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Abstract - In this paper the performance of a special algebraic
multigrid (AMG) solver for the solution of the stress analysis
problems in process simulation has been investigated. The
discrete stress analysis equations are generated directly by the
process simulator. The practical simulation examples include
stress analysis during natively growing and deposited material
films. It is demonstrated that a methodology where AMG is
employed as a preconditioner for the standard iterative solvers
results in a very effective solving procedure regarding computing
times and convergence behaviour. A further comparison shows
that AMG preconditioned iterative solvers are faster than the
direct solver even for moderately small problems.

I. INTRODUCTION

It is increasingly recognized that with the growing complex-
ity of industrial process simulation applications, the perfor-
mance of the solvers for the corresponding discrete problems
becomes relatively much poorer. While direct solvers are ap-
proaching the problem of an unacceptable number of floating
point operations, the standard iterative solvers are facing the
problems of bad conditioning.

It is well known that multigrid methods offer the prospect
of an (optimal) linear behaviour of the computing time depen-
dently on the problem size. Standard multigrid methods have
been already recognized as an efficient solving technique for
process simulation problems if the underlying grid structures
possess a natural hierarchy resulting from a local grid refine-
ment [1]. However, the evolving geometry of the deformed
multi-layer material regions in semiconductor fabrication is
generally quite irregular. The unstructured grids describing
such a geometry are typically not coarse enough to serve as
the coarsest grid level in multigrid algorithms. This fact has
significantly limited the applicability of multigrid methods in
the process simulation. A promising approach to eliminate this
deficiency is the usage of algebraic multigrid methods [2,3,4].

The main objective of this paper is to investigate the capa-

bility of an AMG solver to cope with discretized systems of
the stress governing equations occurring in the semiconductor
process simulation where standard iterative solvers (precondi-
tioned BiCG and GMRes) have non-optimal convergence be-
haviour.

II. PROBLEM FORMULATION

The semiconductor process simulation involves generally
two principal classes of PDE problems. The first one is re-
lated to the redistribution of dopants and point defects in ther-
mal processes and requires the solution of multi-particle drift-
diffusion-reaction equations. The second class of problems is
related to the mechanical deformation of fabricated multi-layer
material structures. In the latter case, the corresponding gov-
erning equations actually account for the distribution of the
stresses and strains that develops in different material regions
during fabrication. Due to the elliptic nature of the governing
equations in the stress analysis problems they are more critical
for the application of classical iterative solvers and therefore
employed here in the formulation of the test problems.

The test problems for the numerical experiments are gener-
ated by the process simulator FLOOPS [5]. The stress analysis
in FLOOPS, and generally in process simulation, is principally
based on the momentum equation

�r � �d �rp � f in � (1)

where � is a bounded domain with boundary �, �d is the sym-
metric deviatoric stress tensor, p is the mean pressure and f is
the body force. The boundary conditions are given by

��pI� �d� � n � g on �g (2)

u � h on �u , (3)

where g is the surface traction of the boundary segment �g �
�, h is the displacement of the boundary segment �u � �
(�u � �g � �), n is the outward unit normal vector on the
boundary and I is the identity tensor. Mechanical properties



of the materials involved in the semiconductor fabrication are
varying from purely elastic solids to viscous fluids and there-
fore quite accurately modelled with the constitutive relation-
ship of the Maxwell viscoelasticity. The Maxwell viscoelas-
ticity is commonly implemented in process simulation in its
incremental form based on the constitutive relationships of lin-
ear elasticity
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where the viscoelastic material properties are introduced by an
effective shear modulusGe� given by
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Here u is the incremental displacement vector, G � � and
K � � are the shear and bulk moduli, 
t is the time step
size, and � is Maxwellian relaxation time defined as � �
��G, where � is the material viscosity. Notice that Ge� pro-
vides a continuous modelling of the material mechanical be-
haviour from the purely elastic deformation to the viscous flow.
Namely, for G� � it reduces to the Hooke’s law for the elas-
ticity while for � � G, we obtain the Newton’s law for the
viscous fluids.

We have considered two practical text examples in our nu-
merical experiments. The first one corresponds to the “sin-
gle full integration stress solving step” in the simulation of the

Figure 1: The grid structure for the SILO isolation problem
(green=silicon, yellow & brown=oxide, blue & cyan=nitride).

Figure 2: The grid structure (and some of the solu-
tion contour lines) for the DEPO3 problem with 8954
variables (blue=nitride, green=oxide, yellow=polysilicon,
cyan=silicon).

“Sealed Interface Local Oxidation” (SILO) process. The un-
derlying grid structure is shown in Fig. 1.

