forεsψ − εoψ are assumed.

5.3.1.4 Scaling, Layer Behavior and Conditioning

Sinceψ, n andp are very different in magnitude and show a strongly different behavior, these
three physical functions as well as the three equations should be scaled appropriately to allow
for a structural analysis and an efficient numerical solution. Different scalings have been
described in the literature and are used in simulation packages. One standard set of scaling
factors was introduced by DeMari [20]. The factors are summarized in Table 5.9. The scaled
system reads

−∆ψ + (n− p− C) = 0 , (5.30)

∇ · (µnn∇ψ − µn∇n) +R = 0 , (5.31)

∇ · (−µpp∇ψ − µp∇p) +R = 0 . (5.32)

All quantities are scaled here40, the equations live on the correspondingly scaled domain
Ωscal, and the differential operators are taken with respect to the scaled independent vari-
ables. From a mathematical point of view, this scaling is unsatisfactory because the physical
functions are still very different in magnitude. In spite of this, DeMari-type scalings are
frequently used even today.

A “singular perturbation scaling” (Table 5.9) which has been regarded as being more
appropriate for theoretical and numerical analysis was introduced by Vasiléva et al. and
further investigated by Markowich, Selberherr et al. (see [82, 54] and the references given
therein).

39The metal/semiconductor junction which is used, for example, as the MESFET (metal-semiconductor transistor)
gate is called a Schottky(-barrier) contact. For more details, see [93].

40but denoted by the same symbols as before in order to simplify the notation.
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quantity symbol DeMari factor symbol SPS factor
ψ ψm kBT/q ψ0 kBT/q
n, p, C Cm nintr C0 max{|C(x)|, x ∈ Ω }
x xm

√
εskBT/(q2nintr) x0 max{|x− y|, x, y ∈ Ω }

Dn, Dp Dm 1 cm2s−1 D0 max{(Dn(x), Dp(x)), x ∈ Ω }
µn, µp Dm/ψm D0/ψ0

R DmCm/x
2
m D0C0/x

2
0

t x2
m/Dm x2

0/D0

Table 5.9: DeMari scaling factors and “singular perturbation scaling” (SPS) factors.

The scaling factors can be very different in size compared with the DeMari factors. For
example, the scaling factor forn, p, C is approximately 10, forR approximately 12 magni-
tudes larger than the corresponding DeMari factors (for a standard situation as described in
[82]). The scaled system now reads

λ2∆ψ − (n− p− C) = 0 , (5.33)

∇ · (µnn∇ψ − µn∇n) +R = 0 , (5.34)

∇ · (−µpp∇ψ − µp∇p) +R = 0 (5.35)

with λ2 = ψ0εs
x2
0qC0

denoting the squared scaled minimal normed Debye length of the device

which is a very small parameter in practice41. The scaled continuity equations are formally
identical to the ones obtained by DeMari scaling. Of course, however,ψ, n, p are scaled by
the “singular perturbation scaling” factors now and again denoted by the same symbols as
before. In Poisson’s equation, the very small factorλ2 appears in front of the second-order
derivatives, the highest ones here. Therefore, this scaling shows thesingular perturbation
characterof the system and allows for a more rigorous mathematical analysis via a singular
perturbation approach withλ2 being thesingular perturbation parameter. In the following,
we summarize important results of this analysis, as performed in [54], for instance, onlayer
behaviorandconditioning. We start with statements on the occurrence of layers42.

The “transition” interval within which a solution (ψ, n or p) is not approximated to order
O(λ) by the solution of the correspondingreduced problem43 is called a (zeroth-order)layer.
Typically we haveλ � 1 andλ ≈ δ with δ2 := nintr

C0
. Then the solutions of the stationary

device problem (under “moderate injection”, see [82]) exhibit the following features:
• There are thin layer strips at (abrupt) pn-junctions, Schottky contacts and semicon-

ductor/oxide interfaces. Within these layers,ψ, n andp and generally the tangential
components ofJn andJp are rapidly varying functions.

41λ2 is smaller than10−7:

λ2 =
kBTεs

max |x− y|2q2 max |C(x)|
≈

1.4 · 10−23 · 300 · 1.6 · 10−10

1.62 · 10−38 max |x− y|2 max |C(x)|

42The term “layer” in the context of “layer behavior” is to be distinguished from “material layer”!
43The reduced problem emerges by settingλ=0 in the system (5.33)-(5.35) with boundary conditions.
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• Outside the junction-, Schottky contact- and semiconductor/oxide-interface-layers, the
solutionsψ, n, p, Jn andJp are moderately varying functions.

• Zeroth-order layers do not occur at Ohmic contacts and insulating boundary segments.

Remark 5.8 It should be pointed out that these features reflect the device physics correctly:
so-called depletion layers occur at pn-junctions and Schottky contacts, and inversion layers
at semiconductor/oxide-interfaces. N

Singular perturbation analysis can also be used to investigate theconditioning of the semi-
conductor equations. A physical problem iswell-conditioned (ill-conditioned) if small
changes of the data cause small (large) changes of the solutions. The data are here the doping
profileC, the recombination-generation rateR and the boundary conditions. The following
statements on the conditioning of the stationary semiconductor equations (including appro-
priate boundary conditions) can be obtained if the system is sufficiently close to thermal
equilibrium:

• Poisson’s equation (5.33) is well-conditioned (with respect toψ), at least for a moder-
ate bias applied, independent of the singular perturbation parameterλ and the doping
profileC.

• Both continuity equations (5.34) and (5.35) are well-conditioned (referring ton or p,
respectively) independent ofδ if every p- and n-domain has an Ohmic contact.

• If an n- or p-domain has no (Ohmic) contact, the continuity equation for the majority
carrier concentration of this region is ill-conditioned. The errors can be amplified by a
factor of the magnitudeO(δ−4) and, therefore, domains without contacts can produce
great numerical difficulties in computing carrier concentrations. Such domains are
calledfloating regions.

Example 5.1 In case of a MOSFET, source and drain (both n- or both p-domains) always
have Ohmic contacts. If the domain in which the channel is formed44 has an Ohmic con-
tact, too, the full system can be expected to be well-conditioned (sufficiently close to thermal
equilibrium). However, if the “channel domain” is not contacted, i.e. if it is a floating region,
the continuity equation corresponding to the majority carrier concentration is ill-conditioned.
Such floating channel regions occur, for instance, in devices fabricated by silicon-on-insulator
(SOI) technology (e.g. FinFETs). Since SOI is one of the standard technologies today, prob-
lematic floating regions occur quite often in device simulation. N

Remark 5.9 Normally, the effect of perturbations on the current densitiesJn andJp is less
dramatic: small perturbations of the data cause only small perturbations of the current den-
sities (at least under “moderate injection”, see [82]), and numerical results for the important
current densities and IV-characteristics can be quite accurate even if the perturbations of the
carrier concentrations are large. N

44This happens in the bulk in case of a “conventional” MOSFET, see Section 5.3.1.3.



5.3 Device Simulation 185

5.3.1.5 Meshing, Discretization and Linearization

While the discretization of the Poisson(-type) equation ((5.26), (5.30) or (5.33), respectively)
is straightforward, the discretization of the continuity equations, which can be characterized
as special diffusion-convection-reaction equations, is crucial for an efficient solution of the
drift-diffusion system. In practice, the whole drift-diffusion system is discretized by the (mid-
perpendicular) Scharfetter-Gummel box method (SG-BM) on boundary Delaunay meshes.
This discretization method is briefly characterized in the following.

