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Abstract - In this paper, strategies for solving systems of partial differential equa-
tions by algebraic multigrid are discussed. In particular, a general framework for
so-called point-based strategies is introduced. For a demonstration, we have in-
vestigated several industrial applications from semiconductor process and device
simulation. It is shown that this framework allows to construct robust and fast
algebraic multigrid approaches even for cases, where iterative solvers of the type
commonly used in such applications exhibit bad convergence or even fail.

I. INTRODUCTION

Classical algebraic multigrid (AMG) [1, 3] is known to provide very efficient and ro-
bust solvers or preconditioners for large classes of matrix problems,

�� � � �

an important one being the class of (sparse) linear systems with matrices � which
are “close” to being M-matrices. Problems like this widely occur in connection with
discretized scalar elliptic partial differential equations (PDEs). In such cases, classical
AMG is very mature and can handle millions of variables much more efficiently than
any one-level method. Since explicit information on the geometry (such as grid data)
is not needed, AMG is especially suited for unstructured grids both in 2D and 3D. In
fact, the coarsening process is directly based on the connectivity pattern reflected by
the matrix � and interpolation is constructed based on the matrix entries.

However, extensions of classical AMG are required to efficiently solve systems of
PDEs involving two or more scalar functions (called unknowns in the following). This
is because classical AMG realizes a variable-based approach which does not distin-
guish between different unknowns. Unless the coupling between different unknowns
is very week, such an approach cannot work efficiently for systems of PDEs where, in
general, the corresponding matrix � is far from being an M-matrix.

In the past, several ways to generalize AMG have been investigated and there is still
an ongoing rapid development of new AMG and AMG-like approaches. For a review,
we refer to [2]. However, there is no unique and best approach yet. In fact, none of the
known approaches is really satisfactory in dealing with practically relevant problems
and many problems cannot be tackled at all yet. All methods seem to have their range
of applicability but all of them may fail to be efficient in certain other applications. In
this paper, the focus is on extensions of AMG which are direct generalizations of the
classical approach.

We first want to recall a rather popular AMG approach to solve systems of PDEs,
the so-called unknown-based approach, which is very similar to the variable-based



approach except that all unknowns are treated separately. To be more specific, let us
assume the variables to be ordered by unknowns, that is, �� � � has the form
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where ���� � � denotes the number of unknowns of the given system of PDEs, � ���

denotes the vector of variables corresponding to the �-th unknown and the matrices
������ reflect the couplings between the �-th and the �-th unknown. Using this no-
tation, coarsening the set of variables corresponding to the �-th unknown is strictly
based on the connectivity structure reflected by the submatrix � ����� and interpolation
is based on the corresponding matrix entries. In particular, interpolation to any vari-
able 	 involves only coarse-level variables corresponding to the same unknown as 	.
The Galerkin matrices, however, are usually computed w.r.t. all unknowns.

The unknown-based approach, which has been proposed already in the very early
papers on AMG (see [1]), is certainly the simplest approach for solving PDE systems.
By now a lot of experience has been gainedwith this approachwhich, in practice, works
quite efficiently for many applications. Compared to the variable-based approach, the
only additional information required is information about the correspondence between
variables and unknowns. The unknown-based approach is mainly used for applications
where the diagonal matrix blocks � ����� are close to being M-matrices. The essential
additional condition for the approach to work is that smoothing the individual equations
is sufficient to cause the resulting error to be smooth separately for each unknown.
One advantage of this approach is that it can easily cope with anisotropies which are
different between the different unknowns. Another advantage is that unknowns can
virtually be distributed arbitrarily across mesh points. However, this approach will
become inefficient, for instance, if the coupling between different unknowns is too
strong.

In this paper, we focus on applications for which the unknown-based approach
does not work, unless we introduce very special modifications. In particular, we con-
sider reaction-diffusion equations from semiconductor process simulation which lead
to matrices � for which the submatrices ������ are far from being M-matrices. In
fact, off-diagonal entries may be larger than the diagonal entry by orders of magnitude.
Hence, the size of matrix entries is no measure any more to decide about the strength
of connectivity in the AMG context.

