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Reservoir simulation is a necessary tool for making decisions. It is through numerical 
simulation that one can obtain knowledge pertaining to the processes occurring in the interior 
of an oil reservoir and hence, to enable an analysis of the various recovery strategies in order 
to guarantee optimal exploitation. History matching, optimization, and what-if scenarios 
require the simulation of large numbers of complex field-scale models. 
 
Deep inside any reservoir simulator, large linear systems of equations need to be solved 
numerically over and over again. During the last years, reservoir models have been growing 
in complexity (regarding both the geometry and the physical model), heterogeneity, and size, 
causing these linear systems to get increasingly large and difficult to solve by classical 
numerical solvers. In fact, the computational time required to solve these systems of equations 
is today's major bottleneck in the practicability of numerical simulation. Hence, advanced 
reservoir simulators necessarily require particularly efficient linear solver modules as well as 
parallel computers to yield answers in an economical time frame. 
 
The so-called algebraic multigrid (AMG) technique - the algebraic analog of the geometric 
multigrid (GMG) technique - provides a state-of-the-art means to construct numerical solvers 
suitable to tackle large applications with highest efficiency, usually much faster than any 
classical solver. As a consequence, AMG-based approaches are becoming increasingly 
popular as numerical kernel in many industrial simulation codes. AMG's major advantages - 
numerical efficiency, robustness, scalability and ease-of-use - have become the driving forces 
behind its growing success in industrial use. A state-of-the-art software package, SAMG, 
developed at the Fraunhofer Institute SCAI, is currently being used in many industrial areas. 
In particular, in the oil industry, SAMG has become a well-established tool for various 
software providers as well as major oil companies. 
 
This paper gives a short introduction to the multigrid technique in general, focusing on the 
key aspects that make it scalable. We will then outline the idea of AMG, how it relates to 
GMG, and how it can be employed to dramatically reduce computational times in reservoir 
simulation. For demonstration we will present various examples. 
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1 Introduction 
 
The use and the impact of numerical simulation – e.g. for virtual product development, for the 
understanding of product properties or the understanding and optimization of environmental 
processes - are continuously growing. For the exploitation of oil fields, it is only through 
numerical simulation that knowledge pertaining to the processes occurring in the interior of 
an oil reservoir can be obtained and that an analysis of the various recovery strategies in order 
to guarantee optimal exploitation can be made. A reduction of product cycle times, for 
example in the automotive industry, is not possible without increasing the use of numerical 
simulation. 
 
It is still the creativity and experience of the engineer which ultimately determines the quality 
of a product or the optimality of a process. However, he will be able to enhance his abilities to 
the degree which 
 

• simulation software is more strongly integrated into the engineering process; 
• the precision of the model involved is increased; 
• simulations can be carried out interactively. 

 
Here, however, numerical simulation often reaches limits in that standard solver technology is 
insufficient to account for the increasing complexity arising in industrial simulation. In 
reservoir simulation, for instance, a primary challenge for a new generation of reservoir 
simulators is the accurate description of multiphase flow in highly heterogeneous media and 
very complex geometries. The implementation of robust and efficient solvers for such 
simulations is one of the main challenges that most simulator developers currently face in the 
oil industry. Simulation run times are often much too long to be practicable. 
 
The general situation is the same in many other fields of numerical simulation such as in 
computational fluid dynamics, structural mechanics, oil reservoir and ground water 
simulation, casting and molding, process and device simulation in solid state physics, electro-
chemistry and many others. All of these areas are characterized by (usually time-dependent) 
partial differential equations (PDEs). 
 
For such problems to be treatable by a computer, they must first be discretized. That is, the 
continuum is replaced by a grid (or a mesh) and each continuum function is replaced by a grid 
(or mesh) function, represented by a set of discrete variables, each attached to a certain point 
of the grid. After having discretized the PDEs by means of finite differences or finite elements 
one finally obtains systems of linear or nonlinear algebraic equations. Hence, the core of the 
computation at each time (and may be linearization) step is governed by the successive 
solution of linear systems of equations, formally denoted as 
 
(1)  Au f= . 
 
We will use the letter N to denote the total number of variables. Solving (1) may become very 
difficult and extremely time consuming for several reasons: 
 

1. First, it is the sheer size of the linear systems (1) which causes an enormous 
computational complexity. In fact, to properly approximate the continuum and resolve 
the interesting phenomena, the discretization grid must be sufficiently fine. The 
number N of discrete variables thus tends to be huge. The number of algebraic 
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relations between the variables must, of course, be equally large. Today’s large-scale 
simulations operate on grids of the order of up to many millions of grid points. For 
instance, in the automotive industry, flow simulations around complete cars bodies are 
done on grids involving 10 to 100 million points (cf. Figure 1 and Figure 2). 
 

    
 
Figure 1: Grids for computing the underhood flow (left; courtesy of Computational 
Dynamics and Daimler-Benz) and the flow around an aircraft (right). 
 

2. The problem to design efficient solvers becomes particularly difficult due to the fact 
that we are not dealing with arbitrary matrices A. One of the characteristics of PDEs is 
the locality of the basic physical laws. When discretized, the resulting algebraic 
systems will be local too, that is, each algebraic relation will involve only a small 
number of neighboring variables. As a consequence, the matrices A will be very 
sparsely populated, typically only O(N) matrix entries are nonzero. At best, of course, 
the computational time to solve such linear systems is also just O(N). Unfortunately, 
standard solvers have a much higher numerical complexity than that (see below), the 
reason being that they do not sufficiently exploit the origin and nature of the discrete 
linear systems. 

 
3. Special characteristics may cause a given problem to be particularly difficult to solve. 

For instance, extremely unstructured or highly locally refined grids, not optimally 
shaped elements, extreme parameters contrasts (see Figures 2,4,14,19). In reservoir 
engineering, generally, the systems are highly nonsymmetric and indefinite. 
Moreover, the condition number and degree of coupling may be subject to dramatic 
changes due to abrupt flow variations induced by the high-heterogeneity and complex 
well operations during the simulation process. 

 
4. A final source of increased complexity is the need to repeat the calculations many 

times over. The solution of linear systems of equations is routinely repeated over and 
over, for a variety of reasons – to identify “characteristic parameters” on which the 
system depends, to follow the time evolution of a problem, to resolve a non-linearity, 
to solve an inverse problem, to follow a bifurcation diagram, etc. History matching, 
optimization, and what-if scenarios require the simulation of large numbers of 
complex field-scale models. 

 
In principle, many numerical solvers are available to solve linear systems of equations. 
Highest robustness is ensured by direct solvers (based on Gaussian elimination in one way or 
the other). Unfortunately, except for relatively small N, the application of direct solvers to 
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sparse matrices is not feasible. Both memory requirement and computational complexity grow 
dramatically with increasing N. Typically, the computational time grows like O(N2) or even 
faster. In contrast to direct solvers, the memory requirement of classical iterative solvers is 
much lower, usually only O(N). From this point of view, iterative methods are often the only 
choice in practice1. The computational work of classical iterative solvers typically grows like 
W(N)=O(Nα) with some α>1 depending on the concrete numerical method. Unfortunately, 
any method with α>1 is not practicable if only the problem becomes large enough (cf. Figure 
3). Instead, robust numerical solvers are requested for which the numerical work grows only 
linearly with the number of variables, W(N)=O(N). Such methods are called “optimal” or 
“scalable”. 
 

     
 

Figure 2: (left) Cross section of a highly complex mesh for the simulation of the 
exterior flow around a racing car. (right) Corresponding surface mesh near the 
driver. (Courtesy of Fluent and Sauber-Petronas) 

 
In order to construct scalable solvers, one needs to exploit the physical background of the 
problems, namely, their spatial origin. Any problem with that origin can be discretized and 
treated not only on one grid, but on a hierarchy of increasingly fine grids. Based on such a 
hierarchy of grids (or “levels”) it is possible to design numerical procedures that greatly 
benefit from intergrid (interscale) interactions. Roughly speaking, each level of discretization 
within the hierarchy is supposed to contribute only those “components” to the wanted solution 
which really require the grain size of that level. Everything else is computed on coarser levels. 
It is common opinion that, in order to really ensure scalability of a solver, such kind of 
hierarchical approach is necessary.  
 
A breakthrough, and certainly one of the most important advances in the development of 
numerical solvers, was due to the invention of the geometric multigrid (GMG) principle (see 
[ 50] and the references given therein). This principle was the first to allow the construction of 
truly scalable numerical methods for solving elliptic PDEs. Unfortunately, the impact of 
GMG on industrial software development was disappointingly limited. One reason for this is 
certainly that GMG-based solvers cannot simply be integrated into an existing simulator. In 
fact, GMG is not just a solver but it rather provides a technology which requires the complete 
simulation environment to be “multigridded”. The development of GMG-based simulators 
“from scratch”, however, is a very demanding task and, under certain industrial requirements, 
may technically even be too complicated, if possible at all. 
 
                                                 
1 Very often incomplete LU factorization methods – for instance, ILUT or ILU(k) – are combined with standard 
accelerators such as conjugate gradient, BiCGstab, GMRes or ORTHOMIN (see [ 37, 38, 39, 40, 52, 53]). 
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Algebraic multigrid (AMG) solvers [ 36, 43, 18] attempt to combine the advantage of GMG, 
namely, its efficiency and scalability, with those of easy-to-use “plug-in solvers” as 
commonly used in most simulators. In contrast to GMG, which explicitly requires and 
exploits grid structures, AMG operates directly on the linear system of equations (1). To 
ensure scalability, AMG also requires a hierarchy (of linear systems of equations rather than 
grids) following the same basic principles as GMG. In contrast to GMG, however, a 
reasonable hierarchy is not only constructed fully automatically, it is also directly based on 
the entries in the discretization matrix A without exploiting any geometric information. 
Hence, AMG-based solvers are easy to integrate into existing simulators and they are 
independent of the spatial dimension as well as the structure of the underlying mesh – major 
reasons for their industrial success. Therefore, the interest in incorporating AMG methods as 
basic linear solvers in industrial simulation codes - in particular, in reservoir simulation - has 
been steadily increasing. 
 

 
 

Figure 3: Computational work (scaled by the number of variables) for different types 
of solvers. 

 
Moreover, AMG-based solvers have also efficiently been parallelized. This is important since 
parallel computers provide an important means to improve performance further, enhancing 
the possibilities to perform much larger simulations. One might even be tempted to believe 
that, because of the rapid improvement of parallel hardware, the numerical scalability of 
solvers is not really that important any more. However, the opposite is true: the larger the 
computer (in particular, its memory), the larger the problems to be simulated and the larger 
the gain through numerical scalability will be! Remember that the gain through numerical 
scalability is not simply a factor (as in the case of hardware), the gain increases with 
increasing N (cf. Figure 3)! 
 
Hence, from a practical point of view, it is most important to combine numerical scalability 
with the scalability of parallel hardware. Only then can one achieve real breakthroughs in 
terms of overall performance. In this paper, we will not discuss the parallelization aspects 
further. However, we point out that a parallelization of AMG is not straightforward, and a lot 
of research has been done in this respect. The program package employed for all numerical 
computations in this paper, SAMG (see further below), is also available in parallel [ 30]. 
 
In this paper we discuss possibilities how to efficiently solve linear systems (1) obtained by 
discretizing (generally elliptic) PDEs, with special focus on reservoir engineering 
applications. The paper is organized as follows. Section  2 outlines the main idea of GMG, 
highlighting the key aspects that make it scalable. We focus on aspects which are relevant for 
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the development of its algebraic analog, AMG. Section  3 presents the idea of “classical” 
AMG originally designed for solving scalar elliptic PDEs, outlining how it relates to GMG. 
Although ideas how to extend “classical” AMG to coupled systems of PDEs have already 
been considered in the early literature [ 36], a systematic application of AMG to industrial 
PDE systems - such as those arising in reservoir simulation - has only been done in recent 
years [ 18, 19, 46]. Possible ways of how to extend AMG to solve coupled systems of PDEs are 
summarized in Section  4. 
 
Section  5 describes how AMG is currently employed in reservoir engineering. We will 
present examples of reservoir simulations based on different AMG approaches. All results 
presented in this paper have been obtained by the AMG package SAMG (“Systems AMG” 
[ 47]), developed at Fraunhofer Institute SCAI. For many years, SAMG has systematically 
been developed and extended with industrial applications in mind.  
 