A triangulationT of a polygonally bounded domainΛ is aDelaunay triangulation if the
interior of the circumcircle of each elementT of the triangulation does not contain mesh ver-
tices. Furthermore, a 2D Delaunay mesh45 is boundary Delaunay(box-method-conforming
Delaunay) if we have, for each boundary edge,α < π/2 whereα is the opposite angle in the
elementT this edge belongs to. The boundary requirements in 3D are formulated in terms of
circumcircles for the boundary edges and faces in an analogous way.

The Delaunay mesh serves as aprimary mesh from which asecondary(or dual) mesh
of Voronoi boxes is derived. Given a Delaunay mesh with verticesxk, the Voronoi box
Vk associated to anxk is bounded by the mid-perpendicular planes associated to each edge
ekl between verticesxk andxl. The aforementioned Delaunay conditions on the mesh and
its boundary then guarantee that the (open domains)Vk do not overlap and are completely
contained in the domainΛ.

The BM on a Delaunay mesh is nothing else than a finite volume approach (see [74], for
instance). In the 2D case, it can also be interpreted as a disturbed FE method with piecewise
linear trial functions on the primary grid and piecewise constant test functions on the boxes.
In 3D, however, the BM and a standard FE discretization can exhibit drastically different
properties as shown in [47]. The comparison of these discretizations presented there for dif-
fusion simulation on 3D Delaunay meshes strongly advocates the use of the FV discretization
since it is stable46. As a consequence, the solution does not contain any nonphysical negative
concentrations.

The discretization of the continuity equations needs special care in order to gain stability.
For this purpose, the so-called Scharfetter-Gummel discretization approach [77, 54] has been
developed. TheScharfetter-Gummel box method (SG-BM)can be outlined as follows.
We start with the assumption that, along mesh edges, the mobilitiesµn andµp are constant,
and the electrostatic potentialψ behaves as a linear function. Approximations ofJn andJp
can then be obtained by solving a one-dimensional boundary value problem. This leads to
an exponentially-fitted scheme for the current relations. The emerging approximations of
the edge current densities are employed to obtain the final discretization of the continuity
equations. For more details on the SG-BM, see [44], for instance. Inside the domainΩs, that
is ignoring boundaries and interfaces, the resulting discretized system reads

(Fψ, Fn, Fp)T = 0 (5.36)

45In the following, we only consider triangles or tetrahedrons, respectively. See also Remark 5.10.
46i.e. it fulfills a discrete maximum principle since the matrix corresponding to the BM-discretized stationary

diffusion equation is a Stieltjes matrix, see Theorem 5.1 below.
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with47

(Fψ)k =
∑
Tk

∑
l(Tk)

εk,l,T
sk,l,T

|xk − xl|
(ψk − ψl)

+
∑
Tk

∑
l(Tk)

Vk,l,T (nk − pk − Ck) = 0 ,
(5.37)

(Fn)k =
∑
Tk

∑
l(Tk)

µn;k,l,T
sk,l,T

|xk − xl|
[
B(ψk − ψl)nk −B(ψl − ψk)nl

]
+
∑
Tk

∑
l(Tk)

Vk,l,TRk,l,T = 0 ,
(5.38)

(Fp)k =
∑
Tk

∑
l(Tk)

µp;k,l,T
sk,l,T

|xk − xl|
[
B(ψl − ψk)pk −B(ψk − ψl)pl

]
+
∑
Tk

∑
l(Tk)

Vk,l,TRk,l,T = 0 ,
(5.39)

whereB denotes the Bernoulli function,

B(0) := 1 and, forx 6= 0, B(x) :=
x

exp(x)− 1

{
∈ ]0; 1[ for x > 0 ,

≈ −x+ 1 for x ≤ 0 ,
(5.40)

Tk the set of all elementsT with vertexxk, l(Tk) the set of verticesl of Tk connected toxk
by an edge,Vk,l,T the sum of the volumes of the parts ofVk which belong to an elementT
having bothxk andxl as vertices, andsk,l,T the volume of the facetAk,l,T which the Voronoi
cellsVk andVl share. For modifications in order to avoid negativesk,l,T , see Remark 5.13.
The valuesεk,l,T , µn;k,l,T , µp;k,l,T andRk,l,T are suitable element-edge approximations of
the corresponding functionsε, µn, µp andR, respectively, on the edgeekl.

Remark 5.10 In practice, mixed-element meshes are used as simulation meshes. In 2D,
they consist of triangles and rectangles, in 3D, of prisms and pyramids with bases of three or
four sides. If the simulation domainΩ is split by inner interfaces (see Section 5.3.1.3) into
several domains, the mesh for each of these domains has to be boundary Delaunay. While
the construction of boundary Delaunay meshes can automatically be performed in 2D, it is
problematic in 3D. N

Main advantages of the SG-BM are that the discretization is stable48 and that it inherits
the so-calledlocal dissipativity, a physically important property, of the continuous system
(see [28]) in case ofR = RSRH,AU , for instance. However, the stability is paid for by a loss
of convergence order49. No higher-order equivalents of the SG-BM are known.

47formulated for the system (5.26)-(5.28), analogous for (5.30)-(5.32) and (5.33)-(5.35).
48since, linearized, it fulfills a discrete maximum principle, i.e. the M-matrix property, see Theorem 5.1 below.
49Results in [57], for instance, indicate a convergence order of onlych1/2 for a mesh-dependent norm and an

ε-dependent constantc.
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This highly nonlinear discrete system is linearized by a (modified) Newton(-Raphson)
method50. Necessary for the Newton method is the solution of linear systems where the
arising matricesA correspond to Jacobians of the above nonlinear system (5.36). We call
these JacobiansA drift-diffusion matrices . In the following, we always assume the physical
unknowns of the linear systems to be solved ordered asu1 := ψ, u2 := n, u3 := p. The
principal form ofA, corresponding to this ordering, is then shown in Table 5.10. We use the
following abbreviations:

Kn,k,l := µn;k,l,T
sk,l,T

|xk − xl|
, Kp,k,l := µp;k,l,T

sk,l,T
|xk − xl|

.

Since the discretized and linearized systems inherit the layer behavior and conditioning of the

∂
∂(ψk)

∂
∂(nk)

∂
∂(pk)

∂
∂(ψl)

(l 6= k) ∂
∂(nl)

(l 6= k) ∂
∂(pl)

(l 6= k)

(Fψ)k
∑
Tk

∑
l(Tk)

εk,l,T
sk,l,T

|xk−xl|
∑
Tk

∑
l(Tk)

Vk,l,T −
∑
Tk

∑
l(Tk)

Vk,l,T

−εk,l,T
sk,l,T

|xk−xl|

(Fn)k
∑
Tk

∑
l(Tk)

[
Kn,k,l

[
nkB

′(ψk − ψl)
∑
Tk

∑
l(Tk)

[
Vk,l,T

∂Rk
∂(nk)

∑
Tk

∑
l(Tk)

Vk,l,T
∂Rk
∂(pk)

+nlB
′(ψl − ψk)

]
+ Vk,l,T

∂Rk
∂(ψk)

]
+Kn,k,lB(ψk − ψl)

]
Kn,k,l

[
−nkB′(ψk − ψl) −Kn,k,lB(ψk − ψl) Vk,l,T

∂Rk
∂(pl)

−nlB′(ψl − ψk)
]
+ Vk,l,T

∂Rk
∂(ψl)

+Vk,l,T
∂Rk
∂(nl)

(Fp)k
∑
Tk

∑
l(Tk)

[
Kp,k,l

[
−pkB′(ψl − ψk)

∑
Tk

∑
l(Tk)

Vk,l,T
∂Rk
∂(nk)

∑
Tk

∑
l(Tk)

[
Vk,l,T

∂Rk
∂(pk)

−plB′(ψk − ψl)
]
+ Vk,l,T

∂Rk
∂(ψk)

]
+Kp,k,lB(ψl − ψk)