The second class of simulation examples (DEPO) is related
to the stress distributions in multilayer material regions
after thin film deposition processes. The origin of the stress
are intrinsic stress distributions in the deposited material
films. Fig. 2 shows an example of the grid structure used in
discretization of the model problem DEPO. It contains four
different material regions. In order to test different problem
scales, the problem DEPO is formulated with three different
grid structures. The stress governing equations are discretized
using standard piecewise linear Galerkin finite elements and
the assembled global stiffness matrices are submitted directly
to the AMG solver.

III. ALGEBRAIC MULTIGRID

Today various different algebraic multigrid approaches ex-
ist. We here refer to a very flexible, robust and efficient
approach in practice. It has been implemented in the code
SAMG16 (called AMG below), a further development of
RAMG05 [3] for PDE systems, which incorporates more effi-
cient and more flexible interpolation and coarsening strategies
than its predecessor AMG1R5 [6]. But because the research
version we have used is under permanent development, it is
not optimized especially in terms of computing times, and sub-
stantial improvements can be expected for a “final version”.



Belonging to the group of multi-level methods, AMG is de-
signed to solve certain types of sparse-matrix equations such as
those typically arising from the discretization of elliptic partial
differential equations (PDEs) or structurally similar problems.
Although it employs the ideas of smoothing and coarse grid
correction, it works differently than geometric multigrid and
uses only information contained in the given matrix, and addi-
tionally (in the case of a discretized system of PDEs) simple
informations about unknown-point-variable relations. There-
fore it is especially suited for problems based on unstructured
grids. For the same reason there is no need to completely re-
structure existing software packages: AMG can be seen as a
kind of “plug-in” or “black box” solver.

For large classes of problems AMG is an efficient alterna-
tive to standard numerical iterative methods such as conjugate
gradient (CG) or BiCGstab accelerated by typical (one-level)
preconditioners. AMG can handle millions of unknowns and
shows better convergence rates, to a large extent independent
of the size of the given problem. Often the efficiency can be in-
creased further by using (cheaper, low-memory) AMG variants
as a preconditioner for GMRes or BiCGstab. There is also the
possibility to parallelize AMG which has been shown recently
[4].

The classes of problems, AMG has successfully been
applied to, include for example problems on very complex,
unstructured grids and problems with strongly anisotropic and
discontinuous coefficients (e.g. oil reservoir simulation). But
most of these cases require after all the solution of a single
partial differential equation. Although the AMG approach
has already successfully been used for solving various types
of PDE systems, the development has not yet reached a state
where a particular approach is well-settled.

IV. NUMERICAL RESULTS

A. Comparison of different iterative approaches

The basic iterative approaches and their preconditioners,
which are used for solving the created problems, are listed
in Table I. Results of numerical tests with the SILO and the
DEPO examples are given in Tables II to VII.

TABLE I
DESCRIPTION OF THE DIFFERENT APPROACHES

Name Basic approacha Preconditionerb

AMG standard AMG none
AMG-BiCG BiCGstab 2 AMG it
BiCG BiCGstab ILUT(9)
AMG-GM20 GMRes(20) 1 AMG it
GM20 GMRes(20) ILUT(9)
AMG-GM4 GMRes(4) 1 AMG it
GM4 GMRes(4) ILUT(3)
aGMRes(x): x=dimension of the Krylov space
bit=iteration(s)

TABLE II
RESULTS FOR THE SILO EXAMPLE WITH 1810 VARIABLES AND 23079 NON-
ZERO MATRIX ENTRIES: AVERAGE RESIDUAL REDUCTION FACTORS (ARF),
NUMBER OF CYCLES NEEDED TO REDUCE STARTING RESIDUAL BY ����

AND RUN TIME (IN SECONDS).

Approach ARF cycles time
AMG-GM4 0.265 18 0.36
AMG-GM20 0.250 17 0.37
BiCG 0.519 36 0.39
GM20 0.744 78 0.52
AMG-BiCG 0.199 15 0.54
AMG 0.537 38 0.63
GM4 0.846 138 0.82

TABLE III
RESULTS FOR THE DEPO1 EXAMPLE WITH 1432 VARIABLES

AND 15912 NON-ZERO MATRIX ENTRIES

Approach ARF cycles time
AMG-GM20 0.117 11 0.22
AMG-GM4 0.123 12 0.23
AMG-BiCG 0.016 7 0.26
BiCG 0.340 25 0.27
GM20 0.634 51 0.28
AMG 0.267 18 0.42
GM4 0.955 505 1.65

TABLE IV
RESULTS FOR THE DEPO2 EXAMPLE WITH 3224 VARIABLES

AND 38425 NON-ZERO MATRIX ENTRIES

Approach ARF cycles time
AMG-GM20 0.211 15 1.86
AMG-GM4 0.239 17 1.90
AMG-BiCG 0.052 9 2.04
BiCG 0.553 39 2.13
AMG 0.475 31 2.95
GM20 0.824 119 4.15
GM4 0.985 1526 29.96

TABLE V
RESULTS FOR THE DEPO3 EXAMPLE WITH 8954 VARIABLES

AND 121868NON-ZERO MATRIX ENTRIES

Approach ARF cycles time
AMG-GM20 0.344 22 8.0
AMG-BiCG 0.174 14 9.3
AMG-GM4 0.528 37 12.0
BiCG 0.749 82 13.5
AMG 0.854 146 38.6
GM20 0.949 437 44.6
GM4 0.990 (1000)a (64.7)a
aResidual reduction by a factor of ��� only.