    
 

Figure 4: Large-scale 3D flow model with unstructured mesh. This can be considered 
as a typical transient finite-element groundwater model used in practical water 
resources simulation. (Courtesy of Wasy GmbH) 
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2 Geometric Multigrid (GMG) 
 
For ease of motivation let us consider Poisson’s equation u f−∆ = , defined on the unit square 

2[0,1]Ω =  with Dirichlet boundary conditions, discretized by the standard 5-point stencil on a 
grid hΩ  with mesh size h, 
 

                                                 
2 now University of Leoben, Austria. 
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(2)  . 
 
The resulting linear system of N variables will be denoted as 
 
(3)  h h hA u f= . 
 
Some other model problems will be discussed in Section  2.5. Here and in the following we 
will usually omit the index h. Only if we explicitly need to distinguish different levels of 
discretizations will we use grid indices for clarity. 
 

2.1 Relaxation as a solver 
 
Thinking of  u  as a grid function, ui,j=u(xi,yj)=u(ih,jh), rather than a vector, the rows of (3) 
(except near boundaries) read as 
 
  2

, 1, 1, , 1 , 1 ,4 i j i j i j i j i j i ju u u u u h f− + − +− − − − = . 
 
A classical numerical process to solve such systems consists of satisfying one equation at a 
time by changing the associated variable, that is, 
 
(4)  2

, 1, 1, , 1 , 1 ,( ) / 4i j i j i j i j i j i ju u u u u h f− + − +← + + + + . 
 
Passing with that kind of local processing in some order over the entire grid - corresponding 
to one iteration step - is called a Gauss-Seidel (GS) relaxation sweep. 
 
The original purpose of iterating such sweeps is to drive the system towards a solution. 
Unfortunately, the convergence will be very slow which is a direct consequence of the 
locality of relaxation and the ellipticity of the mathematical model: While the ellipticity 
implies that the solution at any grid point is determined by the boundary values all along the 
boundary3, the local processing means that information “travels” very slowly across the grid. 
In fact, in each iteration step, information at any grid point is essentially transported only to 
its immediate neighbors whereas the influence on its further away neighbors decays 
exponentially with distance. That is, it takes a large number of iterations for information to 
travel from one side of the grid to the opposite side, say. Obviously, the finer the grid, the 
more iterations are needed. 
 
This heuristically explains not only why a local process such as GS relaxation converges 
extremely slowly, it also explains why its convergence gets increasingly slow with decreasing 
mesh size. To be more specific, one can prove that O(N) relaxation sweeps are needed to 
reduce the error by a fixed quantity. Since the numerical cost of a single sweep is also O(N), 
                                                 
3 This is in contrast to hyperbolic problems for which the transport of information follows certain characteristic 
directions. 
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the total work to reduce the error by a fixed quantity is O(N2). That is, while the memory 
requirement is minimal, the total computational time is comparable to that of a direct solver! 
Hence, GS relaxation in its classical form is of virtually no use for practice (cf. Table 1). 
 

2.2 Relaxation as a smoother 
 
In order to analyze GS relaxation a bit further, we consider the characteristic behavior of the 
residual and the error, 
 
(5)  r f Au= −    and   *e u u= − , 
 
respectively, in some more detail. Here u* denotes the exact solution of Au=f, and u its current 
approximation.  
 

 
 

Figure 5: Typical convergence history of GS relaxation to solve (2) 
 
Figure 5 illustrates the typical convergence history in terms of the residual, measured in some 
norm. While the residual drops rapidly during the very first relaxation steps, convergence 
drastically slows down afterwards and gets increasingly slow with increasing number of 
iterations. In order to understand the reason for this behavior, we need to have a closer look at 
the corresponding behavior of the error. By subtracting (4) from the fixed point equation, 
 
  * * * * * 2

, 1, 1, , 1 , 1 ,( ) / 4i j i j i j i j i j i ju u u u u h f− + − +≡ + + + + , 
 
we immediately see that the error e changes according to 
 
(6)  , 1, 1, , 1 , 1( ) / 4i j i j i j i j i je e e e e− + − +← + + + . 
 
Obviously, this is just an averaging process for the error, causing the error very quickly to 
become smooth. Figure 6 displays the shape of the error for a few consecutive relaxation 
sweeps, starting with a random first guess: While the error gets smooth very quickly, its size 
hardly changes! 
 
Writing the residual (5) in terms of the error, *( )r f Au A u u Ae= − = − = , or explicitly, 
 



 
Solving Reservoir Simulation Equations  Klaus Stüben 

 10

  2
, , 1, 1, , 1 , 1(4 ) /i j i j i j i j i j i jr e e e e e h− + − += − − − − , 

 
we see that the slow-down of residual reduction observed in Figure 5 is directly related to the 
error getting smooth. In fact, the randomness of the error at the beginning corresponds to 
relatively large and random residual values ri,j. The increasing smoothness of the error during 
the very first relaxation sweeps causes the residual to drop substantially. Once the error 
becomes smooth, the residual is small (relative to the size of the error itself) and it is plausible 
that a further reduction gets increasingly slow with increasing smoothness. 
 

 
 

Figure 6: The shape of the error for the very first relaxation sweeps, starting from a 
random first guess. 

 
Obviously, relaxation reduces non-smooth error “components” much faster than smooth ones. 
In fact, a closer analysis shows that the non-smooth components are reduced at a rate which is 
even independent of the mesh size h. This can be analyzed quantitatively by considering 
Fourier decompositions of the error and distinguishing “low” and “high” frequencies: By low 
frequencies we denote those which can be approximated (“are visible”) also on a coarser 
level, whereas the high frequencies are those which cannot be approximated (“are invisible”)4 
on a coarser grid. For the case of “standard coarsening” (i.e., the coarser level is obtained by 
doubling the mesh size), Figure 7 illustrates high and low frequencies in one dimension. From 
the figure we see that high frequencies are those with a wavelength less than 4h. Frequencies 
with larger wavelengths correspond to the low frequencies. This definition can directly be 
extended to higher dimensions: Using standard h→2h coarsening, a Fourier component is 
called high frequency if its wavelength is less than 4h in at least one spatial direction. 
Otherwise, it is called low frequency. 
 

 
 

Figure 7: Separation of Fourier components into low (smooth) and high (non-
smooth) frequencies, relative to a coarser grid of mesh size 2h (red dots). 

 

                                                 
4 More precisely, high frequency oscillations are not representable correctly any more on the next coarser level. 
In fact, if restricted to the coarser level, high frequencies coincide with certain low frequencies.  
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The separation of the error into low and high frequency Fourier components is the theoretical 
basis for a very general smoothing analysis (see, for example, [ 56] and the references given 
therein). In particular, one can define the so-called “smoothing factor” which is the minimum 
factor by which all high frequency error components are reduced per relaxation sweep. The 
main property of the smoothing factor is that it is independent of the mesh size. For example, 
for the 2D Poisson equation, the smoothing factor of GS relaxation is 0.5. Ultimately, the 
scalabilty of multigrid methods results from exploiting the h-independent smoothing behavior 
not just on a single grid but rather on a hierarchy of grids. 
 

 
 

Figure 8: Illustration of how relaxation acts on some error which is the superposition 
of a low and a high frequency component. 

 

2.3 Two-grid method 
 
According to the previous section, it is only the low frequency error components which are 
reduced slowly by relaxation, whereas the high frequency components are reduced very 
rapidly and, most importantly, at a rate which is independent of the mesh size h. This gives 
rise to the idea to combine the smoothing property of relaxation with a correction step using a 
coarser grid (“coarse-grid correction step”). That is, we use relaxation only to smooth the 
error; once the error is smooth, we approximate it by means of a coarse grid5. 
 
Let us consider the case of just two consecutive grids based on “standard coarsening”, Ωh and 
Ω2h. The following process describes the general frame of a two-grid method; various 
components still need to be specified. In particular, the restriction 2h

hI  and interpolation 2
h
hI  - 

mapping grid functions on Ωh to those on Ω2h and vice versa - need to be chosen. Postponing 
this for a moment, the mathematical description of one iteration step (cycle), computing a new 
approximation, 1m

hu + , from a previous one, m
hu , is as follows (cf. Figure 9 for a graphical 

representation of the same process): 
 

1. Apply ν1 (typically 1-2) smoothing steps starting with m
hu . For ease of notation denote 

the resulting intermediate grid function again by m
hu ; 

2. Compute the residual: m m
h h h hr f A u= − ; 

                                                 
5 Note that only smooth quantities can be approximated by the coarse level. Consequently, it is not the original 
equation (3) which is transferred to the coarse grid, but rather the (equivalent) residual equation, h h hA e r= . 
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3. Restrict the residual to the coarse grid: 2
2
m h m
h h hr I r= ; 

4. Solve the coarse-grid correction equations5: 2 2 2
m

h h hA e r= ; 
5. Interpolate e2h to the fine grid, and correct the old approximation: 2 2

m h
h h hu I e+ ; 

6. Apply ν2 (typically 1-2) smoothing steps giving the new iterate 1m
hu + . 

 

 
 

Figure 9: Mathematical description of a two-grid method 
 
Typically, restriction is some local averaging, whereas interpolation is bi-linear. A important 
class of applications for which this is not appropriate is given in Section  2.5.1. While A2h is 
often chosen to be the analog of Ah applied on the coarse level, there are also other 
possibilities (e.g., the Galerkin operator (10)). We mention that, generally, also the processes 
of smoothing and coarsening are components which can be selected differently. Reasonable 
choices specifically for the Poisson problem are summarized in Figure 10. 
 

 
 

Figure 10: Reasonable components defining a two-grid method for solving Poisson 
equation. The special fine-to-coarse averaging is usually called “full weighting”; the 
coarse-to-fine mapping is just bi-linear interpolation. 

 

2.4 Multigrid and scalability 
 
Mathematically, the two-grid method is sufficient to describe the multigrid principle. 
However, the coarse grid Ω2h will generally still be much too fine to allow for an efficient 
solution. Hence, to obtain a numerically efficient process, the two-grid method has to be 
recursively applied in a straightforward way to increasingly coarse grids down to a coarsest 
grid for which the cost for a solution is negligible. Apart from the data transfer between grids 
(and the direct solver on the very coarsest grid), we see that smoothing is the only process 
performed on each grid level (right picture in Figure 11). Let us give some heuristic 
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arguments why this process leads to a scalable method, meaning that its convergence rate is 
independent of h. 
 

        
 

Figure 11: (left) Schematic view of two-grid method. (right) Recursive extension of 
the two-grid method to a multigrid method. 

 
First, at the beginning of a cycle, all high frequency error components on Ωh are reduced by a 
factor independent of h (the smoothing factor). The remaining (low frequency) error 
components are effectively reduced by means of the coarser grids. In fact, any of these low 
frequencies is high frequency w.r.t. the scale of a particular intermediate grid. Relaxation on 
this particular grid will reduce the corresponding error component efficiently. That is, the 
primary purpose of each grid is to reduce those error components which are high frequency 
with respect to its own scale. Putting all this together we understand that, within each 
multigrid cycle, all error frequencies will uniformly (i.e., at the same rate, namely, the one 
given by the smoothing factor) be reduced. Of course, all this is under the assumption that the 
transfer operators between levels do not interfere too much with the smoothing processes on 
all levels. For further mathematical investigations of the multigrid process we refer to the 
multigrid literature (e.g., [ 50] and the many references given therein) 
 
The resulting method is not only scalable, each cycle is also very cheap. This is because the 
numerical work per level decays by a factor of 1/4 from level to level. The total work, Wcycle, 
required by a single multigrid cycle is asymptotically 
 

  1 1 1 1
1 1 4...
4 16 3cycleW W W W W≈ + + + →  

 
where W1 denotes the computational work performed on the finest level (for smoothing as 
well as data transfers between Ωh and Ω2h). If WGS denotes the computational work for one 
single GS relaxation step on the finest level, and if we assume two smoothing steps to be done 
(i.e., ν1=ν2=1), we have W1 ≈ 4WGS. That is, each multigrid cycle costs about the same as just 
a handful of GS sweeps on the finest level, 
 

  
4 4 5.3
3cycle GS GSW W W≈ ≈ . 