]
Kp,k,l

[
pkB

′(ψl − ψk) Vk,l,T
∂Rk
∂(nl)

−Kp,k,lB(ψk − ψl)

+plB
′(ψk − ψl)

]
+ Vk,l,T

∂Rk
∂(ψl)

+Vk,l,T
∂Rk
∂(pl)

Table 5.10: Jacobian of the discrete drift-diffusion system (5.36). Replace eachRk byRk,l,T .

original equations, we have to expect layer behavior near pn-junctions, Schottky contacts and
semiconductor/oxide interfaces and ill-conditioned continuity equations in floating regions.
As shown in [2], even for simple diode examples which do not face critical regions, the
condition numbers are quite high. Moreover, because of the fact that the original system
(5.26)-(5.28) is usually scaled “only” by DeMari factors,ψ, n, p and their discrete analogs

50usually with a damping strategy, see [92], for instance. See also Remark 5.11 for an alternative method.
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are still very different in magnitude. This leads, in particular, to large differences in the
magnitude of the matrix entries. As the diagonal entries can vary several orders of magnitude
among each other, so can the off-diagonal entries, both among each other and compared to
the respective diagonal entries. Due to all these reasons, the arising drift-diffusion matrices
are very ill-conditioned and often nearly singular even if the underlying problem is far from
a possibly-existing bifurcation point. As a consequence, this leads to great difficulties in
solving the matrix equations efficiently.

In commercial device simulators, the sequence of drift-diffusion matrix equations is solved
by iterative51 one-level methods, usually by an ILU- or ILUT-preconditioned CGS or BiCGstab.
More precisely, some modified ILU(0)-approach is used in TAURUS [92] by Synopsys Inc.
However, due to the above-mentioned properties of the matrices, iterative one-level solvers
often exhibit an unsatisfactory performance.

5.3.2 Efficient Solution of the Linear Systems

In this section, it is demonstrated that one of SAMG’s point-based AMG approaches with a
norm-based primary matrix, accelerated by BiCGstab, works more robustly and often more
efficiently for large drift-diffusion matrices than the standard one-level solvers commonly
used in device simulation.

We start with deriving more numerical properties of the arising matrices. Based on the
statements obtained in Sections 5.3.1.5 and 5.3.2.1, we discuss in Section 5.3.2.2 why VAMG
and UAMG approaches do not work for drift-diffusion matrices whereas certain PAMG ap-
proaches are reasonable candidates. Section 5.3.2.2 also explains the concrete PAMG ap-
proach of our framework which has been turned out to be a suitable preconditioner. In Section
5.3.2.3, the exemplary devices and the concrete TAURUS simulation runs for the numerical
tests are described. Numerical results of these simulation runs will be presented in Section
5.3.2.4.

Remark 5.11 By now, linear multigrid methods have been developed only for solving the
three individual partial differential equations arising during a Gummel(-type) iteration. In
Gummel’s approach, an equation forψ is solved first, then an equation forn and then forp.
This way, the more expensive Newton approach is replaced by a Gauss-Seidel-type iteration
of solving three single PDEs. The most difficult part there is the solution of discretized
and linearized continuity equations. For example, in [23], a geometric multigrid method
for this type of equation was investigated and successfully applied to some examples on
structured grids. In contrast to this, in this thesis, we are interested in the solution of the
matrix equations arising from the fully coupled approach. This approach is typically used in
modern (commercial) device simulators because it is often more favorable, in particular near
equilibrium, than a Gummel(-type) iteration. N

Remark 5.12 In particular until the early nineties, the application of nonlinear geometric
multigrid methods (full approximation schemes (FAS)) was investigated as a further approach

51if the problem size exceeds the abilities of direct solvers.
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to solve drift-diffusion systems (see the references given in [23]). Such approaches are, how-
ever, difficult to apply (if possible at all) to the more sophisticated models and unstructured
grids used in modern commercial device simulators. N

5.3.2.1 Numerical Properties of the Matrices

According to the different modelling situations in the two partsΩs andΩo of Ω, the drift-
diffusion matricesA consist of two parts,As andAo, which are very different by nature.
On the one hand, the partAo of A which corresponds to Laplace’s equation (onΩo) does
not pose problems. Since the submatrixA[1,1] describing theψ-to-ψ couplings is a Stieltjes
matrix if the mesh is boundary Delaunay (see Theorem 5.1 below), and there are only a few
couplings ton andp, namely across the interface toΩs, (V)AMG is appropriate forAo.

On the other hand, the partAs of A which corresponds to the coupled PDE system posed
on Ωs inherits the very tight coupling of the physical unknowns, in particular reflected by
large entries in the submatricesA[m,n] (m 6= n). Properties of these submatrices which are
important with respect to AMG are investigated in more detail now.

We know from Section 5.3.1.5 that the entries ofAs are given by Table 5.10 together with
the discrete and linearized analogs of the boundary and interface conditions. For the following
considerations, we restrict ourselves to the interior ofΩs - that means to a discussion of matrix
entries as presented in Table 5.10 - together with Dirichlet boundary conditions on∂Ωs.
Defining a matrixB being a±±±M-matrix if eitherB or −B is an M-matrix, the following
theorem can be proved.

Theorem 5.1 For linearized SG-BM discretized drift-diffusion systems withR = RSRH,AU ,
the submatricesA[n,m] ofAs are either diagonal matrices or±M-matrices if the underlying
mesh is boundary Delaunay and of acute type52. To be more specific, independent from the
concreteR, A[1,1] is even a weakly diagonally dominant Stieltjes matrix, andA[1,2] and
A[1,3] are diagonal matrices. ForR = RSRH,AU , A[2,3] andA[3,2] are diagonal matrices,
andA[2,1],A[2,2],A[3,1], andA[3,3] are weakly diagonally dominant±M-matrices.

Proof. The statements on the diagonal-blocksA[n,n] can be found in [54], for instance, which
also points to related literature. We add the proof for the remainingA[m,n] here. Obviously,
A[1,2] andA[1,3] are always diagonal. AssumingR = RSRH,AU , we obtain

∂Rk
∂(nl)

=
∂Rk
∂(pl)

= 0 for l 6= k and
∂Rk
∂(ψl)

= 0 for all k, l .

Hence, all derivatives ofR vanish forl 6= k in case ofR = RSRH,AU . Obviously,A[2,3] and
A[3,2] are diagonal then. For allx, the Bernoulli functionB fulfills

B(x) > 0 , B′(0) = −1

2
and, forx 6= 0 , B′(x) =

exp(x)− 1− x expx

(exp(x)− 1)2
< 0 .

52We call a simplicial mesh ofacute typeif all interior angles of all triangles or, respectively, all interior angles
between faces of tetrahedrons are not larger thanπ/2 (i.e. non-obtuse).
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If the mesh is of acute type, allKn,k,l andKp,k,l are nonnegative. Due to all these facts, we
obtain the following relations insideΩs

∂(Fn)k
∂(ψk)

< 0 ,
∂(Fn)k
∂(ψl)

=
∂(Fn)l
∂(ψk)

> 0 (j 6= i) ,
∂(Fn)k
∂(ψk)

= −
∑
l6=k

∂(Fn)k
∂ψl

, (5.41)

∂(Fp)k
∂(ψk)

> 0 ,
∂(Fp)k
∂(ψl)

=
∂(Fp)l
∂(ψk)

< 0 (j 6= i) ,
∂(Fp)k
∂(ψk)

= −
∑
l6=k

∂(Fp)k
∂ψl

. (5.42)

ThatA[2,1] andA[3,1] are±M-matrices follows from Remark 2.14 in Section 2.4.4. �

Remark 5.13 In general, if the grid generator produces obtuse angles (αi > π/2), corre-
spondingsk,l,T could be negative and the blocksA[n,m] of A will not be±M-matrices in the
original SG-BM. In order to obtain±M-matrices again, thecompensated box methodis then
used in practice, as described in [79], for instance. N

In many cases, eithern or p strongly varies in the simulation domain and clearly dominates
the other two physical unknowns. In particular,As is usually dominated by couplingsto the
potentialψ. To be more specific, either the submatrixA[2,1] or A[3,1] (of As), depending
on the majority carrier concentration, contains a significant part of the largest couplings,
measured by absolute value. This can be seen as follows. Forψk ≈ ψl,B(ψk − ψl) isO(1),
and we haveB′(ψk − ψl) ≈ −0.5 (cf. Fig. 5.12) so that the following estimate emerges:

nkB
′(ψk − ψl) + nlB

′(ψl − ψk) . −nk + nl
2

< 0 .