In Section II, we outline a flexible framework for constructing new AMG ap-
proaches to solve various types of PDE systems. In contrast to the previous approach,
all of the new ones operate on the level of grid points rather than variables. Based on
this framework, our AMG code “RAMG”, described in detail in [3], has been substan-
tially generalized to provide more flexibility in solving PDE systems. Recent results
for industrial applications in semiconductor process and device simulation, obtained
by the generalized code (called “SAMG”), are presented in Section III, showing that
suitable point-based AMG approaches yield efficient solution processes.

II. A GENERAL FRAMEWORK FOR POINT-BASED APPROACHES

We talk about a point-based approach if, geometrically speaking, coarsening takes
place on the level of points (rather than variables as before) and all unknowns are
defined on the same hierarchy. Note that this is different from the unknown-based
approach where each unknown is associated with its own hierarchy.



Since we have the solution of PDEs in mind, we think of points as being real phys-
ical (grid) points in space. However, we want to point out that, from AMG’s point
of view, it is not important whether “points” really correspond to physical points. In-
stead, one may think of the nodes of a graph representing the connectivity structure of
�. Regarding a point-based approach, it is only relevant for AMG to know whether
there are “blocks” of variables (corresponding to different unknowns) which may be
treated (coarsened and interpolated) simultaneously. We assume that corresponding
information is available to AMG.

In all our point-based approaches the coarsening process is performed based on
some auxiliary (sparse) ��
�����
����-matrix � � �
���, called the primary matrix,
with �
��� denoting the number of points. The same coarse levels are then assigned
to all unknowns. For this process to make sense, the employed primary matrix should
reflect the physical connectivity (the general structure as well as the strength of con-
nections) of neighboring variables reasonably well, simultaneously for all unknowns.

A special point-based approach, sometimes called “block approach”, has already
been introduced in the very early paper [1] and has been further investigated, for in-
stance, in [4]. To be more specific, we assume the variables to be ordered pointwise,
that is, �� � � has the form
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where ���� denotes the “block” of variables located at point  and the ������ �����-
matrix ������ represents the “block coupling” between ���� and ����. Block coarsening
corresponds to defining the primary matrix � by
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with ����� denoting a suitable norm. Various different norms have been considered in
practice.

Depending on the type of application, there are many other possibilities for defining
a primary matrix. Often, this can be done automatically as part of AMG’s setup phase.
In other cases, it may be better to let the user of AMG provide a reasonable matrix
himself, based on his knowledge of the underlying physics of the given problem. In
such cases, a primary matrix can usually be interpreted as describing the connectivity
structure of some auxiliary (scalar) primary unknown. Clearly, this primary unknown
should represent the connectivity structure of all “real” unknowns in the given system
of PDEs reasonably well.

For instance, in simple cases, one may select � � ������ with � being any of the
unknowns of the given system of PDEs. Whether or not this makes sense, depends on
the application, in particular, whether the connectivity structure of the �-th unknown
is also representative for the other unknowns. If anisotropies in a given problem are
mainly due to non-uniform mesh spacings, a simple primary matrix might be given by
a discretization of the Laplace operator. One can also imagine cases where it makes
sense to define a primary matrix based on some natural physical quantity for which
there is no reasonable equation contained in the original system of PDEs, an example
being the pressure in the context of the Navier-Stokes equations.



The original AMG did not exploit any information on the given problem apart from
the matrix� itself. In many PDE applications, this unnecessarily limits the possibilities
for an efficient coarsening and interpolation. As a matter of fact, geometric information
such as the coordinates of grid points, is usually available and can be exploited in
AMG’s setup phase. Note that this does not restrict the generality of the grid shape
in any respect. If we assume coordinates to be known, � may often most easily (and
automatically) be defined based on distances of points, leading to coarsening processes
which are closely related to geometric coarsening. The most simple definition would
be
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�� � �
�
����


�� (4)

where Æ�� denotes the distance between points  and �. (Clearly, since � has to be
sparse, only points in small neighborhoods - corresponding to the non-zero pattern of
� - are taken into account here.)

Remark: In practice, often, not all unknowns are represented at a point, that is,
the number of variables may vary from point to point (cf. the applications discussed in
Section III). If this is the case, a reasonable primary matrix is required to “represent”
all points.

The main purpose of a primary matrix is to define an AMG hierarchy in terms
of points. As part of the (recursive) coarsening process, also interpolation operators
have to be constructed. In practice, there are various possibilities to generalize the
interpolation approaches used in classical AMG.