 
Table 1 shows timings demonstrating the dramatic gain by using GS relaxation as a smoother 
in a multigrid process compared to using it as a solver. For the multigrid cycle, we use the 



 
Solving Reservoir Simulation Equations  Klaus Stüben 

 14

components shown in Figure 10. As expected (due to its O(N2) complexity mentioned earlier), 
GS relaxation as a solver is virtually of no practical use, whereas the corresponding multigrid 
process is highly efficient: less than 30 sec on a standard laptop to solve Poisson equation on 
a mesh with more than 16 million variables! For completeness, the last row shows the 
performance of a particularly efficient multigrid approach known as “Full Multigrid6 (FMG)”. 
This approach is again three times faster than plain multigrid cycling. 
 

mesh size 256x256 512x512 1024x1024 2048x2048 4096x4096
plain GS relaxation 86 1250 18750 --- --- 
multigrid cycling 0.09 0.44 1.69 6.77 27.41 
Full multigrid (FMG) 0.03 0.16 0.53 2.14 8.30 

 
Table 1: Computational time (in sec) to solve Poisson’s equation 

 

2.5 Robust multigrid 
 
The multigrid technique as outlined for Poisson’s equation carries over to general elliptic 
PDEs as well as coupled systems of PDEs. Usually, however, the smoothing properties of 
plain GS relaxation will not be sufficient any more to ensure high multigrid efficiency. 
Instead, suitable block-relaxations (e.g. line-relaxation) may be required, or even completely 
different iterative methods with robust smoothing properties such as iterative methods based 
on incomplete LU decomposition (“ILU”). Here and in the following, we use the term 
“smoother” to denote any method which can be used as a smoother in the multigrid context7. 
 
In the remainder of this section we will summarize a few important aspects regarding the 
generalization of GMG which are of particular relevance for reservoir simulation applications. 
These aspects will later be used to demonstrate the conceptual differences between geometric 
and algebraic multigrid and make clear AMG’s major advantages for a practical application. 
For more details regarding the generalization of GMG we refer to [ 50]. 
 

2.5.1 Two characteristic model cases 
 
Any reasonable multigrid process requires an efficient interplay between smoothing and 
coarse-grid correction. Roughly, the following properties need to be satisfied: 
 

A. On each level, after having applied a few smoothing steps, the resulting error can 
sufficiently well be approximated on the next coarser level. 

B. The discretization operators on the coarser grids approximate the respective finer ones 
sufficiently well. 

C. The intergrid data transfer (in particular, the interpolation) is accurate enough. 
 
We briefly discuss two model cases demonstrating the meaning of properties A-C. Both 
models are relevant for the efficient multigrid treatment of reservoir equations. 

                                                 
6 Essentially, FMG employs regular multigrid cycles in a nested way. Unfortunately, there is no analog of this 
particularly fast multigrid variant in the context of algebraic multigrid to be introduced later. 
7 In principle, all iterative methods can be used as a smoother. Typical robust smoothers used in practice are 
(block-) relaxation methods, collective relaxation, distributive relaxation, ILU-type methods, approximate 
inverses, etc. 
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Anisotropic problems 
 
Given a smoother, the details of its smoothing properties depend on the application such as its 
degree of anisotropy. For instance, while plain GS relaxation is a very efficient smoother for 
isotropic Poisson equations (2), this is no longer true for anisotropic equations, 
 
(7)  xx yyu u fε− − =  with 1ε � , 
 
discretized by the standard 5-point stencil. Instead of (6) we now obtain 
 
(8)  , 1, 1, , 1 , 1( ) / 2(1 )i j i j i j i j i je e e e eε ε ε− + − +← + + + +  
 
showing that smooth error is essentially a weighted average of its neighbors in y-direction 
only whereas it is hardly influenced by values in x-direction. This is illustrated in Figure 12. 
 

      
 

Figure 12: Error smoothing by GS relaxation applied to the anisotropic Poisson 
equation (7). Starting from a random first guess, the error gets quickly smooth only in 
the y-direction (i.e. in the direction of “strong connections”). 

 
Obviously, such error cannot reasonably be approximated on Ω2h (i.e., Property A from above 
is violated), that is, the smoothing properties of plain GS relaxation are not sufficient in 
connection with standard h→2h coarsening. We need a different smoother, namely, one 
which smoothes the error uniformly, that is, in all spatial directions. We just mention that this 
can easily be achieved by a block-variant of GS relaxation which relaxes (ie, solves for) all 
strongly coupled points simultaneously. In our model case, this corresponds to line relaxation 
with the lines being parallel to the y-axis. Similarly, x-line relaxation has perfect uniform 
smoothing properties if 1ε � . In more realistic cases of strongly varying coefficients, we can 
combine both approaches: Alternating line-relaxation (i.e. one sweep of x-line relaxation 
followed by one sweep of y-line relaxation) has robust uniform smoothing properties for all 
kinds of anisotropy. 
 
While alternating line-relaxation provides an efficient smoother for general anisotropic 
applications in 2D, this is no longer true for general 3D applications. In fact, the 3D analog of 
alternating line-relaxation is alternating plane-relaxation, employing robust 2D multigrid 
processes within each plane (using alternating line-relaxation for smoothing). This shows that, 
even in relatively simple model cases, complex smoothers may be required in order to ensure 
sufficient smoothing properties. 
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Discontinuous coefficients 
 
In reservoir simulation, drastic changes in permeabilities lead to PDEs with strongly 
discontinuous coefficients. In such applications, care has to be taken to satisfy properties B 
and C from above. To illustrate this, let us consider an exemplary diffusion problem, 
 
(9)  ( )a u f−∇ ∇ = , 
 
on the unit square with the discontinuous coefficient a being defined in Figure 13. The figure 
also shows the shape of the error after having performed a few GS relaxation steps. 
Obviously, the error is not really smooth any more; it reflects the discontinuity along the 
interior line of discontinuity. Clearly, in contrast to the anisotropic problems, this behavior 
cannot be avoided by just choosing a different smoother. As a consequence, linear 
interpolation as employed in the Poisson case (Figure 10) is not suitable near the line of 
discontinuity. In fact, linear interpolation is feasible only if we can assume error after 
smoothing to be continuous. Moreover, unless the line of discontinuity coincides with grid 
lines on all coarser levels (which, generally cannot be ensured in real-life applications, cf. 
Figure 14), the discretization accuracy of the coarse level operators will be quite bad. Hence, 
both property B and C are violated. 
 

        
 

Figure 13: (left) Definition of discontinuous coefficient a in (9). (right) “Smooth” 
error obtained after a few sweeps of GS relaxation starting with a random guess. 

 
Remedies to such kind of situation (cf. also Section  3.2.2 on Algebraic Multigrid): 
 

• A reasonable interpolation needs to “reflect” the discontinuities. This can most easily 
be achieved by basing interpolation directly on the difference equations. (Such kind of 
stencil-based interpolation is called “operator-dependent interpolation” and has been 
introduced in [ 1] for the first time.) 

• Rather than using the “same” discretization on each level, the so-called Galerkin 
operator, 

 
(10)   2

2 2
h h

h h h hA I A I= , 
 

provides a robust alternative. This particular coarse-grid operator has its origin in 
finite elements8. Note that (10) is a simple multiplication between matrices which can 
be done purely algebraically. 

                                                 
8 In case of symmetric and positive definite matrices, this operator can also be motivated independently: 
“Galerkin-based” multigrid satisfies a variational principle which, essentially, ensures optimal corrections from 
coarser levels (as good as they can be, given the current coarser levels and transfer operators) if “optimality” is 
measured w.r.t. the energy norm, that is, ||e||=(Ae,e)1/2. 
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Figure 14: Drastic changes in permeabilities causing discontinuous coefficients 
 

2.5.2 Towards Algebraic Multigrid 
 
By now we have only considered standard h→2h coarsening. However, to satisfy Property A, 
this is not necessary. In fact, Property A only says that error after relaxation needs to be 
smooth relative to the coarse grids used. This indicates that we can loosen the requirements 
on the smoother and still maintain an efficient interplay with the coarse-grid correction if we 
introduce more flexibility in the selection of coarser grids. For the anisotropic case (7), for 
instance, we can continue to use plain GS relaxation for smoothing if we coarsen only in the 
direction of smoothness, that is, if we replace standard coarsening by “semi-coarsening” in y-
direction (cf. Figure 15). Similarly, if 1ε � , we can use semi-coarsening in x-direction. This 
idea immediately generalizes to 3D applications. 
 

            
 

Figure 15: Semi-coarsening in y-direction for anisotropic applications 
 
Even though smoothing can indeed be simplified to quite some extent, the usefulness of semi-
coarsening in real-life problems seems rather limited: In case of anisotropies of strongly 
varying directions, neither x-semi coarsening nor y-semi coarsening will do. In fact, it can be 
shown that the two types of coarsening need to be employed simultaneously: each multigrid 
level needs to employ more than one coarser grid, leading to the fairly complex “multiple 
semi-coarsening” technique (i.e. semi-coarsening in multiple directions, [ 33], see Figure 16). 
 
Summarizing, a robust GMG solver for general elliptic PDEs requires either complex 
smoothers or sophisticated multiple semi-coarsening techniques. Moreover, to cover also 
discontinuous coefficients, both operator-dependent interpolation as well as Galerkin coarse-
grid operators (10) are required. Hence, robust and general GMG methods may get rather 
complicated, even in case of structured meshes. In case of fully unstructured meshes, the 
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development of GMG solvers gets even more troublesome, if possible at all: On the one hand, 
a natural, easy-to-construct grid hierarchy may simply not exist. On the other hand, even if 
such a hierarchy was available, neither the above mentioned robust (line- and plane-) 
smoothers nor the multiple semi-coarsening technique carry over to the unstructured case. 
 

 
 

Figure 16: Outline of multiple semi-coarsening strategy for anisotropic problems in 
connection with plain GS smoothing 

 
One should observe that a major technical hurdle in constructing robust geometric multigrid 
methods is due to the fact that, generally, a grid hierarchy is assumed to be pre-defined. Since 
smoothness on a grid is always to be understood relative to a next coarser grid, this may 
require complex smoothing methods of the type mentioned further above. On the other hand, 
the semi-coarsening technique can principally be used to considerably weaken the 
requirements on the smoother; but as long as this technique also assumes pre-defined grid 
hierarchies, it seems still far from being flexible enough for an efficient treatment in “real-
life”. 
 
As a way out one needs still more flexibility in constructing coarser levels. For instance, a 
dynamic semi-coarsening strategy, allowing local adaptations to the true smoothing 
properties of the current smoother, would cure many of the difficulties mentioned before. 
Clearly, it is hardly possible to realize this in a structured geometric environment. However, 
observing that the operator-dependent interpolation and the Galerkin operator mentioned in 
Section  2.5.1 are essentially independent of the geometry, one might attempt to formulate a 
generalized multigrid method in purely algebraic terms, that is, without any direct reference to 
underlying grids. In fact, this is essentially what Algebraic Multigrid is all about. 
 

3 Algebraic Multigrid (AMG) 
 
We have seen that GMG can be used to solve elliptic PDEs very efficiently. For instance, 
Poisson equation on a 16 million point mesh can be solved in a few seconds on a standard 
laptop (see Table 1)! Since around 1970, world-wide research has demonstrated that the 
multigrid principle - the combination of smoothing and coarse-grid correction - is not only 
efficient but also very general. The development of multigrid can actually be regarded as the 
most important development in numerical mathematics over the last 40 years. 
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However, in spite of its revolutionary success in academia, GMG had only very limited 
impact on the development of industrial simulation software. From a practical point of view, 
there seem to be essentially two reasons for this: 
 

1. GMG solvers are not suited to simply replace classical solvers in existing simulators. 
This is because GMG is a general technique to solve PDEs, and a GMG-based 
simulator has to be conceptually tailored to this technique, it has to be “multigridded”. 

2. The alternative - to develop a GMG-based simulator from scratch - is possible in 
principle. However, the technical realization may, under industrial requirements, 
become rather cumbersome. In particular, in case of unstructured meshes the 
development of GMG-based simulators gets even more troublesome, if possible at all 
(cf. Figure 19). 

 
The algebraic multigrid9 (AMG) approach was driven by the attempt to automate and 
generalize GMG so that it can be applied directly to certain (sparse) matrix equations without 
explicitly referring to geometry and without requiring any pre-defined hierarchy. The 
construction of a hierarchy is actually part of AMG and is done fully automatically. That is, 
AMG solvers attempt to combine the advantages of GMG with those of easy-to-use plug-in 
solvers. In contrast to GMG, AMG-based solvers are easy to integrate into existing 
simulators, actually one of the major reasons for their industrial success. 
 

 
 

Figure 17: Being based on the same basic principles as GMG, AMG operates on a 
hierarchy of increasingly coarse matrix problems all of which are constructed fully 
automatically as part of the numerical algorithm (“setup phase”). 