Note that, very roughly,

Vk,l,T = O(|xk − xl|3) , K∗,k,l = µ∗;k,l,TO(|xk − xl|) with ∗ ∈ {ψ, n, p}.

Without restriction of generality, we assume now that the concentrationn clearly dominates
p, i.e.n is several orders of magnitude larger thanp. We then have

Vk,l,T
∣∣∂RSRH,AU

∂(n)

∣∣� Kn,k,l
nk + nl

2

as shown in Fig. 5.13. The same is true forVk,l,T |∂RSRH,AU/∂(p)|. The dominance be-
comes smaller, the more similarn andp are in size.

If we now compare the matrix entries ofAs, as listed in Table 5.10, we obtain the follow-
ing result: The matrixA[2,1], reflecting the couplings ofn to ψ, clearly dominates the other
A[m,n] in the sense that most often

∂(Fn)k
∂(ψl)

� max
{ ∂(Fn)k

∂(nl)
,
∂(Fn)k
∂(pl)

,
∂(Fψ)i
∂(∗l)

,
∂(Fp)k
∂(∗l)

}
with ∗ ∈ {ψ, n, p} holds. This means that the entryaij in aA(k,l) which couplesn to ψ

is most often the largest. The argumentation for clearly dominatingp is analogous. These
arguments qualitatively hold also for the discretized and linearized scaled systems (5.30)-
(5.32) and (5.33)-(5.35), respectively, as can exemplary be seen in Fig. 5.18 depicting a
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drift-diffusion matrix (DeMari scaling) arising in the simulation run for the EEPROM test
case described in Section 5.3.2.3 below. For all examples tested so far, for either? = n or
? = p the following statement holds: in around 80% of the cases, the entryaij in A(k,l)

which couples unknown? toψ is largest. That is, eitherA[2,1] orA[3,1] clearly dominates the
otherA[m,n].

Several consequences arise from this “under-representation” of the diagonal blocksA[n,n].
Obviously, many rows of the drift-diffusion matrices strongly violate diagonal dominance.
The discrete PDE system is strongly coupled in the sense thatA−1Au andA−1

u A are far
from being the identity matrix53. Last but not least, for the reasons mentioned in Section
5.3.1.5, we often face very ill-conditioned or even nearly singular matrices. All these reasons
complicate an accurate and efficient numerical solution in general.

(a) (b)

Figure 5.12: Plot of (a)B(x) and (b)B′(x) for x ∈ [−10, 10].

5.3.2.2 The AMG Approach Employed

The properties ofA discussed above prevent VAMG and UAMG from being reasonably ap-
plicable here. VAMG- and UAMG-preconditioned approaches usually diverge and are there-
fore not discussed in the remainder. Except of regions with a strong layer behavior, which is
only present in the drift-diffusion systems, the slightly anisotropic DD models (with moderate
(λ, c)) and the (DeMari-scaled) drift-diffusion matrices are similar to some extent. Without
restriction of generality, assumingn to be the dominating species, both exhibit the same com-
position of±M-submatrices and diagonal submatricesA[m,n]

54. For both,A[2,1] is the dom-
inating submatrix in the sense discussed above, andA[2,1] can exhibit a slight anisotropy55

53i.e. ρu is large. Note that, strictly speaking,ρu defined in (3.65) is a measure for symmetricA(> 0) only, but
a largeρu should in general be a good hint that the discrete PDE system is too strongly coupled for UAMG.

54we neglectA[2,3] andA[3,2] since here their entries are zero or very small compared to the others for largen.
55B′ is for regions with moderately varyingψ a moderately varying function.n andp are moderately varying

functions outside the junction-, Schottky contact- and semiconductor/oxide-interface-layers, see Section 5.3.1.4.
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(a) (b)

Figure 5.13: Plot of (a)log10(∂RSRH/∂(n)) and (b)log10(∂RAU/∂(n)).

also in case of the drift-diffusion matrices. Since certain PAMG approaches have been seen
to yield efficient preconditioners for the anisotropic DD models, it seems promising to inves-
tigate their application to drift-diffusion matrices as well.

Indeed, in accordance to the investigations made in Section 3.4.1.2 and Examples 3.2, 3.5
and 3.12 for the DD models, it has turned out that PAMG yields a very robust and efficient
preconditioner if the following components are chosen:

• Smoothing: for some simple matrices which are not too ill-conditioned and which do
not violate diagonal dominance too strongly, BGS can be used for smoothing. Figure
5.14 depicts algebraically smooth error produces by BGS for such a “simple” device56.
In general, however, an often much stronger, but also more expensive ILU smoother
should be employed. For all numerical tests performed so far, ILU(0) has shown a
robust behavior. This is in contrast to ILUT which does not work robustly as a smoother
here. If not stated otherwise, results are presented for ILU(0) smoothing.

• Coarsening based on a primary matrix based on norms (3.73). A1-coarsening is used
on the first level, standard coarsening else. For all drift-diffusion systems tested so
far, the performance of the resulting approach was neither sensitively influenced by the
concrete choice of the norm nor the concrete choice ofpkk (see Section 3.4.2, Remark
3.24).

• An SU-interpolation with weights being based on the entries ofPPP . In some cases, an
MU-interpolation with scaling of the weights (see Section 4.3.1.5) has been found to
yield a similar performance.

• One step of Jacobi-relaxation of interpolation is applied to the second-to-first-level
interpolation operator since this variant has turned out to improve the robustness and
efficiency of the respective PAMG approach considerably.

56the only one with a two-dimensional grid here.
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Figure 5.14: STI example: error after 10 BGS smoothing steps.

• As discussed in Section 4.1.1.1, rows ofA with zero diagonal entries have to be treated
in a special way in order to avoid possible problems with smoothing and nonpositive
diagonals on coarser levels and to avoid “disturbed” coarsenings. The last row of the
matricesA arising in the last part of the simulation for the EEPROM example (see
next section), has a zero diagonal entry. Here, it has proved to be sufficient simply to
force the corresponding variable to stay on the finest level (FF-variables) and thus to
completely exclude it from the coarsening process.

• For many matrices, some nonpositive diagonal entries occur on coarser levels. They
are handled as described in Appendix A.1.2.2.

• Accelerator: BiCGstab.

