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ABSTRACT 
 
A serious bottleneck in performing large-scale numerical simulations is the speed with which the underlying 
sparse systems of equations can be solved. If these systems exceed a certain size, they can no longer be 
solved efficiently with standard numerical solvers simply because these solvers are not scalable. In this 
paper, we introduce a scalable state-of-the-art solver package based on algebraic multigrid, SAMG, which 
has been developed by the Fraunhofer Institute for Algorithms and Scientific Computing (FhG-SCAI). 
 

INTRODUCTION 
 
Computer simulations are becoming increasingly important. Generally, the finer the resolution of a 
discretization grid, the higher the accuracy of the numerical simulation. Unfortunately, however, increasing 

the grid resolution also increases the size of the 
corresponding (sparse) matrix equations which have to 
be solved numerically. Problems with millions of 
degrees of freedom (variables) are being tackled 
nowadays. Such large matrix equations can no longer 
be solved efficiently by standard off-the-shelf 
numerical methods such as conjugate gradient 
combined with some classical preconditioner. Instead, 
numerically scalable solvers are needed, that is, 
solvers for which the computational work depends only 
linearly on the number of variables. Scalability, in turn, 
necessarily requires hierarchical (multi-level) 
approaches which ensure a rapid reduction of both 
short and long range error components. 
Corresponding solvers are much more complicated 
than standard solvers. However, depending on the 
actual grid size and the concrete application itself, the 
resulting computational gain may be enormous. 

 
The most important progress in the numerical solution of discretized partial differential equations (PDEs) 
during the past three decades, was due to the multigrid principle. Any method based on this principle 
operates not just on the given discretization grid but rather on a hierarchy of grids, defined a priori by 
coarsening the given grid in a geometrically natural way. Unfortunately, integrating such a �geometric� 
multigrid method into an existing software package is very difficult. At the very least, it requires re-writing 
most of the code. Moreover, practically relevant grid models are often so complex that the explicit 
construction of a �natural� hierarchy of grids is very complicated if at all possible. In practice, this often limits 
the usefulness of geometric multigrid. 
 
Consequently, there is an increasing demand for algebraically oriented �plug-in� solvers which are still 
scalable but do not explicitly exploit geometrical properties of the given problem. Over 15 years ago, the first 
research code based on the idea of algebraic multigrid, became available [AMG1R5, Ruge&Stüben 1986]. 
Its main purpose was to demonstrate that numerical scalability can, in principle, be achieved without 
exploiting geometric properties, at least for certain classes of scalar elliptic PDEs. Recently, AMG1R5 is 
being used for increasingly complex large-scale applications. In particular, it has successfully been used to 

 
 
Figure 1. Computational work as a function of 
the number of variables, N 



demonstrate the strong potential of algebraic multigrid in speeding up ground water flow simulations (see 
[Mehl&Hill 2001]). However, these applications have also revealed some serious drawbacks of the original 
algorithm, in particular its unacceptably high memory requirements. During the last years, a much more 
advanced AMG algorithm has been developed, realized in the software package SAMG, which overcomes 
most of the drawbacks of AMG1R5, see [Stüben&Clees 2003, Stüben 2001]. The purpose of this paper is to 
outline the method and present some typical results. 
 

ALGEBRAIC MULTIGRID 
 
The idea of AMG is to generalize the two main principles of 
geometric multigrid - error smoothing by relaxation and 
coarse-grid correction - directly to certain classes of sparse 
matrix equations. This makes a corresponding solver 
particularly attractive as a black-box in connection with 
existing simulation software since only the matrix problem, 
Au=f, has to be provided. Ideally, no further information 
about the origin of the problem such as discretization, shape 
of the domain or the type of the discretization grid needs to 
be known. It does not matter whether a problem is 2D or 3D, 
whether the discretization grid is structured or unstructured 
and whether coefficients are smooth or discontinuous. 
 

Rather than operating on a hierarchy of grids, AMG operates on a hierarchy of increasingly smaller matrix 
equations, constructed fully automatically, based on algebraic information (explicitly or implicitly contained in 
the discretization matrix). However, as for geometric multigrid, AMG is not a fixed method but rather provides 
a methodology. The details of how the individual algorithmical components are finally constructed, strongly 
influence the resulting efficiency in terms of speed of convergence, memory requirement as well as 
robustness. 
 
The previously mentioned SAMG is actually not just a single code to solve particular matrix equations but 
rather provides a complete algebraic multi-level framework. For many years, its development has been 
driven by industrial requirements and its range of applicability is continuously being extended. Currently 
SAMG is being used in such diverse application fields as general purpose CFD, multiphase flow in porous 
media (both ground water modeling and oil reservoir simulation), structural mechanics, semiconductor 
process- and device-simulation, circuit simulation, casting and molding. Compared to its academic 
forerunner AMG1R5, SAMG is much simpler to use. It is considerably more robust and efficient, and � most 
importantly � it has an efficient memory management and new algorithmical components which allow to 
reduce memory requirements to a minimum. 