 
AMG can formally be described purely algebraically as an approximate Schur complement 
approach. This approach has the advantage of providing a unified abstract description of 
various hierarchical methods including, for instance, multilevel variants of ILU (see, e.g., 
[ 34]). From a practical point of view, however, aspects regarding the heuristic motivation for 
certain algorithmic details may get less transparent or even get lost. Instead, we prefer a more 
intuitive description which allows pointing out the analogy between AMG and GMG. For that 
purpose we “visualize” a matrix by its graph representation (nodes correspond to variables, 
edges stand for non-vanishing matrix entries). This way, at least formally, we can argue and 
describe AMG in a GMG-like terminology. For instance, we can still think in terms of grids, 
grid points, grid functions, etc. 
                                                 
9 Since algebraic multigrid is applied to matrices rather than grid structures, we should actually use the term 
multilevel rather than multigrid. It is just for historical reasons that we use the term multigrid. 
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Figure 18: Graph representation of a 
matrix: The nodes of the graph stand 
for the variables; edges for non-
vanishing couplings between variables. 
In analogy to the finest grid in the 
context of GMG, we denote this graph 
by Ω h. “F” stands for fine level nodes. 
 

 
In the next subsections, we briefly introduce the basic ideas of “classical” AMG. Note that, 
although AMG is formally more general, we generally still have the solution of PDEs in 
mind. Also, in spite of the fact that geometry is not explicitly exploited, the heuristics behind 
the algorithmic details is often still motivated by geometric arguments. Some results will 
demonstrate AMG’s efficiency and potential. 
 

  
 

Figure 19: (left) Large-scale 3D basin flow model with unstructured mesh. The 
pentahedral prismatic mesh necessarily incorporates a number of faulty zones which 
leads to a vertical distortion of the prisms along these locations. (right) A complex 
cross-sectional 2D problem. The triangular mesh is fully unstructured and locally 
refined in a layered geometry. The problem models an aquifer-aquitard system with 
heterogeneous distribution of conductivity and storativity. (Courtesy of Wasy GmbH) 

 

3.1 History 
 
The development of AMG started in the early nineteen-eighties [ 9, 10, 11, 35, 36, 42] when 
Galerkin-based coarse-grid correction processes and, in particular, operator-dependent 
interpolation were introduced into GMG ([ 1], see also Section  2.5.1). One of the motivations 
for AMG was the observation that reasonable operator-dependent interpolation and the 
Galerkin operator  (10) can be derived directly from the underlying matrices, without any 
reference to the grids. To some extent, this fact had already been exploited in the first “black-
box” multigrid code [ 20]. However, regarding the selection of coarser levels, this code was 
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still geometrically based. In a purely algebraic setting, the coarsening process itself is also 
defined algebraically, i.e., strictly based on information contained in the given matrix. 
 
The very first AMG program is described and investigated in [ 35, 36, 42], see also [ 16]. At that 
time, the primary interest was of a scientific nature, namely, to demonstrate that - under 
certain conditions - multigrid methods can be designed even when no grids are available or, if 
available, without exploiting them. The original AMG approach was designed for the class of 
linear algebraic systems (1) with matrices A being symmetric, positive definite and “close to” 
weakly diagonally dominant M-matrices10. Problems like this widely occur in connection with 
discretized scalar elliptic PDEs of 2nd order, the simplest one being the Poisson equation (2). 
 
Since the resulting code, AMG1R5, was made publicly available in the mid eighties, there 
had been no substantial further research and development in AMG for many years. In spite of 
its potential, it took until around 1995 before there was a remarkable increase of interest in 
AMG and, more generally, in algebraically oriented hierarchical methods, both in science and 
applications. Among other reasons, this interest was fed by the increasing geometrical 
complexity of applications which, technically, limited the immediate use of alternate fast 
solvers such as those based on GMG. Another reason was the steadily increasing demand for 
efficient “plug-in” solvers. In reservoir simulation this demand was driven by ever-increasing 
problem sizes, complex structures, heterogeneities, multiphase flows, and wells which made 
clear the limits of classical one-level solvers used in industrial simulators. This development 
was similar in many other areas of numerical simulation. 
 
Fostered by this situation, sophisticated extensions of the original AMG method have been 
developed aiming at increasing its range of applicability. In particular, substantial progress 
has been achieved towards the efficient treatment of coupled systems of PDEs (see Section  4). 
Moreover, various other hierarchical algebraic approaches have been developed which differ 
substantially from the original AMG11. 
 

3.2 Basics 
 
We recall that, from a practical point of view, a major drawback of GMG is that it requires a 
pre-defined hierarchy of grids. This is not only the main reason for its technical difficulties in 
treating unstructured grid problems (if treatable at all), it is also responsible for the fact that 
particularly strong smoothers need to be employed in order to achieve a high robustness. 
 
Once we give up the request of a pre-defined hierarchy, we can get along with much simpler 
smoothers and, at the same time, gain more flexibility in treating unstructured meshes. 
Formally, this is the starting point of AMG and the main reason for its flexibility. In fact, 
AMG fixes the smoother to some simple scheme - typically just plain GS relaxation - and 
attempts to ensure an efficient interplay with the coarse-grid correction by locally and 
dynamically adapting coarser levels and (operator-based) interpolations to the smoothing 
properties of the smoother. Geometrically speaking, AMG attempts to coarsen only “in 
directions” in which relaxation really smoothes the error for the problem at hand. For many 
classes of applications, the relevant information is contained in the (discretization) matrix 

                                                 
10 More specifically: 0,  0 ( )ii ija a i j> ≤ ≠  and 0ijj

a ≥∑ . 
11 AMG, as we understand it, is structurally completely analogous to GMG in the sense that the basic algorithmic 
components - smoothing and coarse-grid correction - play the same role. 
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itself, so that the complete coarsening process can be performed based only on information 
contained in the matrix, without any reference to the grid. 
 
Hence, the application of AMG to solve a given problem (1) is a two-part process: First, there 
is the setup phase which consists of recursively choosing the coarser levels and dynamically 
defining the transfer and coarse-grid operators. Second, the solution phase just uses the 
resulting components in order to perform normal multigrid cycling until a desired level of 
tolerance is reached. Since the solution phase is straightforward, in the following we need to 
consider only the setup phase. 
 

3.2.1 Smoothing and coarsening 
 
In order to motivate the basic AMG idea, we first need to define “smoothness” in an algebraic 
context and understand how AMG can exploit this in constructing coarser levels. Recall first 
that smoothness in GMG is defined relative to a given coarser grid. For example, an error 
may be smooth with respect to a semi-coarsened grid but not with respect to a standard h→2h 
coarsened grid (see Figure 15). Since there are no pre-defined coarser grids in AMG (there 
may even be no grids at all), smoothing in the previous sense becomes meaningless. Instead, 
we exploit the relation between smoothness and slow convergence as discussed in Section  2.2 
and simply define an error e to be “algebraically smooth” if it is slow to converge with respect 
to the selected smoother. In other words, we call an error “smooth” if it has to be 
approximated by means of a coarser level12 (which then needs to be properly constructed!). 
From an algebraic point of view, this is the important point in distinguishing smooth and non-
smooth errors. 
 
Note that it is not important whether relaxation really smoothes the error in any geometric 
sense. What is important, though, is that algebraically smooth error can be characterized to a 
degree that makes it possible to perform an automatic coarsening process. In order to 
demonstrate what this means, let us reconsider the arguments of Section  2.2 for the class of 
matrix problems with weakly diagonally dominant M-matrices10, assuming GS relaxation to 
be used for smoothing: 
In one GS relaxation sweep, each variable ui in turn will be replaced by the new value, iu ,  
 
(11)  ( ) / /i i ij j ii i i ii

j i
u f a u a u r a

≠

= − = +∑    with   i i ij j
j

r f a u= − ∑  

denoting the i-th residual before relaxing ui. In terms of the error, *
i i ie u u= − , this means 

 
(12)  /i i i iie e r a= −  
 
which follows immediately by subtracting (11) from the fixed point equation, * *

i iu u= . By 
definition, error is algebraically smooth if it is slow to converge, i.e., if i ie e≈ . From this and 
(12) we heuristically conclude that algebraically smooth error is characterized by the relation 
 
(13)  | | | |i ii ir a e� , 
 
                                                 
12 Remember that, roughly speaking, any component of the error which cannot be reduced by smoothing 
necessarily needs to be reduced by computations on coarser levels and vice versa. 
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meaning that the (scaled) residuals are much smaller than the errors themselves. This simple 
relation expresses the most important property of algebraically smooth error: while such error 
may still be very large globally, locally we can approximate every ei fairly well as a function 
of its neighboring error values ej, 
 
  ( )  0i ii i ij jj i

r a e a e
≠

= + ≈∑  

or 

(14)  
1 | |i ij j

j iii

e a e
a ≠

≈ ∑ . 

 
The latter gives us a simple and practical characterization: At any point, i, the value of 
algebraically smooth error is well approximated by the weighted average of its neighboring 
values with weights being given by the corresponding coupling coefficients, aij. This 
immediately implies that algebraically smooth error “changes slowly in the direction of strong 
couplings”, that is, from i to j if |aij| is large (cf. Figure 20). 
 

 
 

Figure 20: Visualization of algebraic smoothness for isotropic and anisotropic problems 
 
This sounds very familiar from the GMG discussion in Section  2.2. However, while the 
previous characterization was just a conclusion in the case of GMG, in the context of AMG it 
plays a different role in that it provides the basis for explicitly performing the coarsening 
process: Coarsening will only be in directions where smooth error changes slowly, i.e., “in the 
direction of strong couplings”. Even more, it will also be the basis for defining interpolation 
between levels.  
 

3.2.2 The two-level method 
 
Based on the characterization of algebraic smoothness, this section outlines the main idea of 
how to design a two-level method. Generally, the following three steps need to be followed: 
 

1. Subdivide Ωh, the set of all variables, into F- and C-variables: while the F-variables 
remain on the finest level, the C-variables will be taken down to the next coarser one. 
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That is, the next coarser level, formally denoted by ΩH, consists of just the C-
variables. We call this process the “C/F-splitting”. 

2. Define transfer operators (“interpolation” and “restriction”) which map coarse vectors 
(defined on Ω H) into fine ones (defined on Ω h) and vice versa. 

3. Finally, define the matrix operator (“coarse-grid correction operator”) on Ω H. 
 

 
 

Figure 21: Meaning of “coarsening in the direction of strong couplings” in case of 
the anisotropic model operator. 

 
As motivated before, coarsening should be “in the direction of strong couplings”. What this 
means in a simple model case is illustrated in Figure 21. Applying this idea in a more general 
context means that the C/F-splitting should be done so that F-variables are “sufficiently 
strongly” coupled to C-variables. Conflicting to this is the goal that we want a rapid 
coarsening (producing low fill-in on coarser levels in later steps). This gives rise to the 
following two criteria in performing a C/F-splitting: 
 

1. The set of C-variables should be independent, that is, C-variables should not be 
strongly coupled among each other. 

2. Under the previous constraint, the set of C-variables should be a maximal set. 
 
While these criteria reflect the most important goals of a C/F-splitting, obviously, there is 
much arbitrariness to realize a splitting concretely. We cannot go into further details here but 
rather refer to [ 36, 43, 44] for concrete algorithms and additional motivations. 
 

 
 

Figure 22: Illustration of the C/F-splitting13 
 
Once a coarse level has been constructed, we need to define a reasonable coarse-to-fine 
interpolation. In the simplest case, we directly exploit (14) saying that the value of a smooth 

                                                 
13 We here make use of the graph representation (see Figure 18), the grids are just for illustration. To simplify 
the description, we assume that only edges are shown which correspond to strong couplings (based on some 
reasonable threshold); weak couplings are ignored in the graph. 
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error is essentially determined by the values of its strongly coupled neighbors (those with 
large coefficients). Applying this to an F-variable, we obtain a simple interpolation formula, 
 
(15)  | |  ( )   and    ( )h H h H

i i ij j i i
j C

e a e i F e e i Cα
∈

= ∈ = ∈∑  

where the scaling factor, αi, is defined by collapsing all F-to-F couplings to the diagonal (cf. 
Figure 23). Since this simple interpolation formula uses only “direct” couplings, it is called 
“direct” interpolation. While useful in simple applications, in general more complex types of 
operator-dependent interpolation are preferable both for reasons of efficiency and robustness. 
However, (15) shows the main principle; for more details and variants, see [ 43]. 
 

 
 

Figure 23: Principle of interpolation 
 
Denoting the interpolation matrix by h

HI , the restriction is generally defined as its transpose, 
that is, ( )H h T

h HI I= . Once both transfer matrices are available, the coarse-level matrix is 
defined to be the Galerkin operator, 
 
(16)  H h

H h h HA I A I= . 
 