Remark 5.14 We have also tried to use one of the unknown-matricesA[n,n] as a primary
matrix.PPP = A[1,1] works in some cases, but is not as robust as a norm-basedPPP . N

Drift-diffusion matrices provide practically important examples where accelerated AMG ap-
proaches with BGS often diverge but ILU(0) helps PAMG to yield a robust preconditioner.
On the first sight, this might be surprising since BGS works for the DD models (see Section
4.6) whereas ILU(0) often diverges there. However, as discussed in Sections 3.4.1.2 and Sec-
tion 4.6, a more closer look reveals that ILU(0) smoothes the error everywhere except of a
small area and, for the DD models with moderate(λ, c), ILU(0)-PAMG(ns,·,SU,P)-BiCGstab
converges (however, the same approach with BGS smoothing works better for the DD mod-
els). In case of the drift-diffusion matrices, both BGS and ILU(0) diverge if used stand-alone.
Also in combination with AMG approaches they diverge. However, if ILU(0) as a smoother
for the PAMG approach described above is accelerated by BiCGstab, for instance, conver-
gence is achieved, and the approach is quite efficient.
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Remark 5.15 Block variants of ILU(0) or ILUT approaches can be expected to yield even
better smoothers than the standard, variable-based ILU(0) employed here. Block variants will
be one topic of future research. N

Remark 5.16 Recently, permutations of drift-diffusion matricesA with the aim to enhance
the preconditioning properties of ILU(0) and SPAI variants have been considered in [78].
Presented numerical results indicate that this helps ILU(0) and makes it more stable. The
SPAI variants with or without permutations ofA, however, have been found to be much more
expensive and less stable preconditioners than ILU(0) for this application class57. Instead
of permutations as a preprocessing step, the investigation of appropriate pivoting strategies
incorporated into the ILU(0)smootherused in our AMG approach will also be a topic of
future research. A first step has already been taken by incorporating (M)ILUTP smoothing
into SAMG (see Section 4.4). N

5.3.2.3 Description of the Test Cases

We have tested examples from several classes of industrially relevant semiconductor devices.
To be more specific, we have considered

• a shallow trench isolated MOSFET58 (STI),
• an electrically erasable programmable read-only memory cell (EEPROM),
• a metal-semiconductor transistor59 (MESFET),
• a FinFET60,

General information about most of these and other types of semiconductor devices can be
found in [93], for instance. A description and analysis of a (particular) FinFET is given in
[38], for example. Table 5.11 shows details on the concrete test cases and dimensions of the
arising matrix problems. Layouts, doping profiles and grids of the STI and the FinFET are
shown in Figs. 3.7 and 5.19.

In device simulators such a TAURUS, a simulation series for a given device consists of
many individual simulations of drift-diffusion systems which differ, for example, in their
respective boundary conditions. More precisely, each simulation run starts with the zero bias
step, a step in which all voltages are set to zero. Afterwards, severalbias rampsare applied
to the device. For instance, Figs. 5.15 and 5.16 show the sequence of bias ramps applied
in case of the EEPROM and the FinFET, respectively. Exemplarily, we briefly explain the
bias ramps for the FinFET: In the first 21 simulation steps (the first ramp), the gate voltage
is gradually increased from 0 to 1V, keeping the drain voltage fixed at 0.05V. During the
next 10 bias steps (the second ramp), the gate voltage is fixed at 1V, and the drain voltage
is increased step by step to a value of 1V. For each individual simulation step, i.e. for each
bias applied, a Newton process is employed to solve the discretized problem, and, within

57Recently, AMG approaches which incorporate SPAI variants as smoothers and/or in various steps of the setup
phase have been investigated in [13]. So far, it has not been investigated whether SPAI variants are, for instance,
good smoothers also for drift-diffusion matrices.

58MOSFET = metal oxide semiconductor field effect transistor.
59Both source and drain are Schottky contacts.
60FinFET = a double-gate MOSFET structure in which a thin, fin-shaped body is straddled by the gate forming

two self-aligned channels that run along the sides of the fin.
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Figure 5.15: EEPROM example: bias steps. Figure 5.16: FinFET example: bias steps.

each Newton step, a few matrix solves are necessary. Therefore, during a whole simulation
run, several hundred linear systems have to be solved. In (commercial) simulators such as
TAURUS, sophisticated control mechanisms are integrated to detect and “repair” possibly
occurring difficulties during the linear and nonlinear iterations. In the worst case, this means
a bias step rejection and step size reduction.

In the following, we will present detailed results for two exemplary cases, namely the
EEPROM and the FinFET. The FinFET case represents the simulation of a modern device on
a moderately large grid. Since a FinFET is fabricated on an SOI wafer, numerical difficulties
arise due to the occurring floating region (see also Example 5.1). The EEPROM example,
which is rather small in terms of variables, was chosen because it exhibits an additional diffi-
culty: for the sixth bias ramp, the system is extended by one equation (an algebraic condition)
leading to a row with a zero diagonal. Rows with zero diagonals are likely to produce prob-
lems for all iterative solvers. During the AMG setup phase, this exceptional row is treated
separately as described in Section 5.3.2.2 above. In addition, remarks on the numerical per-
formance will be made for the small STI example and the middle-sized MESFET, which is
very ill-conditioned, in particular due to its Schottky contacts.
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Example dim ns no np nv nA
STI 2D 1 7 5 516 9 212 125 516
EEPROM 3D 1 9 10 493 15 415 310 361
MESFET 3D 2 3 14 720 28 026 476 804
FinFET 3D 2 5 69 092 97 530 1 443 940

Table 5.11: Details on the four examples. dim = spatial dimension,ns = number of material
layers inΩs, no = number of material layers inΩo.

5.3.2.4 Numerical Results

Generally, to demonstrate the performance of SAMG for a given device, it is not sufficient to
look at its performance in solving just a few selected linear systems arising as part of a whole
simulation. In fact, as explained in Section 5.3.2.3, hundreds of linear systems have to be
solved during a full simulation series, and the properties of the matrices change substantially
depending on the bias step and the progress made in the Newton process. Consequently, to
obtain a clear picture of the benefit of SAMG, one has to consider full simulation series.

In order to demonstrate the robustness and efficiency of the PAMG preconditioner cho-
sen, we have created an interface in TAURUS to the SAMG library, performed tests with
the mentioned PAMG-BiCGstab approach and compared the results with the results of the
corresponding runs with TAURUS’s default iterative solver (called “TAURUS solver” in the
following), an ILU-CGS method. In addition, to demonstrate the effects of the coarse-level
corrections, we also compare the performance of PAMG-BiCGstab with that of the corre-
sponding one-level method, i.e. ILU(0)-BiCGstab.

For all examples tested so far, it can be observed that the TAURUS solver does not al-
ways fulfill the prescribed convergence criterion, i.e. a relative residual reductionε (2.62)
of at least 1e-3, measured in the Euclidean norm, within a maximum number of iterations.
This is depicted exemplarily for the EEPROM and the FinFET in Figs. 5.20(a) and 5.21(b).
For both the STI and MESFET, the TAURUS solver behaves similarly. In the figures,||r0||
denotes the Euclidean norm of the first and||re|| the Euclidean norm of the last residual. A
value||re||/||r0|| above the lower line at 1e-3 then means a violation of the criterion, a value
above the upper line at 1e0 means divergence of the TAURUS solver for the current matrix.
Especially in the EEPROM case, the Euclidean norm of the last residual is often more than
105 times larger than the first residual. Note for all graphs that the matrices arising during a
full simulation series are always numbered consecutively.

In contrast to this, PAMG-BiCGstab shows a stable and fast convergence behavior for the
STI, the EEPROM and the FinFET. The convergence criterion is fulfilled for all SAMG runs,
and hence, instead of||re||/||r0||, average residual reduction factors (ARFs) are depicted
in Figs. 5.20 and 5.21. The performance of PAMG-BiCGstab for the STI is similar to the
FinFET case. The ARFs are usually lower than 0.5 and often much better, and less matrix
solves were necessary during the Newton steps (see Table 5.12), especially in case of the
larger example, i.e. the FinFET.

A comparison of PAMG-BiCGstab with the corresponding one-level solver, ILU(0)-
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BiCGstab, demonstrates that this drastic improvement of robustness and convergence speed is
to a large extent caused by employing a hierarchy. In contrast to PAMG-BiCGstab, ILU(0)-
BiCGstab exhibits ARFs which are close to or sometimes even larger than 1 (divergence).
Additionally, ILU(0)-BiCGstab needs (much) more matrix solves, even more than ILU-CGS
(see Table 5.12).