 
Some of the above applications lead to highly complex 
coupled systems of PDEs for which the search for optimal 
AMG components still requires some basic research. For 
other cases, SAMG is very mature. For instance, SAMG is 
highly efficient in solving matrix problems of the type which 
occur if CFD applications are tackled by solving sequences 
of scalar PDEs instead of directly addressing the fully 
coupled system. Popular approaches are the segregated 
solution approach to solve the Navier-Stokes equations or 
the streamline approach in oil reservoir simulation. Typi-
cally, the resulting problems to be solved by SAMG then 
correspond to diffusion equations for the pressure or re-
lated quantities (such as the head in ground water model-
ing), or diffusion-convection-reaction equations. Simulation 
software such as MODFLOW requires highly efficient soft-
ware modules for the numerical solution of such types of 
equations. 

 

Figure 2. Modelling a reservoir by Finite 
Elements (courtesy of Wasy GmbH) 

 
Figure 3. Streamline approach in oil 
reservoir simulation 



BENCHMARKS FOR SELECTED MATRIX PROBLEMS 
 
For a demonstration of SAMG�s efficiency, we compare the elapsed computational time of SAMG with that of 
a standard one-level solver (ILU-preconditioned CG or BI-CGSTAB, depending on whether or not the 
underlying problem is symmetric). We consider the solution of eight individual matrix problems, each one 
taken from a full simulation run in ground water modelling, oil reservoir simulation or external flow simulation. 
The following cases are considered: 

 
Cases 1-5: MODFLOW simulations as described 
in Table 1 of [Mehl&Hill 2001]. The size of these 
cases varies between 75,000 and 1,728,000 
variables. 
Cases 6-7: Streamline-based oil reservoir 
simulations by the commercial codes 3DSL 
(StreamSim Technologies) and FrontSim 
(GeoQuest), respectively. Both cases consist of 
about 1,200,000 grid cells; the first one is 
symmetric, the second one non-symmetric. 
Case 8: Solution of a single pressure equation at 
one particular time step of a full CFD simulation 
of the flow around a car by the commercial code 
STAR-CD from Computational Dynamics (2.3 
million cells, see [Stüben&Clees 2003]). 
 

For problems of the type and size considered here, the observed speedup through the use of SAMG is up to 
two orders of magnitude. Note that, generally, the concrete speedup depends on various details of the 
application such as the size and regularity of the grid, the type of the underlying discretization, the 
discontinuities and anisotropies of the coefficients, etc. In any case, however, due to the scalability 
properties of SAMG, the computational gain will grow further with increasing grid size. 
 
The following figures demonstrate the typical convergence behavior of SAMG. The rapid and uniform 
convergence behavior of SAMG is directly related to its hierarchical way of operation, a consequence of 
which is that AMG globally reduces errors much more effectively than any one-level method. 
 

        
 

Figure 5. Comparison of convergence histories: SAMG versus standard one-level solver 
 
As already mentioned, one of the major drawbacks of AMG1R5 is its memory requirement which, depending 
on the application, may easily be one order of magnitude higher than that of a standard one-level solver. 
Memory requirement typically becomes unacceptable in 3D situations using unstructured meshes and/or if 
coefficients vary in a strongly anisotropic or discontinuous way (see [Mehl&Hill 2001]). SAMG, on the other 
hand, has been designed to require, on the average, not more than twice the memory occupied by the given 
matrix A. Although a reduction of memory requirements in algebraic multigrid typically is at the expense of a 

Figure 4. CPU times: SAMG versus standard one-
level solver (residual reduction by 9 digits) 



slower convergence, some precautions have been taken in SAMG which make it even (often considerably) 
faster than AMG1R5 in terms of elapsed computational time. This has been achieved by combining efficient 
techniques based on aggressive coarsening and special interpolation operators (see [Stüben, 2001]). To 
demonstrate SAMG�s advantages in terms of memory requirement, we consider the operator complexity, 

( ) (1)

1
| | / | |  > 1.0

L

Ac A A
=

= ∑ !