We have introduced this kind of algebraically defined coarse-grid correction operator already 
in GMG, see (10). We here just recall that the Galerkin operator is mathematically justified by 
its optimality property regarding the quality of coarse-grid corrections8. 
 

 
 

Figure 24: The ingredients of a two-level method 
 
Summarizing, we obtain the two-grid components as illustrated in Figure 24. Using these 
components, the final two-grid method runs exactly as in GMG, see Figure 9, just replacing 
2h by H. Note that there are only two components which actually have to be constructed, 
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namely, the C/F-splitting and the interpolation matrix, h
HI . We point out that the “operator-

dependency” of interpolation, together with the optimality property of the Galerkin operator, 
makes AMG an efficient tool also for discontinuous coefficient applications. This is in 
contrast to standard GMG, cf. Section  2.5.1. In fact, AMG's interpolation (15) can be regarded 
as a generalization of the operator-dependent GMG interpolation introduced in [ 1, 20]. 
 

3.2.3 Two-level theory 
 
AMG methods used in practice14, are largely heuristically motivated. However, under certain 
assumptions, in particular symmetry and positive definiteness (“s.p.d.”), some theory is 
available. In particular, a two-level theory is available showing that convergence can be 
expected to be independent of the size of the problem and as fast (and expensive!) as we wish. 
In the following, we give an exemplary result. 
 
Theorem: Assume the weakly diagonally dominant M-matrix A to be s.p.d. Furthermore, for 
any fixed 0 1τ< ≤ , assume a C/F-splitting to be selected so that, for all i F∈ , 
 
(17)  | | | |  ik ij

k C j i
a aτ

∈ ≠

≥∑ ∑  

 
and define interpolation according to (15). Then the two-level method with GS smoothing has 
a convergence factor 0 1ρ≤ <  which does not depend on the matrix (neither the coefficients 
nor its dimension) but only on τ. While in the limit case τ =1 the resulting method degenerates 
to a direct solver, decreasing 0τ →  causes increasingly slow convergence, 1ρ → . 
 
To satisfy (17) with both a low number of C-variables and a reasonably large τ means that 
only few of the strongest neighbors should be put into C; the use of weak couplings would 
increase the computational work but hardly affect the convergence. Note that this implicitly 
means that coarsening will be in the direction of smoothness. 
 
The more strong connections are put into C (and used for interpolation), the better the 
convergence can be. In the limit case τ =1, for which the two-grid method degenerates to a 
direct solver15, (17) means that, for each i F∈ , all of its neighbors are in C. In this case, 
interpolation is “most accurate” but also most expensive. In fact, the resulting direct solvers 
are of no practical relevance since, in terms of computational work and memory requirement, 
they will generally be extremely inefficient if recursively extended to a hierarchy of levels. 
 
However, this limit shows something important, namely, that the convergence of AMG is not 
generally a problem; the more effort is put into its coarsening, the faster the convergence can 
be. More specifically, by suitably selecting τ, AMG can always be forced to converge rapidly. 
Unfortunately, however, the benefit of an improved interpolation in terms of convergence 
speed is offset by the expense in terms of additional computational work (which is also 
directly related to the memory requirement). That is, from a practical point of view, a major 
problem in designing efficient AMG algorithms is not convergence but rather the tradeoff 
between convergence and numerical workload. Keeping the balance between these aspects is 
the ultimate goal of any practical algorithm! Note that this is, in a sense, just opposite to 
                                                 
14 Remember that there is a lot of arbitrariness in both the C/F-splitting and the definition of interpolation. 
15 As a matter of fact, the limit case τ =1 results in a direct solver for any non-singular matrix A. 
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GMG where the numerical work per cycle is known and “controllable” but the convergence 
may not be satisfactory. 
 

 
 

Figure 25: The key to an efficient AMG approach: The tradeoff between convergence, 
workload and robustness. 

 

3.2.4 Recursive definition 
 
The recursive application of two-grid cycles finally leads to real multigrid cycles. Since this 
is, formally, completely analogous to GMG (cf. Figure 11), we do not need to explain this in 
more detail but rather refer to Figure 26. 
 

 
 

Figure 26: Complete AMG cycle recursively defined two-grid cycles 
 

3.3 AMG in practice 
 
Before an AMG cycle can finally be composed and the actual solution phase can start, the 
setup phase - in which all AMG components are recursively computed - has to be concluded. 
This overhead is the price for the flexibility of AMG and its simplicity of use and is one 
reason for the fact that AMG is usually less efficient than GMG (if applied to problems for 
which GMG can be applied efficiently). Another reason is that AMG's components can, 
generally, not be expected to be “optimal”, they will always be constructed on the basis of 
compromises between numerical work and convergence. Nevertheless, if applied to typical 
elliptic test problems, the computational cost of AMG's solution phase (ignoring the setup 
cost) should be comparable to the cost of a robust GMG solver. 
 
However, AMG should not be regarded as a competitor of GMG. The strengths of AMG are 
its robustness, its applicability in complex geometric situations and its applicability to even 
solve certain problems which are beyond the reach of GMG, in particular, problems with no 
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geometric or continuous background at all (as long as the underlying matrices have similar 
properties as those derived from elliptic PDEs). That is, AMG provides an attractive multi-
level variant whenever GMG is either too difficult to apply or cannot be used at all. In such 
cases, AMG should be regarded as an efficient alternative to standard numerical (one-level) 
methods. 
 
All results given in this section are obtained by the SAMG software library [ 47]. 
 

3.3.1 Remarks on generalizations 
 
Up to now, for ease of motivation, we have confined ourselves to the case of weakly 
diagonally dominant M-matrices. Although representative for some important class of 
problems, most applications will not strictly be of that type. “Mild” deviations from the M-
matrix type or the weak diagonal dominance can simply be ignored. However, if deviations 
become too strong, AMG’s efficiency may substantially deteriorate. 
 
It is difficult to say precisely, to which type of problems (matrices) AMG can efficiently be 
generalized. The most essential requirement for a generalization is that we are able to define 
“strength of connectivity” in a physically correct way. Without this, AMG will not be able to 
perform any reasonable coarsening. Note that this definition was obvious in weakly 
diagonally dominant M-matrix cases. Moreover, operator-dependent interpolation should be 
so that algebraically smooth error is interpolated accurately enough. Again, while the 
definition of a reasonable interpolation is fairly obvious in the M-matrix case, this is not at all 
true in other cases. 
 
In the following, we list a few typical situations for which the AMG processes need to be 
extended. None of these situations will cause a problem just by itself; whether AMG can 
efficiently be extended, or whether it may fail, strongly depends on the concrete situation, in 
particular, the physical origin of the respective new aspect. For the sake of brevity, we here 
cannot discuss these cases in more detail (except for the important case of coupled PDE 
systems which will be treated in Section  4). 
 

• If matrix rows contain (large) positive off-diagonal entries, there is no simple and 
unique rule of how to deal with them in a physically correct way. In fact, what is 
correct and what not depends to a large extent on the origin of these positive entries; 
different situations require different procedures. In general, one has to be careful in 
defining strength of connectivity as well as the interpolation. 

• For problems with near-zero eigenvalues, sufficiently accurate AMG interpolation 
may often not be computable based only on matrix information. The major difficulty 
is caused by the fact that the smaller an eigenvalue of a given problem, the more 
accurately the corresponding eigenvector needs interpolating. Clearly, unless such 
eigenvectors are close to being constants, the accuracy of interpolation for these 
eigenvectors will be limited without exploiting additional information. 

• For (slightly) indefinite problems, AMG is often applicable without any change. 
However, whether this is really true depends not only on the number of negative 
eigenvalues but also on whether or not there are near-zero eigenvalues (cf. the 
previous case). Since it is difficult to easily detect “bad cases” by merely looking at 
matrix entries, the application of AMG on indefinite problems may or may not work. 
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• If matrices are far from weakly diagonal dominant, it strongly depends on the physical 
origin whether or not AMG can efficiently cope with such a case. Without any 
adaptation, AMG will most probably loose much of its efficiency or will even fail. 

• In practice, matrices A are often re-scaled by applying diagonal matrices, D1 and D2, 
 

(18)   1 1
1 2A D AD− −← . 

 
There are various reasons for doing this. In the context of AMG, however, such re-
scalings need to be done with great care; at best they should be avoided altogether. In 
particular, re-scalings from the right (column scaling) may completely destroy matrix 
properties which are important for an efficient AMG treatment. For instance, while A 
may correspond to a nicely elliptic discretization, a re-scaling from the right may 
completely destroy this property, causing a fatal failure of AMG. Re-scalings from the 
left are usually somewhat less critical. But still, such re-scalings may negatively 
influence the quality of AMG’s coarsening to quite some extent. 

• Finally, the discretization of coupled systems of PDEs leads to matrices A which are 
usually far from weakly diagonally dominant M-matrices. The AMG treatment of such 
matrix problems requires special generalizations. Because of the importance of 
coupled PDE systems for practice, we will outline a generalized AMG strategy to deal 
with such applications in Section  4. 

 

3.3.2 Increasing robustness 
 
In order to increase the robustness of AMG approaches, it has become very popular to not use 
AMG-based solvers “stand-alone” but rather combine them with acceleration methods such as 
conjugate gradient (CG), BiCGstab or GMRES [ 37, 40,  52]. Practical experience has clearly 
shown that AMG is a very good preconditioner, much better than standard (one-level) pre-
conditioners. Heuristically, the major reason is due to the fact that AMG, in contrast to any 
one-level preconditioner, aims at the efficient reduction of all error components, short-range 
as well as long-range. However, although AMG tries to capture all relevant influences by 
proper coarsening and interpolation, its interpolation will hardly ever be optimal. It may well 
happen that error reduction is significantly less efficient for some very specific error 
components. This may cause a few eigenvalues of the AMG iteration matrix to be 
considerably closer to 1 than all the rest. If this happens, AMG's stand-alone convergence 
factor would be limited by the slow convergence of just a few exceptional error components 
whereas the majority of the error components is reduced very quickly. Acceleration by, for 
instance, conjugate gradient typically eliminates these particular components very effectively. 
The alternative, namely, to try to prevent such situations by putting more effort into the 
construction of interpolation, will generally be much more expensive. And even then, there is 
no final guarantee that such situations are avoided. 
 
We finally want to mention that, although AMG generally gets along with much “weaker” 
smoothers than GMG, it often pays to add robustness to AMG by using somewhat “stronger” 
smoothers than just GS relaxation. Often used in practice are smoothers of ILU- or ILUT-
type. Such smoothers will be extensively used, for example, in oil reservoir simulation (FIM 
and AIM approaches, see Section  5). 
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3.3.3 Exemplary coarsening process 
 
In this section we demonstrate AMG’s flexibility in adjusting its coarsening process locally to 
the requirements of a given problem. The underlying problem is the differential problem 
 
(19)  ( ) ( ) ( , )x x y y xyau bu cu f x y− − + =  
 
defined on the unit square with Dirichlet boundary conditions. We 
set a=b=1 everywhere except in the upper left quarter of the unit 
square (where b=103) and in the lower right quarter (where a=103). 
The coefficient c is zero except for the upper right quarter where 
we set c=2. 
 
The diffusion part is discretized by the standard 5-point and the 
mixed derivative by the (left-oriented) 7-point stencils. The 
resulting discrete system is isotropic in the lower left quarter of the 
unit square but strongly anisotropic in the remaining quarters. In the upper left and lower right 
quarters we have strong connections in the y- and x-directions, respectively. In the upper right 
quarter strong connectivity is in the diagonal direction. The left part of Figure 27 shows what 
a “smooth” error looks like on the finest level after having applied a few GS relaxation steps 
to the homogeneous problem, starting with a random function. The different anisotropies as 
well as the discontinuities across the interface lines are clearly reflected in the picture. 
 

           
 

Figure 27: (left) “Smooth” error in case of Problem (19). (right) The finest and three 
consecutive levels created by the standard SAMG coarsening algorithm. 

 
We have learned that such error can effectively be reduced by means of a coarser grid only if 
that grid is obtained by essentially coarsening in directions in which the error really changes 
smoothly in the geometric sense, and if interpolation treats the discontinuities correctly. 
Indeed, this is exactly how SAMG operates: First, its operator-based interpolation ensures the 
correct treatment of the discontinuities. Second, SAMG coarsening is in the direction of 
strong connectivity, that is, in the direction of smoothness. 
 