Remark 5.17 It should be noted that, in case of the MESFET, the worst case in terms of
conditioning here, PAMG-BiCGstab converges but considerably worse than for the other
three examples. In fact, only for a part of the matrices, PAMG-BiCGstab performs better
than ILU(0)-BiCGstab so that employing a hierarchy only partly helps here. Interestingly,
ILU(0)-BiCGstab performs much better than the TAURUS solver here. A main reason for
the bad performance of the TAURUS solver and the reduced efficiency of PAMG-BiCGstab
seems to be the “second half” of the simulation: at a certain point in the bias ramping for
the concrete simulation run, both the TAURUS solver and PAMG-BiCGstab have problems
in solving the concrete nonlinear system. The TAURUS solver faces several step rejections,
whereas in case of the PAMG-BiCGstab just a temporary switching to ILU(0)-BiCGstab
helps to overcome the troubles. The development of better “intelligent” solver-switching
strategies will be subject to future research. N

example approach ε ] matrices total SAMG cprec

STI PAMG-BiCGstab 1e-6 260 0.97 0.75 0.93α

TAURUS solver 1e-3 260 0.32 —
EEPROM PAMG-BiCGstab 1e-6 520 3.81 2.19 [1.41,1.44]

TAURUS solver 1e-3 538 2.38 —
ILU(0)-BiCGstab 1e-6 560 4.31 2.56 1
PAMG-BiCGstab 1e-3 578 3.80 2.02 [1.41,1.44]
ILU(0)-BiCGstab 1e-3 620 4.00 2.06 1

FinFET PAMG-BiCGstab 1e-3 100 4.27 3.25 [1.66,1.71]
TAURUS solver 1e-3 157 4.46 —
ILU(0)-BiCGstab 1e-3 216 11.49 9.15 1

a with BGS smoothing. For ILU smoothing,cprec=1.41.

Table 5.12: Timings, number of necessary matrix solves andcprec for the drift-diffusion
simulations.ε denotes the residual reduction demanded. “total” is the total wall-clock time in
hours needed for the whole simulation run. “SAMG” is the part of “total time” which SAMG
needed to solve the matrices.

Table 5.12 also shows timings andcprec for full simulation runs, including meshing and
assembling of the matrices. It should be noted that the test character of TAURUS’ interface
to SAMG leads to extra overhead for the transfer of matrix data to SAMG. Whereas for
the smallest example, the STI, the TAURUS solver (and also ILU(0)-BiCGstab) is much
faster than PAMG-BiCGstab and for the “medium-sized” EEPROM example the TAURUS
solver is considerably faster than PAMG-BiCGstab yet, the effort for employing the more



198 Chapter 5 Industrial Applications

robust PAMG approach is paid off for the largest example here, the FinFET. In all cases, the
preconditioner’s complexitycprec of PAMG is reasonable compared to ILU(0).

Remark 5.18 Recently, the ILU(0) method built into older versions of SAMG, including the
one all tests for the drift-diffusion systems have been performed with, has been considerably
speeded up, in particular for matrices containing more than ten entries per row. Only one
additional vector of lengthnv is needed in the faster variant. Based on timings conducted
for single drift-diffusion matrices, it can be expected that due to the new ILU(0) the above
timings for PAMG-BiCGstab would be reduced by a factor of1.10 to 1.27. N

One should point out that the test cases are still rather small - and too small to demonstrate
“real” advantages of PAMG over one-level preconditioners in terms of computational speed.
However, since PAMG-BiCGstab clearly shows a robust behavior and considerably faster
performance with increasing problem size, it can be expected that for even larger problems
than the ones presented here the observed trends will be continued. The results clearly indi-
cate that SAMG is often capable of solving the matrix equations more robustly, and we can
expect that PAMG-BiCGstab clearly outperforms the one-level solvers which are commonly
used in commercial device simulators in case of large(r) problem sizes.
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(a) (b)

Figure 5.17: The grid structures for (a) the SILO2 example (green=silicon, yellow &
brown=oxide, blue & cyan=nitride). (b) the DEPO2 problem (green=nitride, red=oxide,
blue=polysilicon, cyan=silicon).

Figure 5.18: Plot oflog10 |aij | of the entriesaij of a typical matrix arising in the simu-
lation of the EEPROM example. The variables are sorted unknown-wise here to make a
comparison of theA[m,n] possible.
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(a)

(b)

Figure 5.19: Doping profile of the wafer, layout and grid for two of the exemplary devices
(see Table 5.11): (a) the STI, (b) the FinFET. Courtesy of Synopsys Inc.



5.3 Device Simulation 201

(a) (b)

(c) (d)

Figure 5.20: EEPROM example: results for (a) the TAURUS solver, (b) ILU-BiCGstab,
ε = 10−6, (c) PAMG-BiCGstab,ε = 10−3, (d) PAMG-BiCGstab,ε = 10−6.
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(a) (b)

(c) (d)

Figure 5.21: FinFET example: (a) current-voltage characteristics, (b) results for the TAURUS
solver, (c) results for ILU-BiCGstab, (d) results for PAMG-BiCGstab.



Chapter 6

Conclusions and Outlook

In this thesis, a general AMG methodology for PDE systems has been developed, and its the-
ory as well as its practical realization and (industrial) application have been investigated. Our
AMG methodology extends classical AMG by a straightforward unknown- and a particularly
powerful point-based strategy. Concrete approaches differ in the amount of information1 they
employ and in the concrete choice of smoothing, coarsening and interpolation. We summa-
rize the main results and give an outlook on future research.

Unknown-based AMG (UAMG) is certainly the simplest strategy for solving PDE sys-
tems. Nevertheless, it is quite an efficient preconditioner for some practical applications.
Essential conditions for this strategy to work are that smoothing causes the resulting error
to be smooth separately for each unknown and that the unknown cross-couplings are not too
strong in the sense of a smallρu, a new measure introduced in this thesis. Advantages of this
strategy are that it can easily cope with anisotropies which are different between the differ-
ent unknowns and that unknowns can virtually be distributed arbitrarily across mesh points.
It can efficiently be applied, for instance, to certain linear elasticity problems as has been
demonstrated for applications in industrial semiconductor stress analysis. However, we have
also seen limits of UAMG, for instance for reaction-diffusion models with a large coupling
between the different unknowns, even if this coupling exists only at one point.

As a main contribution of this thesis, ageneral framework for point-based approaches
has been introduced, which employs a primary matrix to construct a point-based coarsening.
A necessary condition for point-based AMG (PAMG) to make sense is that the unknowns are
discretized on essentially the same - real or virtual - “grid”, a condition which is often fulfilled
in practice. This strategy is especially well suited for situations in which a point-oriented re-
laxation produces an error which is characterized by the same kind of algebraic smoothness
for each of the unknowns, and in which a primary matrixPPP and an interpolation can be
defined so that both of them reflect the directions of smoothness sufficiently well. Several
possibilities for selecting a primary matrix and for the computation of the final interpolation
weights have been discussed. As a result, our framework contains many degrees of freedom
and thus allows many different concrete PAMG approaches. A special focus has been on
the development of cheap primary matrices and interpolation schemes for practical applica-
tions. Although it seems clear that a suitable AMG approach (based on unknowns or points)
for all types of PDE systems cannot be found, our point-based strategy provides a rich envi-
ronment for defining efficient and robust approaches for a variety of relevant PDE systems.
In general, as for UAMG, efficiency and robustness are drastically increased by applying

1The matrixA, the right-hand-sideb, the variable-to-unknown mapping, the variable-to-point mapping, and
coordinates are themaximumamount of information employed.
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PAMG not stand-alone, but as a preconditioner. PAMG’s efficiency has been demonstrated,
in particular, for reaction-diffusion and, with special emphasis, to highly nonlinear, very ill-
conditioned drift-diffusion systems, arising in industrial semiconductor simulation. Whereas
the most efficient point-based preconditioner for the reaction diffusion systems is oriented
on the distances of the grid nodes, the point-based preconditioner for the drift-diffusion sys-
tems is oriented on norms of theA(k,l). That AMG’s applicability has been extended to such
numerically challenging PDE systems is another main contribution of this thesis.