First, the use of block interpolation seems most natural, in particular, if � is de-
fined according to (3). That is, a formula to interpolate the error � ��� at a point  is
constructed by approximating the block equations

���� � ����
�����

�
����

���������� (5)

in a way which is completely analogous to the classical approaches to define interpo-
lation. However, this type of interpolation is very expensive. In practice, simpler types
of interpolation often lead to more efficient AMG processes. Thus, besides the above
block interpolation, we consider (variable-wise defined) interpolation formulas which
are either

� separate for each unknown, or

� the same for each unknown.

This classifies interpolation just according to its general structure. Typical ways to
define the interpolation weights are based on entries in the original matrix �, based on
distances and/or positions of points, or based on entries in the primary matrix � . We
cannot go into further details here but just want to mention that “classical” interpolation
schemes, as described in [3], such as direct, standard or multi-pass interpolation, can
be generalized to this setting in a straightforward way. Also the concept of aggressive
coarsening carries over.

The general framework outlined above formally allows to define various concrete
algorithms. It seems clear that there exists no unique AMG procedure which will work
satisfactorily for all systems of PDEs. Instead, major work consists in developing
concrete algorithms separately for certain classes of industrial applications.



III. APPLICATIONS

Due to the complexity of the models and grids used, industrial semiconductor pro-
cess and device simulation is increasingly recognized as an important and challenging
area for numerical simulation. Corresponding PDE systems include stress governing,
reaction-diffusion and drift-diffusion equations, all of which exhibit different numeri-
cal difficulties. That simple unknown-based AMG is suitable to speed up stress simu-
lations has already been shown in [5]. For reaction-diffusion and drift-diffusion equa-
tions, the situation is considerably more complicated. Where classical iterative solvers
often converge only slowly (or even break down) and straightforward unknown-based
AMG is not sufficient any more, suitable point-based AMG approaches, accelerated
by BiCGstab or GMRes, can still cause remarkable speedups. In the following, we
present some typical examples. We will see that reaction-diffusion problems can ef-
ficiently be solved by using a primary matrix based on geometric distances (4) and
an interpolation which is separate for each unknown with weights being also defined
based on distances. Drift-diffusion problems, on the other hand, are solved efficiently
by selecting the primary matrix based on norms (3) and choosing interpolation to be
the same for each unknown with weights being based on the entries of � .

3.1. Process simulation: reaction-diffusion equations

Systems of reaction-diffusion equations occur, for instance, in the simulation of an-
nealing steps after ion implantation into a wafer. They consist of a sequence of balance
equations of the form ([6, 7])
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where the �	 denote (diffusion and field driven) fluxes given by
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Here �	 denotes the concentration of the 	-th species, � their number, � the electro-
static potential, �	 � �	���� � � � � �� � a reaction term (often a polynomial), � 	 the
diffusivity, � the elementary charge, 
 the Boltzmann constant and � the absolute
temperature.

After inserting (7) into (6) for each 	, the above system consists of typically 30 to
40 equations. By employing some equilibrium assumptions, a reduction to a system of
3 to 6 equations of a similar form as (6) can be performed, with unknowns being the
concentration of species such as interstitials, vacancies, Arsenic, Boron, Phosphorus or
others. For the potential � an additional Poisson’s equation can be solved, which could
be coupled to the above system. We have only investigated the typical, uncoupled case.

In common process simulators, an implicit approach is chosen for the time dis-
cretization. The spatial discretization is performed by the so called “box method” on
Delaunay grids, and the resulting nonlinear system is linearized by a modified Newton-
Raphson method. ILU-preconditioned BiCGstab or GMRes are commonly used as
solvers for the resulting linear systems. More precisely, modified ILUT [8] or even
ILU(0) methods are employed.

Of particular interest are the concentration profiles in and near the reaction front, a
narrow region, moving from the “implantation” surface of the wafer towards the inte-
rior, where fast reactions occur due to large concentration gradients (see for example
[9]). In this region, the reaction terms cause very large positive or negative off-diagonal



Figure 1: Convergence histories for a 3D reaction-diffusion example. All AMG and
ILUT variants are accelerated by BiCGstab (“aggr.” or “std.coars.”: aggressive or stan-
dard coarsening, resp.; GS: Gauss-Seidel).

entries in the corresponding rows of the matrices�, leading to serious problems for the
standard iterative solvers mentioned above. It can be observed that these solvers are
getting less efficient or even stagnate in an unpredictable way. The difficulties often
increase during later time steps of a simulation. As an example, Fig. 1 depicts the
convergence histories for several ILUT-variants used as preconditioners for BiCGstab.
The solvers are applied to a typical system, arising in a 3D-simulation in a particular
step within Newton’s iteration.