To illustrate this further, the right part of Figure 27 depicts the finest and three consecutive 
grids created by using standard SAMG coarsening and interpolation. The smallest dots mark 
grid points which are contained only on the finest grid, the squares mark those points which 
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are also contained on the coarser levels, the bigger the square, the longer the corresponding 
grid point stays in the coarsening process. The picture shows that coarsening is uniform in the 
lower left quarter where the problem is isotropic. In the other quarters, AMG adjusts itself to 
the different anisotropies by locally coarsening in the proper direction. For instance, in the 
lower right quarter, coarsening is in x-direction only. Since SAMG takes only strong 
connections in coarsening into account and since all connections in the y-direction are weak, 
the individual lines are coarsened independently of each other. Consequently, the coarsening 
of neighboring x-lines is not “synchronized”; it is actually a matter of “coincidence” where 
coarsening starts within each line. This has to be observed also in interpreting the coarsening 
pattern in the upper right quarter: within each diagonal line, coarsening is essentially in the 
direction of this line. 
 

3.3.4 Performance and scalability 
 
As a benchmark, we consider the application of SAMG to solve the pressure-correction 
equation which occurs as the most time-consuming part of the segregated solution approach 
to solve the Navier-Stokes equations. The discretization is based on finite-volumes. The 
concrete application is the industrial computation of the exterior flow over a complete 
Mercedes-Benz E-Class model (see left picture in Figure 28). The underlying mesh consists 
of several million cells and is highly complex. 
 

           
 

Figure 28: (left) Mercedes-Benz E-Class model. (right) Comparison of convergence 
histories between SAMG and a standard one-level solver. (Courtesy of Daimler-Benz 
and Computational Dynamics) 

 
The right picture of Figure 28 refers to the solution of a single pressure-correction equation at 
one particular time step taken from a normal production run. It compares SAMG's 
convergence history with that one of a standard solver (ILU(0) pre-conditioned conjugate 
gradient, ILU/cg). In terms of total computational time, SAMG is about 19 times faster. This 
reflects the typical performance of SAMG in geometrically complex applications of the type 
and size considered here. Since, due to its scalability, SAMG's convergence is virtually 
independent of the problem size, the gain by employing SAMG grows further with increasing 
problem size. 
 
Finally, we want to demonstrate SAMG’s scalability properties. For this purpose we consider 
a simple model problem which can easily be scaled up, the so-called Durlofsky flow problem. 
This corresponds to a square domain with a conductivity field as shown in Figure 29. The 
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flow enters on the left side of the domain and exists on the right side with impervious 
boundaries at the top and the bottom. 
 

 
 

Figure 29: Durlofsky problem: (left) Conductivity pattern (red=1m/s; blue=10-6 m/s), 
basic 20x20 mesh. (right) Performance of SAMG compared to that of a standard one-
level solver for increasing mesh size. 

 
The problem is steady-state, characterized by a structured regular gridding and heterogeneous 
conductivity distribution. The parameter contrast refers to a power of six. The domain is 
initially discretized by a 20x20 square quadrilateral mesh representing the first refinement. To 
test SAMG’s scalability, we perform a stepwise global refinement by recursively subdividing 
quadrilaterals into four equally sized quadrilaterals. For the sequence of meshes obtained this 
way, the bar chart in Figure 29 compares the performance of SAMG with that of a standard 
pre-conditioned conjugate gradient solver, PCG. The results clearly indicate the superiority of 
SAMG for this problem as well as its scalability property. In fact, the required number of 
iterations does not increase for SAMG if the problem enlarges whereas it increases 
significantly for the standard solver. For large problems, in the order of a million variables, 
SAMG is more than ten times faster than the standard solver.  
 

4 AMG for coupled PDE systems 
 
Classical AMG as outlined in the previous section has been designed for the solution of linear 
systems (1), obtained by discretizing scalar elliptic PDEs. Such matrices have characteristic 
properties - in simple cases they are weakly diagonally dominant M-matrices - which are 
exploited by the AMG algorithm. Unfortunately, matrices obtained by discretizing coupled 
systems of PDEs are usually far from satisfying these properties. Hence, if applied directly to 
such systems, classical AMG will fail or, at least, seriously deteriorate. Except for 
applications with very weak cross-couplings between different physical unknowns16, the 
coarsening and interpolation rules of classical AMG are no longer appropriate. Without (at 
least) being able to distinguish between different unknowns, no efficient AMG processing can 
be expected. 
 
Notation: Linear systems (1) corresponding to discretized coupled systems of PDEs will 
simply be called coupled systems as opposed to scalar systems corresponding to scalar PDEs. 

                                                 
16 For historical reasons, in the context of AMG, the different physical functions defined by a coupled system of 
PDEs are usually called “unknowns”. 
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Correspondingly, AMG approaches which are directly applicable to coupled systems are 
called coupled AMG as apposed to scalar AMG which is applicable only to scalar systems. 
 
In practice, the solution of a coupled system of PDEs is very often reduced to the solution of a 
series of scalar problems. This is very popular, for example, in computational fluid dynamics 
(“pressure-correction methods”) or oil reservoir simulation (“two-stage preconditioning”, see 
Section  5.2.1). In such cases, scalar AMG approaches can immediately be applied to elliptic 
sub-problems. However, whether such a “decoupled” approach is efficient, depends on the 
application. In many cases it will be more efficient to treat coupled systems “directly” by a 
suitably generalized AMG approach. Before we will discuss procedures of how to obtain such 
coupled AMG approaches, we want to make a general remark: 
 
Although AMG finally operates only on matrices, we must generally not ignore the physical 
background of a given problem. Generally speaking, the following three basic assumptions 
necessarily have to be satisfied for an AMG approach to be meaningful: 
 

1. For any linear system to be solved by AMG, a natural hierarchy (of resolution scales) 
has to exist. Otherwise, there cannot exist an efficient AMG approach either. 
However, since we are only considering PDEs, this request is naturally satisfied. 

2. AMG is able to construct a reasonable hierarchy. This essentially means that AMG is 
able to correctly distinguish between weak and strong couplings. This was easy and 
straightforward for M-matrices. In general, however, this is not straightforward at all. 

3. AMG is able to exploit the hierarchy. This means that AMG is able to use coarse-level 
approximations to effectively correct fine-level ones. This is essentially a requirement 
regarding the “accuracy” of AMG’s interpolation. 

 
Unfortunately, there is no simple answer on how to satisfy these assumptions in general and 
there is no straightforward extension of classical AMG resulting in a black-box which can 
efficiently solve any coupled system of PDEs. In fact, concrete approaches need to be 
specifically designed for certain classes of applications and black-box usage can only refer to 
such classes. 
 
Already in the early work [ 36], but more systematically during the last years [ 17, 18, 23, 47], 
extensions of the classical AMG have been considered. In the following, the goal is not to 
present a final algorithm, but rather to describe a general framework which is flexible enough 
to exploit additional (including user-provided) information and which can easily be adjusted 
to specific requirements of a given problem class. For demonstration, we mention some 
typical examples. 
 

4.1 General idea: the primary matrix 
 
The basic idea to define coarsening processes under very general assumptions relies on the 
introduction of some auxiliary (sparse) control matrix, the so-called primary matrix, generally 
denoted by P: Rather than defining the strength of connectivity between variables directly via 
the entries of the given matrix A, it is defined via the entries of P. Formally, this provides a 
very general framework allowing the method to be adjusted to many different situations17. 
 

                                                 
17 We point out that, in most practical cases, a primary matrix does not need to be explicitly assembled and 
stored. The concept of primary matrices is rather used for a simple description of the approaches. 
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While primarily introduced for the treatment of coupled systems of PDEs, the concept of 
primary matrices makes sense also in case of scalar PDEs. Classical AMG as described in the 
previous section corresponds to selecting P=A, that is, P represents the connectivity structure 
between variables as provided directly by the given matrix. However, in non-standard scalar 
applications, one may also define P differently, for instance, based on geometric distances of 
the variables (if known), or on alternate (for instance, less accurate but simpler) discretization 
schemes. One may also define rows of P by suitably combining certain neighboring rows of 
the matrix A (“local elimination”). This provides, for instance, a natural way to analyze the 
influence of “critical” (e.g., large positive) off-diagonal matrix entries and treat them correctly 
in terms of strength of connectivity. 
 
The main purpose of a primary matrix is to allow for a reasonable coarsening process; in 
many situations it may also be useful in constructing interpolation. That is, coefficients of 
interpolation are defined based on the matrix entries of P rather than those of A. Obviously, 
one can imagine many possible algorithmic combinations and which one is best, strongly 
depends on certain characteristics of a given application. 
 
In the following, we concentrate on the “direct” treatment of coupled systems, outlining two 
different approaches, unknown-based and point-based. 
 

4.2 Unknown-based approaches 
 
Let us consider a coupled system for nf physical unknowns such as the pressure, the saturation 
of a particular species, or a velocity component. We require that, besides the linear system (1) 
itself, information is available allowing to distinguish between the different unknowns. Since 
this is the only additional information required, the resulting AMG approaches are called 
“unknown-based”. The idea is to perform coarsening and interpolation separately for each 
unknown18; the basis AMG approach applied to each of the unknowns is analogous to the 
scalar AMG approach. Hence, unknown-based AMG approaches are both simple and 
powerful for many classes of applications, at least if the cross-couplings between unknowns 
do not exceed a certain strength. Typical application classes are given by diffusion problems 
or linear elasticity. 
 
The general form of an unknown-based approach is most easily described if we assume all 
variables to be ordered unknown-wise, so that the matrix A takes the form 
 

  
[1,1] [1, ]

[ ,1] [ , ]

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
# % #

…

nf

nf nf nf

A A
A

A A
 . 

 
Them, a general primary matrix has the form 
 

  
1

nf

P

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

%  . 

                                                 
18 This does not mean that all unknowns are treated independently of each other. In fact, on each level of the 
multigrid hierarchy the Galerkin operator re-introduces cross-couplings between different unknowns. 
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The sparse block sub-matrices Pi are assumed to have the same dimension as A[i,i] and to be 
suitable for scalar AMG. Hence, the connectivity structure reflected by the auxiliary matrix Pi 
can be used to coarsen the i-th unknown. Clearly, for this to make sense, Pi should reflect the 
physical connectivity between variables corresponding to the i-th unknown reasonably well. 
For instance, for all diagonal blocks A[i,i] which are appropriate for scalar AMG (eg, which are 
close to being weakly diagonally dominant M-matrices), a standard choice would be Pi=A[i,i]. 
However, analogous to the scalar case outlined above, various other choices are possible.  
 
In the unknown-based approaches, interpolation is kept separate for the different unknowns, 
that is, variables corresponding to the i-th unknown, say, are interpolated from variables of 
the same type only. Concrete weights may, for example, be based on the entries of Pi, A[i,i] or 
on geometric distances (if available). 
 
Note that unknown-based approaches have no analog in GMG where coarsening is always on 
the basis of grids and, hence, all physical functions live on the same hierarchy. 
 

4.3 Point-based approaches 
 
In contrast to unknown-based approaches, point-based ones additionally need to distinguish 
between different points. More precisely, point-based approaches need to know which 
variables are sitting at the same physical point of a given grid (they generally do not need to 
know the location of grid points, though). For this to make sense, we require all unknowns to 
be defined at the same grid (i.e., we do not consider “staggered” grids). Note, however, that 
not all unknowns are required to be defined everywhere, allowing for adaptive strategies such 
as those realized in the AIM approach in reservoir simulation (see Section  5.3). 
 
For an outline of point-based approaches, we assume all variables to be numbered point-wise 
so that the matrix A takes the form 
 

  
(1,1) (1, )

( ,1) ( , )

np

np np np

A A
A

A A

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
# % #

…
 

 
where np denotes the number of grid points. In contrast to unknown-based approaches, point-
based ones are controlled by a single primary (sparse) npxnp matrix P which is defined on the 
level of “points” rather than variables, and all unknowns are coarsened based on the same P. 
That is, all unknowns are coarsened simultaneously and live on the same coarse grids. 
Clearly, for this to make sense, the connectivity structure defined by P should represent the 
connectivity of all unknowns in the coupled system reasonably well. 
 
In the standard case that all unknowns are defined at all grid points, point-based coarsening 
with the primary matrix P can actually be regarded as a special unknown-based coarsening 
with Pi≡P. The fact that point-based approaches produce only a single hierarchy of grids 
makes them particularly flexible in taking care of strong cross-couplings between unknowns. 
For instance, smoothing can be performed in a block sense (e.g. block Gauss-Seidel or block 
ILU). If required, interpolation can also be performed block-wise with blocks being induced 
by the system’s point block coupling (see below). Hence, in applications with strong 
couplings between different unknowns, point-based AMG may be advantageous compared to 
unknown-based AMG. 
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There are many possibilities of choosing a primary matrix P, some of them being sketched in 
the following. Often, the connectivity inherent to one of the given PDE system’s unknowns, k 
say, can be regarded as being representative also for the other unknowns of the coupled 
system. In such cases, provided that the k-th unknown is defined at each point of the grid, a 
possible choice is 
 
  [ , ]k kP A= . 
 