Notice that AMG-GM20 and AMG-GM4 (for smaller num-
bers of variables) or BiCG (for larger numbers of variables) are
the fastest approaches (for the residual reduction of 10 orders
of magnitude). AMG-BiCG reduces the residuals best. Espe-
cially for DEPO1 and DEPO2 it convergences exceptionally
well, and although two AMG steps are used for precondition-
ing, for a residual reduction by more than ����, it is faster than
AMG-GM.



TABLE VI
RESULTS FOR THE DEPO4 EXAMPLE WITH 16836 VARIABLES

AND 230896 NON-ZERO MATRIX ENTRIES

Approach ARF cycles time
AMG-GM20 0.498 34 23.6
AMG-BiCG 0.273 18 24.2
BiCG 0.812 118 37.3
AMG-GM4 0.742 78 48.3
GM20 0.953 483 99.9
AMG 0.947 422 210.9
GM4 0.996 (2000)a (288.9)a
aResidual reduction by a factor of ��� only.

TABLE VII
RESULTS FOR THE DEPO5 EXAMPLE WITH 21794 VARIABLES

AND 299593 NON-ZERO MATRIX ENTRIES

Approach ARF cycles time
AMG-BiCG 0.251 19 34.3
AMG-GM20 0.523 36 36.3
BiCG 0.837 130 55.5
AMG-GM4 0.749 80 66.0
GM20 0.962 597 158.2
AMG 0.950 449 297.8
GM4 0.996 (2000)a (380.8)a
aResidual reduction by a factor of ��� only.

The approaches with AMG as preconditioner show much
better ARFs than the other approaches tested. AMG as a stand-
alone solver is much better than GM4 and has a better ARF
than GM20, but it is slower than BiCG and GM20 (exceptions:
DEPO2 and DEPO3). For the DEPO1 and DEPO2 examples
AMG has a better ARF than BiCG, for the other examples it is
the other way around.

By looking at the residual development for larger problem
sizes (DEPO3 to DEPO5), one can see that both BiCGstab and
GMRes show residual reduction rates close to or even larger
than 1 in some steps and a partially oscillating behaviour,
but the residual reduction factors for AMG (as a stand-alone
solver) increase monotonously, at first in quick steps, then
slowly, and converge against a final value smaller than, but
close to 1. For both cases the conclusion can be drawn that the
iteration matrices have some eigenvalues close to 1, and there-
fore the approaches are not able to reduce the parts of the error
that belong to the corresponding eigenvectors.

AMG as a preconditioner for BiCGstab or GMRes improves
the spectral radius of the corresponding iteration matrix sub-
stantially. The residual reduction rates are bounded away from
1 but are varying.

Although AMG-BiCG or AMG-GM (example dependent)
are the best approaches for the problems tested, it is obviously
necessary to improve the capability of the AMG solver to
cope with discretized systems of PDEs or structurally similar
problems, e.g. by preconditioning the matrices to be solved in
consideration of the special system structure.

B. Comparison with SuperLU

To get a first impression how fast the AMG approaches are,
we have compared AMG-BiCG to the direct solver SuperLU (a
fast incomplete LU factorization built into FLOOPS) by mea-
suring total wall-clock times for computing the solution (in-
cluding grid generation). The results, which are shown in Ta-
ble VIII, are of great promise, particularly because SAMG16
can be optimized further.

TABLE VIII
WALL-CLOCK TIMES FOR COMPUTING THE SOLUTION

WITH SuperLU AND AMG-BiCG (IN MINUTES)

Example DEPO4 DEPO5
AMG-BiCG 1:37 2:26
SuperLU 2:26 3:13

V. CONCLUSION

In summary the numerical experiments have demonstrated
the following: The usage of the AMG solver SAMG16
as a preconditioner for BiCGstab or GMRes (with a large
dimensional Krylov space) results in approaches which are
better than the standard iterative solvers BiCGstab and GMRes
which are currently used in process simulation tools. The
AMG approaches are faster and their convergence rates are
smaller and more stable. Since the benefits of AMG solvers
increase with the problem size and since SAMG16 can be
optimized and developed further, it can be expected that AMG
could play an essential role in the next generation of process
simulation tools.
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