Because of the very large off-diagonal elements, not only the full matrices �, but
also their submatrices ������ are far from being M-matrices. Therefore a straight-
forward unknown-based AMG method does not make sense here (see, however, the
remark below).

As can be seen in Fig. 2, the underlying grids are adaptively refined in the re-
action front. Hence, it seems promising to define a point-based AMG method with
a primary matrix based on distances and a separate interpolation with weights also
based on distances. This combination yields an AMG method which treats both the
“pure” diffusion outside the reaction front and the fast reactions inside properly (see
Fig. 3). As can be seen from Fig. 1, three AMG variants (with standard or aggressive
coarsening, Gauss-Seidel- or ILU-smoother), accelerated by BiCGstab, all converge
much faster than the ILUT-preconditioned ones. Moreover, this behavior is typical for
a whole simulation: AMG yields stable and superior convergence rates for residuals
and errors in all Newton iterations for each time step, which makes it more robust and
efficient than the ILUT-preconditioners.

Remark: As mentioned above, due to the large off-diagonals arising from fast
reactions, a straightforward unknown-based approach does not work. However, while
these reactions take place only inside a narrow area, outside a relatively ’harmless’
diffusion problem remains to be solved. Numerical experiments have shown that, by
introducing a very simple modification of AMG’s coarsening process, one can make



the unknown-based AMG work again: Simply do not coarsen at all inside the narrow
reaction area. To demonstrate this, we have forced all those variables 	 to stay in the
coarse levels, whose corresponding rows strongly violate diagonal dominance,

�
� ��	

��	� � � ���		� � (8)

Depending on the threshold parameter � � �, the resulting unknown-based AMG (em-
ployed as a preconditioner) converges similar to the point-based approach described
before. However, the choice of � is crucial and example-dependent. Clearly, the above
criterion is not always suitable to reliably distinguish the reaction-dominant from the
slow-diffusion part, and therefore the resulting approach is not robust enough for a use
in practice.

Figure 2: 3D reaction-diffusion example:
(part of a) 2D cross-section of the grid
which is adaptively refined near an edge
of the interface oxide/wafer.

Figure 3: Coarse levels for the grid on the
left: the larger the box, the longer the cor-
responding point stays in the coarse lev-
els.

3.2. Device simulation: drift-diffusion equations

The second class of examples is originating from device simulation, where for instance
the behavior of transistors is simulated. The simulation domain usually consists of
two parts, � and 	. The subdomain � usually represents the semiconductor region(s)
(doped silicon, the wafer), in which typically three coupled equations, a Poisson-like
equation and the electron and hole continuity equations, are solved for the electrostatic
potential � and the electron and hole carrier concentrations � and 
, respectively:
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The parts �� and �� of the (diffusion and electric field driven) flux � � �� � �� are
given by

�� � ������� � ����� � (12)
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� is the dielectric constant of the semiconductor, � the elementary charge,� � ����
the net impurity concentration,�� � ����� �� 
� and �� � ����� �� 
� the recombi-
nation-generation terms, �� � �������� ���� � 
 and �� � �������� ���� � 

the mobilities, �� � ���

�
�� � 
 and �� � ���

�
�� � 
 the diffusivities, 
 the

Boltzmann constant and � the device temperature. All of them are given (functions).
The second subdomain 	, consisting of at least one region (usually an oxide), is

treated as an insulator, so that (nearly) no charge carrier currents can occur. Therefore
the above PDE system degenerates to Laplace’s equation:
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 � (14)

where �� represents the dielectric constants of the corresponding material layers in 	.
A detailed discussion of the properties of such systems can be found in [10, 11, 12],

for instance. In the following, we concentrate on the steady-state simulation, where the
time-derivatives ��

��
and ��

��
are vanishing. In practice, the system is discretized by a

box method, employing special analytical 1D solutions along mesh edges (Scharfetter-
Gummel approach [11]). The resulting system is linearized by a (modified) Newton
method and usually solved by ILU-preconditioned BiCGstab. More precisely, some
modified ILU(0)-approach is used.