In reservoir modeling, for instance, we will use the pressure block for that purpose (see 
Sections  5.2.2 and  5.3). In other applications, depending on certain characteristics of the class 
of PDEs under consideration, potential choices are  P=(pij)  with 
 
  ( , )|| ||ij i jp A= −   or  21/ ( , )ijp dist i j= −  
 
where i j≠  and, for instance, 
 
  

≠
= −∑ii ijj i

p p . 

 
While the first choice leads to what is sometimes called „block approach“, the second choice 
(assuming point coordinates to be available) is closely related to geometric coarsening19. One 
can also imagine applications for which P can be defined based on some natural physical 
quantity for which there is no obvious equation contained in the given system.  
 
Once a primary matrix has been selected for coarsening, there are still many ways to define 
interpolation. In particular, interpolation may be different for each physical unknown (e.g., 
based on the original matrix blocks A[i,i]), it may be the same for each unknown (e.g., based on 
the primary matrix P or on coordinates), or it may be defined based on the point-wise block 
couplings. 
 

4.4 Software package SAMG 
 
Formally, by combining the various coarsening and interpolation possibilities outlined above, 
one obtains a general framework to define concrete AMG approaches. It seems clear, 
however, that there is no single approach which will work satisfactorily for all systems of 
PDEs. Instead, different approaches will be required for different classes of applications. 
 
During the last years, a software library, SAMG [ 30, 47], has been developed at Fraunhofer 
Institute SCAI which realizes most of the ideas introduced above. Hence, SAMG is not just a 
solver but rather a very flexible multilevel framework which can be adapted to specific 
requirements of various problem classes. Primary matrices are either defined internally to 
SAMG (i.e. are constructed automatically) or they are user-provided. The latter option makes 
particular sense in applications where SAMG cannot construct a reasonable primary matrix 
automatically, based solely on algebraic information contained in the given linear system. 
However, in many such cases, a user may still be able to define a reasonable matrix himself, 
based on the underlying physics. 
 
                                                 
19 Note that the use of distances requires the additional definition of a non-zero pattern in order for the primary 
matrix to be sparse. Clearly, this pattern should be related to the connectivity patterns of the matrix itself. 
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Over the years, SAMG has been applied to various types of coupled systems of PDEs from 
such diverse areas as fluid flow, structural mechanics, oil reservoir and ground water 
simulation, casting and molding, process and device simulation in solid state physics, electro-
chemistry, and circuit simulation. In particular, in oil reservoir simulation, SAMG has become 
a well-established tool for various software providers as well as major oil companies. 
Regarding some more discussion in various areas, see, for example, [ 17, 18, 19, 22, 45, 46]. For 
further information, see also http://www.scai.fraunhofer.de/samg. 
 

5 AMG in reservoir simulation 
 
Modern reservoir simulation faces increasingly complex physical models and highly resolved, 
unstructured grids. Both trends result in ever growing and more difficult to solve matrix 
equations. Especially compositional models for heterogeneous or fractured reservoirs provide 
a considerable challenge to solver efficiency, in particular, if fully implicit methods (FIM) are 
used. 
 
The core of the computation at each time step is governed by the successive solution of 
coupled linear (Jacobian) systems representing the behavior of different physical entities 
sharing the same discretization element. Generally, the underlying “FIM matrices” are highly 
nonsymmetric and indefinite. Individual matrix coefficients are typically strongly anisotropic 
and/or discontinuous. This is due to geological settings as well as due to numerical effects, 
among them different vertical and horizontal permeabilities, high porosity contrasts between 
adjacent grid blocks or other properties with drastic variations (typically by several orders of 
magnitude). In addition, unstructured gridding, local grid refinement, fault modeling, large 
variations in grid spacing and adverse grid block aspect ratios (ratio of lateral to vertical block 
dimensions) cause additional distortion to the FIM matrices making them even more difficult 
to treat numerically. Finally, well equations which are fully coupled to the system of 
equations relate grid blocks that otherwise are not geometrically connected. The condition 
number and degree of coupling of these systems may be subject to dramatic changes due to 
abrupt flow variations induced by the high-heterogeneity and complex well operations during 
the simulation process.  
 
Advanced AMG solvers offer an efficient technology for solving linear systems that are 
“sufficiently elliptic”. Since, when applicable, AMG solvers are both scalable and easy to use, 
interest in incorporating AMG into industrial oil reservoir simulation codes has been steadily 
increasing during the last years. In this section, we summarize overall strategies to 
numerically tackle reservoir simulation and demonstrate the use of AMG in all cases: 
 

1. Classical IMPES and modern streamline approaches implicitly solve only for the 
pressure. Hence, in principle, scalar AMG can immediately be applied. 

2. In contrast to this, fully implicit modeling (FIM) requires solving coupled systems. 
a. The most popular way to do this is via a two-stage preconditioning approach 

which numerically decouples the treatment of pressure and non-pressure 
variables. As a result, the computationally most expensive part consists of 
solving pressure systems for which, again, scalar AMG seems most natural. 

b. As an important alternative, we introduce a coupled AMG approach to 
“directly” solve FIM systems. We demonstrate that AMG can be applied to 
efficiently deal with such systems although they are not of elliptic type. In fact, 
FIM systems are essentially of mixed elliptic-hyperbolic character. 
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3. To reduce computational cost, adaptive implicit modeling (AIM) has been developed, 
offering a good compromise between computational speed, memory requirements and 
accuracy. However, as for FIM, the mixed elliptic-hyperbolic character of AIM 
matrices aggravates the development of efficient linear solvers. We demonstrate how 
coupled AMG has efficiently been used in real-life simulations. 

 
All results shown in this section have been obtained with the SAMG package [ 18, 43, 47] as 
part of cooperations with StreamSim Technologies, SMT Alps and the University of Texas at 
Austin. 
 

5.1 IMPES and streamline approach 
 
Streamline-based flow simulation is an effective and complementary technology to more 
traditional flow modeling approaches such as finite differences (see Thiele [ 48] and the 
references given therein). This is because streamline-based flow simulation is particularly 
effective in solving large, geologically complex and heterogeneous systems, where fluid flow 
is dictated by well positions and rates, rock properties (permeability, porosity, and fault 
distributions), fluid mobility (phase relative permeabilities and viscosities), gravity, and 
voidage replacement ratios close to one. These are the class of problems more traditional 
modeling techniques have difficulties with. More diffusive mechanisms, such as capillary 
pressure effects and expansion-dominated flow, on the other hand, are not modeled efficiently 
and accurately by streamlines. 
 
Streamline-based simulation is an IMPES-type formulation and therefore involves the implicit 
solution for a single variable only, namely, pressure on the global 3D scale (see Figure 30). 
Hence, scalar AMG is well suited for solving the pressure equation. The high efficiency of 
AMG in solving the pressure equations makes streamline-based simulations computationally 
highly efficient, one important reason making this approach so attractive (Figure 31). 
 

     
 

Figure 30: (left) Schematic view of the streamline approach. (right) SPE 10 upscaling 
benchmark model, 1.12 million cells. 

 
Some characteristics of the pressure equations may cause difficulties for a linear solver, 
namely, the variation of permeabilities (leading to strongly discontinuous and anisotropic 
coefficients) as well as the presence of well equations. While strongly varying permeabilities 
may substantially slow down the convergence speed of any standard linear solver, they do not 
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provide any particular difficulty for AMG. It is the dynamic and automatic features of AMG 
which allow a flexible adaptation to any variation of coefficients. 
 
On the other hand, the non-PDE character of well equations disturbs the locality and 
ellipticity of a system to some extent. Without providing any extra information to AMG, such 
equations are treated just like any other equation of the discretized PDE, causing the quality 
of the well equation’s coarse-level correction to be limited. Whether this will slow down the 
overall convergence, and to which extent, depends on the number and type of wells. While 
often no special treatment of the well equations is needed, in more complex situations a 
reasonable “well decoupling” may pay. The idea is to apply AMG only to the reservoir part 
and couple the well equations differently. To explain three straightforward approaches, we re-
write the linear system (1) as 
 

(20)  
rr rw r r

wr ww w w

A A u f
A A u f

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
where the indices  r  and  w  mark the reservoir and well quantities, respectively. 
 
Coupling via the finest-level smoother. This means that all “critical” variables (e.g. those 
corresponding to wells) are excluded from any coarsening process. That is, they are simply 
forced to stay on the finest level, coupled to the remaining variables only via the finest-level 
smoothing process. This is the simplest procedure which should work if the number of critical 
variables is small and if the coupling between critical and non-critical variables is not too 
strong. Clearly, the finest level smoother should be sufficiently strong. 
 
Schwarz alternating method (with overlap). This essentially means that, starting with some 
first approximation, (0)

wu , we solve the two sub-systems 
 
  ( 1) ( )i i

rr r r rw wA u f A u+ = −    and   ( 1) ( 1)i i
ww w w wr rA u f A u+ += −  

 
one after the other for  i=0,1,2,...... While the reservoir part is approximately solved by 
applying one or more AMG cycles, the well part is solved by a block solver (eg, sparse Gauss 
elimination). Since the number of wells is limited, the block solve should be inexpensive 
compared to the solution of the reservoir part. This type of iterative process is called 
“Schwarz alternating method”. To speed up the “outer convergence”, the block solve should 
include some “overlap” variables. 
 
Approximative Schur complement approach. The Schur complement approach essentially 
corresponds to a block elimination of (20): 
 

  
0 rrr r

wwr ww w

uA f
uA A f

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 with  

1

1
rr rr rw ww wr

rr rr rw ww w

A A A A A
f f A A f

−

−

⎧ = −
⎨

= −⎩
. 

 
Assuming the number of wells to be not too large, the most costly part in solving this block 
tridiagonal system is the solution of 
 
(21)  rr r rA u f= . 
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In principle, rrA  can explicitly be evaluated. Unfortunately, due to the algebraic manipulation 
of the block elimination process (disturbing the ellipticity), rrA  has to be expected to be “less 
favorable“ for an AMG solution than rrA . Hence, we do not solve (21) directly, but rather by 
an iterative “pre-conditioning” process of the form 
 
(22)  

( 1) ( ) 1 ( )i i i
r ru u M r+ −= +    with   

( ) ( )i i
r rr rr f A u= − . 

 
The „pre-conditioner“, M, is some reasonable approximation to rrA  which is more suitable for 
an AMG solution20. In many cases, rrM A=  (possibly scaled so that the row sums of M equal 
those of rrA ) is a reasonable choice. In practice, 1 ( )iM r−  in (22) is not evaluated explicitly but 
rather stands for the application of one or more AMG cycles to the system with matrix M and 
right hand side ( )ir . 
 

     
 

Figure 31: Comparison of SAMG’s convergence history with that of a standard one-
level method in solving the pressure equation in the streamline approach. The figures 
correspond to a symmetric (left) and non-symmetric (right) test case. 

 

5.2 Fully implicit modeling (FIM) 
 
To demonstrate the principle of how to apply AMG, let us consider the black-oil model, 
 

 
 

                                                 
20 Note that, if  M  equals  rrA ,  one iteration of (22) yields the exact solution of rr r rA u f= . 
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supplemented by well equations and boundary conditions. The letters S, p, q and k stand for 
saturation, pressure, velocity and permeabilities, respectively. The index a stands for the 
phases oil (o), water (w) and gas (g). 
 
The discretization by finite differences results in coupled linear systems of the form 
 

(23)  
ss sp s s

ps pp p p

A A u f
A A u f

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
where the indices  p  and  s  denote the pressure and saturation quantities, respectively. For the 
question of how to efficiently apply AMG to solve coupled systems (23), it is important to 
note that the block App has the character of a purely elliptic problem, whereas the block Ass 
behaves essentially hyperbolic. This motivates two different (but in a sense related) 
possibilities of using AMG, namely, the “two-stage preconditioning” and the “direct” 
approach. We will outline both approaches in the following. For a more detailed discussion as 
well as an extensive list of references, we refer to [ 19, 46]. 
 