We have also extended the classicalAMG theory for scalar PDEs to both unknown-
and point-based strategies. The theory developed is applicable to essentially (block-)positive
type matrices and certain variations thereof. Not unexpectedly, strong conditions have to be
fulfilled to make the new theorems on two-level convergence applicable. However, as in the
scalar case, the qualitative statements also hold in much more general situations. In particular,
numerical results indeed confirm that SU-interpolation does often not perform worse than
block-interpolation. Moreover, it is considerably cheaper and often even more robust.

The solver library SAMG features, in particular, the realization of our general AMG
methodology. It fulfills the properties listed in the introduction in the following ways. All (ac-
celerated) AMG approaches being part of SAMG are scalable if properly applied. For known
reasons, this cannot be proved rigorously but is observed in practice. The approaches exhibit
reasonable complexities2. SAMG can easily be plugged into existing simulation codes. It is
a very flexible system for experts. Many different components can be selected for smooth-
ing, coarsening, interpolation, and acceleration. Concrete AMG approaches can typically be
applied as preconditioners to large problem classes without loosing robustness. Therefore,
each concrete overall approach presents a black-box solver for the problem class(es) it can
be applied to. Moreover, SAMG provides a far more efficient behavior for many problem
classes than the standard one-level solvers usually employed in industrial simulation codes.

One topic offuture research will be the investigation of SAMG’s applicability to more
problem classes, especially applications in industrial oil reservoir simulation (already in
progress) and Navier-Stokes equations on non-staggered3 grids. As indicated in this thesis,
the palette (and maybe number) of primary matrices might have to be extended for some ap-
plications. In the case of Navier-Stokes, for instance, a physically reasonable primary matrix
might be a discrete Laplacian or might arise from a pressure-correction equation. Another
direction of future research will be “stronger” smoothers. In particular for drift-diffusion sys-
tems and oil reservoir simulation, we have just started investigating block-ILU/ILUT variants.
We will also be concerned with the improvement of AMG for structural mechanics. Not only
in this context would an appropriate treatment of (nearly) singular matrices be of high practi-
cal importance. Of particular relevance for industry areparallelizations of SAMG (already
in progress), based on both OpenMP and MPI, as well as “self-learning” SAMG-parameter
optimization algorithms (towards an“intelligent solver” ; currently being investigated).

2Typically, AMG preconditioners employing aggressive coarsening and GS smoothing needcprec ∈ [1.0, 1.5]
times the memory needed for the standard one-level preconditioner ILU(0).

3For staggered grids, an extension of SAMG’s data structure to allowing overlapping variable-clusters and the
development of suitable AMG operators would be necessary. Whether and how the latter can be achieved, is an open
question.



Appendix A

Auxiliary Results and Additional
Proofs

A.1 Nonpositive Diagonal Entries

As has been proved in Lemma 3.1, if the input matrixA is symmetric positive definite, so are
the coarser-level matrices, at least up to round-off. We can generalize this even further:

Corollary A.1 Let Ah be positive definite, and letIhH have full rank. ThenAH is also
positive definite.

Proof. This is an immediate consequence of (2.10) and

(AHv
H , vH)E = (IHh AhI

h
Hv

H , vH)E = (AhI
h
Hv

H , IhHv
H)E . N

If Ah is positive definite, its diagonal entries are positive, and the above Corollary proves that
also the diagonal entries ofAH are positive then. Practically, however, it might happen that
some coarse-level diagonal entries become (numerically) zero or even negative, in particular,
if Ah positive definite is not strictly fulfilled. Very small coarse-level diagonal entries occur,
for instance, for the drift-diffusion matrices discussed in Section 5.3.2. Besides the technical
problems such exceptional matrix rows produce, AMG’s convergence usually suffers from
their occurrence. Ways to handle or avoid nonpositive diagonals occurring for a coarse-level
matrixAH the corresponding finer-level matrix of which has only positive diagonal entries
are discussed in the following. In this section, we make the general assumption that

∀ i : ahii > 0 . (A.1)

A.1.1 Problem Formulation

Let the indices inC be numberedi1, . . . , ic with c := |C| being the number ofC-variables.
Recalling the definitions made in Section 2.4.3, we can write

IFC =
(
w(i1) . . . w(ic)

)
with, for all i ∈ C,

w(i) := (w
(i)
j )j∈F := (wji)j∈F
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being thei-th column ofIFC (wji = 0 for all i 6= Pj). Let eHi be thei-th unit vector (i.e.
thei-th component ofeHi being 1, zero the remainder) with lengthc. Then

aHii = (eHi )TAHe
H
i

= (eHi )T (IhH)TAhI
h
He

H
i

= (IhHe
H
i )TAh(I

h
He

H
i )

Due to (2.21), and because the vectorIhHe
H
i is thei-th column vector ofIhH = (IFC , ICC)T ,

we obtain

aHii =

((
IFC
ICC

)
eHi

)T (
AFF AFC
ACF ACC

) (
IFC
ICC

)
eHi

= ahii + (w(i))TAFFw
(i) + (eHi )TACFw

(i) + (w(i))TAFCe
H
i

and finally

aHii = ahii +
∑
j,k∈F

w
(i)
j w

(i)
k ahjk +

∑
j∈F

w
(i)
j (ahij + ahji) . (A.2)

In the following, our aim is to fulfill a condition analogous to (A.1) also forAH , i.e.

∀ i ∈ C : aHii > 0 .

Because of (A.2), this is equivalent to

∀ i ∈ C : ahii +
∑
j,k∈F

w
(i)
j w

(i)
k ahjk +

∑
j∈F

w
(i)
j (ahij + ahji) > 0 . (A.3)

To be more specific, with a givenAh we want to find conditions onIFC or possibilities to
modify IFC so that (A.3) is fulfilled.

A.1.2 Different Workarounds

A.1.2.1 Brute-Force Method

Assume thataHii ≤ 0 for an i ∈ C. Due to our general assumption, we know thatahii > 0.

Therefore, by setting some or even all interpolatory weightsw
(i)
j (j ∈ F ) to zero, we can

always force alsoaHii to become positive. This process is accompanied by a rescaling of the
remaining weights in order to preserve row sums of the interpolation matrix.

However, in extreme cases, all interpolatory weights of a variablej ∈ F are set to zero
during this elimination process such that the interpolation formula for variablej is completely
destroyed. Moreover, the Galerkin operator which is computed with the remaining, rescaled
interpolatory weights might again have some nonpositive diagonal entries, and the procedure
has to be repeated. Overall, this method is a “brute-force” method to arrive at (A.3) and does
not always work.
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A.1.2.2 A More Sophisticated Method

The following ansatz is used to modify the interpolatory weights as less as possible.

ANSATZ: Try to replace all originalw(i) by f (i)w(i) with a positive scaling factorf (i) as
close to 1 as possible so that (A.3) is fulfilled.

Two questions arise:

1. Under the assumptions of Section A.1.1, do suchf (i) always exist?

2. If they exist, how can they be computed?

For the remainder of Appendix A.1, we work only with the inequality (A.3) for a fixedi ∈ C.
With

m := m(i) :=
∑
j,k∈F

w
(i)
j w

(i)
k ahjk , f := f (i) ,

s := s(i) :=
∑
j∈F

w
(i)
j (ahij + ahji) , a := ahii ,

condition A.3 can be reformulated as

a+ f2m+ fs > 0 . (A.4)

In the following discussion, keep in mind thata > 0.