For each of the following four different types of devices we have considered one
example:

� a shallow trench isolated transistor (STI) [13],

� an electrically erasable programmable read-only memory cell (EEPROM) [13],

� a FinFET (a double-gate MOSFET structure in which a thin, fin-shaped body is
straddled by the gate forming two self-aligned channels that run along the sides
of the fin) [14],

� a power bipolar transistor (PBT) [13].

Details on these problems can be found in Table 1. Layouts of the STI, the FinFET and
the PBT example are shown in Fig. 4, 5, and 6, respectively. For each example, a whole
simulation series was run (using the commercial device simulator TAURUS by Avant!
Corporation) by applying increasing voltages. All matrix equations, produced during
the Newton iterations and for each voltage step, were used to test the performance of
AMG.

Example dim ns no np nv na
STI 2D 1 7 5516 9212 125620
EEPROM 3D 1 9 10493 15415 310361
FinFET 3D 2 5 27173 42489 987123
PBT 3D 1 3 76714 149100 2908954

Table 1: Details on the four examples (dim: spatial dimension, np: number of points,
ns: number of regions in �, no: number of regions in 	, nv: number of variables, na:
number of non-zero matrix elements).

Because of the tight coupling between the different PDEs in �, it turns out that
unknown-based AMG fails for such applications. Instead, we have chosen a point-
based AMG, in which the primary matrix � is defined by norms (3), and the same
interpolation is used for all unknowns with weights being based on the entries of � .



Figure 4: STI example: layout and dop-
ing profile. Courtesy of Avant! Corp.

Figure 5: FinFET example: layout and
doping profile. Courtesy of Avant! Corp.

Figure 6: PBT example: layout and doping profile. Courtesy of Avant! Corp.

In Table 2, we compare the convergence behavior of this AMG approach with that
of a standard ILU method of the type commonly used in device simulations (both
accelerated by BiCGstab). The results represent the typical behavior of the solvers
during a whole simulation run. If two exemplary results for a device (FinFET and
PBT) are given, they represent the ’best’ and the ’worst’ case regarding ILU, the first
of which occurs usually at an early stage of the simulation, the second near the end.

For the 2D simulations, AMG with standard coarsening gives the best convergence
rates and fastest timings. Compared to ILU, AMG yields a speedup of approximately
1.5 here. In the 3D cases, it is more favorable to use AMG with aggressive coarsening.
This reduces memory requirements, which is particularly important in 3D where rel-
evant problems are much larger than in 2D. As can be seen in Table 2, for the largest
two examples, ILU is inefficient already in the ’best’ case, and in the ’worst’ case it
virtually stagnates (PBT) or even fails (FinFET). In contrast to this, AMG exhibits a
stable convergence behavior in all cases and is always faster than ILU.

IV. CONCLUSIONS

AMG approaches for solving systems of PDEs were presented and discussed. Espe-
cially a general framework for point-based approaches was introduced, which employs
a primary matrix to construct a point-based coarsening. Several possibilities for select-
ing a primary matrix and for the computation of the final interpolation weights were
outlined. Recent results for applications in semiconductor process and device simula-
tion were presented, which demonstrate that robust and fast point-based AMGmethods
can be obtained using this framework.



Example Preconditioner Cycles ARF Time

STI 2D AMG 13 0.273 9.95
ILU 44 0.670 15.74

EEPROM aggr-AMG 12 0.303 14.32
ILU 22 0.518 17.27

FinFET aggr-AMG 14 0.303 87.58
ILU ��
�� 0.894 ��������

FinFET aggr-AMG 15 0.365 136.19
ILU — � 1.05 — �

PBT aggr-AMG 9 0.202 203.66
ILU ��
�� 0.811 �������

PBT aggr-AMG 16 0.407 269.12
ILU ��
�� 0.991 �����
��

� residual reduction by ���� only!
� method diverges!
� residual reduction by ���� only!
� magnitude of residual not reduced!

Table 2: Number of cycles, average reduction factors (ARFs) and wall-clock timings
(in seconds) for different examples. Accelerator always BiCGstab. Residual reduction
by �
�	, except stated otherwise. “aggr” means aggressive coarsening.
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