!
 , 

where | |( )A !  denotes the number of non-zero 
entries contained in the ! -th level matrix (the 1st 
level being the finest one). That is, cA  defines the 
memory overhead caused by the need to store a 
sequence of coarser matrices in addition to just 
the given matrix. Although the true memory 
requirement is still somewhat higher (additional 
workspace is needed, for instance, to store the 
interpolation matrices), cA  is closely related to 
the overall memory requirement. Figure 6 
compares the operator complexity of SAMG with 
that of AMG1R5 for the same eight cases as 
before. While AMG1R5�s complexity values vary 
between 2.5 and 8, the average value for SAMG 
is only cA~1.5 or even less. 
 

 
APPLICATIONS IN GROUND WATER MODELING 

 
In the course of research and development, many new technologies have effectively demonstrated 
remarkable improvements over established technologies in controlled testing environments, only to fall well 
short of expectations during implementation in �real-world� scenarios.  The purpose of this study was to test 
the SAMG Solver on several real-world groundwater flow models and compare the performance and results 
against those obtained using the PCG Solver, developed by the USGS and provided with MODFLOW-2000 
[Hill, 1997], and the WHS Solver provided with Visual MODFLOW [Waterloo Hydrogeologic, 2003].   
 
A total of six groundwater flow models were selected to run the comparisons for this study.  All of these 
models are �project models� previously prepared by Waterloo Hydrogeologic�s Consulting Division using 
Visual MODFLOW, and were run using the USGS MODFLOW-2000 program.   
 

• Model 1 contains 44908 grid cells with dimensions of 109 rows, 103 columns and 4 layers. 
• Model 2 contains 110166 grid cells with dimensions of 122 rows, 129 columns and 7 layers. 
• Model 3 contains 210574 grid cells with dimensions of 178 rows, 169 columns and 7 layers. 
• Model 4 contains 138276 grid cells with dimensions of 167 rows, 138 columns and 6 layers. 
• Model 5 contains 85680 grid cells with dimensions of 120 rows, 102 columns and 7 layers. 
• Model 6 contains 59616 grid cells with dimensions of 138 rows, 144 columns and 3 layers. 

 
Model 1, Model 2, Model 3 and Model 4 are regional scale groundwater flow models prepared for the 
Province of Ontario Groundwater Studies program.  Model 5 is a regional wellhead protection model 
originally developed by the USGS and later extended and refined by Waterloo Hydrogeologic.  Model 6 is 
regional scale model of a proposed mine site in Chile for a water supply feasibility study. 
 
For the purposes of this study, Waterloo Hydrogeologic implemented support for the SAMG Solver in Visual 
MODFLOW.  All of the models for this study were run using Visual MODFLOW v.3.2 (Beta) on a Pentium III 
500MHz processor with 256 Mb RAM.  The performance of the solvers was measured by comparing the 
time required for the solution to converge to a reasonable solution.  Since the SAMG Solver uses a different 
type of closure criteria than the PCG Solver and the WHS Solver, it was decided to use a mass balance 

Figure 6. Comparison of operator complexity: 
SAMG versus AMG1R5 
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Figure 7. Comparison of Solution Convergence Times for the 
SAMG, WHS and PCG Solvers. 

error of 0.5% as the criteria to indicate a �reasonable solution�.  In order to achieve this, the closure criteria 
for each solver was adjusted on a trial and error basis for each model, so as to achieve the fastest 
convergence while maintaining a mass balance error of less than 0.5%.  A visual inspection of the head 
distribution contour map was also performed to ensure the reasonableness of the solution.   
 
A comparison of the solution times of each solver for the six models is presented in the following figure. For 
all but one of the models tested, the SAMG Solver demonstrated a significant performance advantage over 
both the PCG Solver and the WHS Solver.  In the cases where the solvers all converged to a solution, the 
SAMG Solver was faster than the WHS Solver by a factor of between 3.7 and 9.7, and faster than the PCG 
Solver by a factor of between 2.4 and 11.3.    

 
In the case of Model 1, we were not 
able to get the model to converge 
to a reasonable solution in a 
reasonable amount of time using 
the PCG Solver.  Although the 
SAMG Solver did converge to a 
solution with a mass balance less 
than 0.5%, a visual inspection of 
the solution indicated it was not a 
reasonable solution to model.  Due 
to time constraints we were not 
able to further investigate the 
source of the solution instability.   
 
Although the models involved in 
this study contained a wide range 
of grid dimensioning, there was not 
a noticeable correlation between 
the model grid size (total number of 
grid cells) and the performance 
improvements realized by the 

SAMG solver. However, this can likely be attributed to the fact that the scaling benefits of the SAMG Solver 
are not fully realized until you are dealing with models containing one million or more grid cells. 
 
With modelers continuing to build larger models with finer grid discretization, the time and cost savings of 
using the SAMG Solver will allow more time for creating better model conceptualization, improving the 
calibration, performing sensitivity analysis, and interpreting the results.   This results in the development of 
better, more reliable models. 
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