1. First, the simple casem = 0 is discussed.

(A.4) ⇔


f > −a

s
for s > 0 ,

f < −a
s

for s < 0 ,

f arbitrary fors = 0 .

Therefore, in each case, a positivef can be found which fulfills (A.4).

2. Now, bem 6= 0. DefineD := ( s
2m )2 − a

m . Then

(A.4) ⇔


m

(
f + s

2m
−
√
D

)(
f + s

2m
+
√
D

)
> 0 for D ≥ 0 ,

m

(
(f + s

2m
)2 + ( a

m
− ( s

2m
)2)

)
> 0 for D < 0 .

(a) CaseD ≥ 0 andm > 0 ands > 0:

(A.4) ⇔ (f > − s

2m
+
√
D and f > − s

2m
−
√
D) or

(f < − s

2m
+
√
D and f < − s

2m
−
√
D)

Because ofa,m, s > 0,
√
D =

√
( s
2m )2 − a

m < s
2m and− s

2m < 0. Therefore,
the right hand sides of the first two inequalities are negative, and eachf ≥ 0
fulfills the above (full) condition, in particularf = 1. Hence, (A.3) already holds
without modification ofIFC .
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(b) CaseD ≥ 0 andm > 0 ands < 0:

(A.4) ⇔ (f > − s

2m
+
√
D) or (f < − s

2m
−
√
D)

Both right hand sides of the inequalities are positive because of− s
2m > 0 and√

D < |s|
2m . Therefore, a positivef can always be found which fulfills (A.4).

(c) CaseD ≥ 0 andm > 0 ands = 0:
not possible because of assumption( s

2m )2 − a
m = D ≥ 0 anda,m > 0.

(d) CaseD ≥ 0 andm < 0:

(A.4) ⇔ (f > − s

2m
+
√
D and f < − s

2m
−
√
D) or

(f < − s

2m
+
√
D and f > − s

2m
−
√
D)

⇔ − s

2m
−
√
D < f < − s

2m
+
√
D

Because ofm < 0,
√
D =

√
( s
2m )2 − a

m > | s2m |. Therefore the left hand
side of the inequality forf is negative, the right hand side positive, and each
0 ≤ f < − s

2m +
√
D fulfills (A.4).

(e) CaseD < 0: Because of( s
2m )2 − a

m = D < 0, the inequalitiesam − ( s
2m )2 > 0

andm > 0 hold, so that the full inequality is fulfilled regardless of the choice of
f . In particular,f = 1 works, which means that (A.3) is already fulfilled without
any modification ofIFC .

The discussion of all possible cases has shown that always a positivef can be found which
fulfills (A.4). Depending on the case and the resulting bounds onf , anf should be chosen
which is as close to 1 as possible in order to assure that the matrix data inIFC - and thereby
the interpolation operatorIhH - are not fully destroyed. Always check iff = 1 fulfills the
conditions. If not, proceed as follows.

• If only one bound (besides0 < f ) is given, choose anε ∈]0, 1[ and(1 − ε) times an
upper bound or(1 + ε) times a lower bound forf , respectively.

• If f < L or f > U must be fulfilled, take eitherf = (1 − ε)L or f = (1 + ε)U
depending on which one is closer to 1.

• If f must be contained in an interval]L,U [, take eitherf = (1+ ε)L or f = (1− ε)U ,
depending on which one is closer to 1, if both values are within]L,U [. Otherwise
choosef = (L+ U)/2.

To compute a suitablef , the values ofm ands have to be computed. Because in an AMG
code usually firstAH and therefore the valuesaHii are computed, only one of them,m or s,
has to be computed from scratch. The other value can be obtained fromaHii = ahii +m+ s.

In summary, we can answer both questions, posed above, positively and are therefore able
to scale the columns ofIFC with suitablef (i) > 0 in such a way that with this scaledIFC
(A.3) is fulfilled.
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A.2 Proof of Lemma 3.9

Lemma A.1 Let i, n ∈ IN, vl (l = 1, . . . , i) vectors inIRn, Wl (l = 1, . . . , i) (n × n)-
matrices,|| · || for vectors a norm and for matrices the operator norm induced by this vector
norm, andµ :=

∑i
l=1 ||Wl||. Then the following inequality holds:∣∣∣∣∣∣∣∣ i∑

l=1

Wlvl

∣∣∣∣∣∣∣∣2 ≤ µ

i∑
l=1

||Wl|| · ||vl||2 .

Proof. First, letµ =
∑i
l=1 ||Wl|| = 1. Induction overi:

i = 1: Because of||W1|| = 1:

||W1v1||2 ≤ ||W1||2||v1||2 ≤ ||W1|| · ||v1||2 .

i→ i+ 1: Let ||Wi||+ ||Wi+1|| > 0 (trivial otherwise!). Then∣∣∣∣∣∣∣∣i+1∑
l=1

Wlvl

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣i−1∑
l=1

Wlvl + (||Wi||+ ||Wi+1||)
Wivi +Wi+1vi+1

||Wi||+ ||Wi+1||

∣∣∣∣∣∣∣∣2

≤
i−1∑
l=1

||Wl|| · ||vl||2 + (||Wi||+ ||Wi+1||)
(
||Wivi +Wi+1vi+1||
||Wi||+ ||Wi+1||

)2

because
∑i−1
l=1 ||Wl||+ (||Wi||+ ||Wi+1||) = 1 (i summands). Obviously,

||vi||2 − 2||vi|| · ||vi+1||+ ||vi+1||2 ≥ 0

⇔ 2||Wi|| · ||vi|| · ||Wi+1|| · ||vi+1|| ≤ ||Wi|| · ||Wi+1||(||vi||2 + ||vi+1||2)
⇒ ||Wivi +Wi+1vi+1||2 ≤ ||Wi||2||vi||2 + ||Wi+1||2||vi+1||2

+ ||Wi|| · ||Wi+1||(||vi||2 + ||vi+1||2)

⇒ ||Wivi +Wi+1vi+1||2

||Wi||+ ||Wi+1||
≤ ||Wi|| · ||vi||2 + ||Wi+1|| · ||vi+1||2 .

Therefore, ∣∣∣∣∣∣∣∣i+1∑
l=1

Wlvl

∣∣∣∣∣∣∣∣2 ≤ i+1∑
l=1

||Wl|| · ||vl||2

which proves the lemma forµ = 1. Now, letµ =
∑i
l=1 ||Wl|| > 0 be arbitrary. Because of

i∑
l=1

∣∣∣∣∣∣∣∣Wl

µ

∣∣∣∣∣∣∣∣ =
1

µ

i∑
l=1

||Wl|| = 1

we now obtain ∣∣∣∣∣∣∣∣ i∑
l=1

Wl

µ
vl

∣∣∣∣∣∣∣∣2 ≤ i∑
l=1

∣∣∣∣∣∣∣∣Wl

µ

∣∣∣∣∣∣∣∣ · ||vl||2
which shows ∣∣∣∣∣∣∣∣ i∑

l=1

Wlvl

∣∣∣∣∣∣∣∣2 ≤ µ

i∑
l=1

||Wl|| · ||vl||2 . �
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• Füllenbach, T. und Stüben, K. und Mijalkovíc, S., Application of an algebraic multigrid solver to

process simulation problems, Seiten 225–228,Proceedings of the International Conference on
Simulation of Semiconductor Processes and Devices (SISPAD), Seattle (WA), USA, 2000, IEEE,
Catalog Number: 00TH8502, ISBN 0-7803-6279-9,
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