5.2.1 Two-stage preconditioning 
 
Two-stage preconditioners are based on the idea that coupled system solutions (23) are 
mainly determined by the solution of their elliptic component (i.e., pressure). The procedure 
consists of “extracting” and accurately solving pressure subsystems. Residuals associated 
with this intermediate solution are corrected with an additional step that recovers part of the 
global information contained in the original system. Two-stage preconditioners have been 
investigated by, for instance, Behie, Vinsome, Forsyth, Wallis, Klie and Dawson (see [ 46] for 
a list of references). 
 
Generally, to help convergence when iterating between the two stages, the procedure is not 
applied directly to (23). Instead, some “decoupling” is performed aiming at weakening the 
existing coupling between pressure and non-pressure blocks. That is, based on some 
reasonable decoupling operators, D1 and D2, the original system (23) is transformed into 
 

(24)  
1 1

1 2   with   ss sp

ps pp

A A
Au f A D AD

A A
− −

⎛ ⎞
= = = ⎜ ⎟⎜ ⎟

⎝ ⎠

� �
�� �� � � . 

 
Clearly, a “full” decoupling, forcing spA�  or psA�  (or even both) to vanish, is prohibitive. For 
reasons of numerical efficiency, the decoupling process should be computationally 
inexpensive but still provide a good preconditioning effect on the original system. One of the 
most popular decoupling strategies is known as quasi-IMPES which sets D2=I and selects D1 
so that the pressure at a grid point is decoupled from the saturations at the same point. 
Another approach also sets D2=I but selects D1 so that pressure and saturation values sitting at 
the same grid point are completely decoupled from each other (“point-block diagonal 
scaling”). For more details on these decoupling operators, see, for instance, [ 46]. 
 
A two-stage preconditioner for solving (24) consists of iteratively applying the following two 
steps, describing how a new approximation (1)u�  is computed from an old one, (0)u� : 
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(25)    (1/ 2) (0) (0) (0) 1 (0)
1,    u u M rδ δ −= + =� �    and   (1) (1/ 2) (1/ 2) (1/ 2) 1 (1/ 2)

2,   u u M rδ δ −= + =� �  
 
with the residuals ( ) ( )i ir f Au= −� � � . That is, the approach is analogous to (22), except that we 
now select two different preconditioners, M1 and M2. Both of them should approximate A�  in 
some sense but we will choose them so that, roughly, the first pre-conditioning step improves 
the current pressure approximation whereas the second step updates the saturation. More 
specifically, one iteration step, computing (1)u�  from (0)u� , runs as follows21: 
 

 
 
Various aspects need to be balanced to ensure robustness and highest efficiency. Although the 
two-stage preconditioning approach is widely considered as the currently most successful 
approach for FIM simulations, there are still several open questions some of which are 
mentioned in the following. In general, the performance of the above two-stage process is 
influenced by three factors: 
 
The efficiency of the 1st preconditioning step. The 1st preconditioning step requires the 
(approximate) solution of the (transformed) pressure equation, 
 
  

(0) (0)
pp p pA rδ =� . 

 
Since this is related to the elliptic part of the original system (23), scalar AMG seems most 
promising as a solver. However, two aspects have to be taken into account. 
 

• The main purpose of the decoupling process mentioned further above is to help the 
“outer” convergence. Unfortunately, the decoupling has an unwanted side effect: it 
influences the elliptic properties of the pressure block to some extent. As a 
consequence, the transformed matrix, ppA� , may be “less favorable” than ppA  for an 
efficient AMG-treatment. Several attempts have been made to minimize this unwanted 
side effect by choosing the decoupling carefully. However, a robust, final solution to 
this problem seems not yet known. 

                                                 
21 Note that the description (25) is somewhat sloppy: M1 approximates only ppA�  and, hence, is not invertible in 
the sense of (25). However, it is obvious how to interpret this. 
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• Second, well equations may require careful attention. To obtain highest efficiency, 
well equations should be appropriately integrated into the overall solver process, for 
instance, by some kind of well-decoupling strategy as described in Section  5.1. 

 
The efficiency of the 2nd preconditioning step. The purpose of the 2nd preconditioning step 
is to update the non-pressure variables to a sufficient extent. Since the non-pressure 
subsystem behaves essentially hyperbolic (the variables have a directional dependence), this 
is often much simpler to accomplish than solving the pressure system. In practice, M2 is 
typically selected as an ILU-type factorization of A� . In simple applications, it may be 
sufficient to restrict the factorization just to the non-pressure variables or to use an even 
simpler method such as a relaxation method. In general, the optimal choice of the 
preconditioner M2 is an open question. 
 
The interplay between the two preconditioning steps. The number of AMG cycles and the 
number of ILU steps performed in the first and second preconditioning step, respectively, is 
crucial for the overall efficiency. However, it is not obvious how to optimally control these 
“inner” iterations, in particular, when to terminate them. 
 

5.2.2 Direct approach 
 
To treat FIM systems (23) “directly” by coupled AMG, we may consider the general 
approaches introduced in Section  4. However, in composing a concrete approach, one has to 
take into account that the FIM matrices are not purely elliptic but rather of mixed elliptic-
hyperbolic type. 
 
It is important to recall that it is mainly the elliptic part which needs accelerating by 
hierarchical processing. Hence, a possible point-based AMG approach should be “driven” by 
the elliptic pressure relations (i.e. based on a primary matrix P=App, see Section  4.3), 
combined with a strong smoother which adds some properties as an approximate solver for 
the hyperbolic part. Often smoothers of type block Gauss-Seidel, ILU(0) or block ILU(0) 
work sufficiently well. However, more robust and flexible in this context is ILUT [ 38], an 
ILU-version which is controlled by two parameters, generally known as lfil and droptol: 
 

• lfil - defines the maximum level of absolute fill-in; 
• droptol - defines a threshold for dropping small couplings during elimination. 

 
These parameters can be used to flexibly adjust the ILUT-process to the requirements. 
However, as with any ILU-type approach, ILUT’s efficiency depends to some extent on the 
ordering of variables of the matrix equation. 
 
Numerical experiments have shown that, based on these ingredients, robust coupled AMG 
solvers can be obtained if, in addition, “critical” equations are treated with care. In particular, 
matrix rows strongly violating diagonal dominance (resulting, for instance, from well 
equations), may cause convergence problems. As before, decoupling processes similar to 
those described in Section  5.1 might be installed to exclude critical equations from 
coarsening. 
 
Remark: Similar to the two-stage preconditioning approach described in Section  5.2.1, the 
direct AMG approach is motivated by the fact that solutions of (23) are mainly determined by 
their elliptic component. Moreover, the two-stage and the direct approach are related if one 
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regards the second stage of the two-stage preconditioning approach as a smoothing process 
(restricted to the finest level only): By forcing all non-pressure variables to stay on the finest 
level, the direct AMG approach becomes very similar to a two-stage preconditioning 
approach, except that no algebraic manipulation is performed on the pressure block App. 
 

5.2.3 Some comparisons 
 
In this section we compare both AMG approaches to solve FIM problems, the two-stage 
preconditioning (“AMG-2stage”) and the direct approach (“AMG-direct”). All results have 
been obtained with the IPARS simulator [ 55]. For the direct approach, we use the simplest 
possible smoother, namely, plain Gauss-Seidel relaxation. The two-stage preconditioning uses 
the quasi-IMPES decoupling and line SOR (LSOR) as 2nd preconditioning step. 
 
We consider five test cases with size and type as follows: 
 

1. 60x220 (1st slice of the non-fluvial reservoir, Tarbert formation); 
2. 60x220 (1st slice of the fluvial reservoir, Upper Ness formation); 
3. 17x12x44 (upscaled version of the original data, including Tarbert and Upper Ness 

formations); 
4. 25x15x55 (Upper Ness formation, upscaled version); 
5. 50x30x110 (Upper Ness formation, upscaled version). 

 
For all cases we define one water injection well at the center of the reservoir, and four 
production wells at the four corners. All are bottomhole pressure specified. For each of the 
considered problem sizes, we performed tests for an oil-water and a black-oil system. For the 
black-oil system, the PVT and saturation-dependent curves data were adapted from the SPE 
9th Comparative Project. 
 

        
 

Figure 32: Oil-water simulations: (left) Comparing AMG solver strategies. (right) 
Comparing AMG with multilevel ILU [ 3] for solving the pressure equation in a two-
stage preconditioning approach. 

 
Figure 32 summarizes timings for oil-water simulations. Simulations were carried out for 
2000 days except for Case 5 which was simulated for 500 days only. We first observe that, for 
all test cases and solver approaches considered here, AMG is efficient as a basic linear solver. 
According to the left figure, AMG-2stage seems to be slightly more efficient than AMG-
direct, at least for the cases considered here. The right figure clearly shows the substantial 
gain in performance in switching from multilevel ILU to AMG. Figure 33 shows similar 
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timings for the black-oil case. Again, there appears to be no striking difference between 
AMG-direct and AMG-2stage, with a slight preference for the latter. 
 
These results seem to indicate that there is no real advantage of AMG-direct as compared to 
AMG-2stage. However, one should observe that many factors may affect the algebraic 
properties of the FIM matrices and, through this, the solver comparison. For instance, a 
serious violation of diagonal dominance - for instance, caused by well equations - may have a 
strong impact on solver performance. More testing is certainly needed to draw some well-
founded and final conclusion. 
 

 
 

Figure 33: Black-oil simulations comparing AMG solver strategies. 
 
For the specific cases tested here it is actually not surprising that AMG-direct is slightly more 
expensive than AMG-2stage. This is because AMG-2stage works efficiently with simplest 
algorithmic components such as plain Gauss-Seidel relaxation for smoothing and LSOR as 
2nd preconditioner, M2. In such cases it is plausible that AMG-direct is not more efficient 
than AMG-2stage. However, we want to recall that the performance of AMG-2stage is 
strongly tied to the decoupling process, the pressure solution and the 2nd preconditioner, M2. 
In general, stronger and more costly preconditioners M2 as well as more robust smoothers will 
be required. Most importantly, however, algebraic manipulations such as those done in the 
decoupling process, may negatively influence the ellipticity of the pressure block to an extent 
which causes AMG to deteriorate significantly. For instance, depending on the situation, row 
sums may get increasingly negative and, eventually, ppA�  may become indefinite. The risk of a 
substantial performance drop can certainly be reduced by a proper choice of the decoupling. 
However, a rigorous analysis, taking all aspects into account, seems fairly difficult.22 
 
In contrast to AMG-2stage, AMG-direct attempts to get along without any algebraic 
manipulations except possibly for well-decoupling etc. This makes the direct approach 
particularly interesting and promising regarding its robustness. In fact, AMG-direct is applied 
to the unmodified system (23), with the coarsening process being driven by the fully elliptic 
pressure block, App. Convergence of the direct AMG approach is expected to be less 
dependent on the strength of cross-couplings between pressure and saturation. This is due to 
its hierarchical nature, combined with its potential in employing strong block-wise smoothing 
and interpolation.  
 

                                                 
22 We recall that re-scalings may substantially influence AMG’s performance (see (18) in Section  3.3.1). 
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5.3 Adaptive implicit modeling (AIM) 
 
In contrast to the fully implicit modeling approach as discussed in the previous section, 
adaptive implicit modeling (AIM, [ 49]) permits both explicit and implicit discretizations 
simultaneously within a model. The goal is to restrict the expensive fully implicit formulation 
to that part of a model that really requires implicitness (e.g. at perforated grid blocks or in 
areas with large variable changes), leaving the other parts in the much less expensive IMPES 
mode. At any given time step, pressure will be calculated implicitly everywhere in the 
reservoir model, but other variables, such as phase saturations and concentrations will be 
implicit in selected grid blocks only and explicit elsewhere. 
 
As a result, the user gains a maximum in flexibility, but the linear solver (which is naturally 
applied only to the implicitly coupled variables) encounters matrices with highly irregular and 
dynamically changing structures. This is because the division into implicit and IMPES blocks 
typically varies from one simulation step to the next, based on some automatic control 
mechanism. 
 

 
 

Figure 34: Type of grid used by the SURE simulator (Voronoi grid; courtesy SMT Alps) 
 

5.3.1 A self-adapting direct AMG strategy 
 
Regarding the employment of AMG, FIM carries over to AIM. In the following, we consider 
the direct application of AMG, using basically the same algorithmic components as before 
(cf. Section  5.2.2): Point-based AMG with pressure-driven coarsening23 combined with robust 
ILUT-type smoothers, accelerated with some Krylov method (usually BiCGstab). As before, 
depending on the concrete situation, a special treatment of “critical” equations may be 
necessary (cf. well-decoupling in Section  5.1). 
 
However, compared to the FIM case, there is a major difference in that the size and the 
character of the AIM matrices may change drastically from one simulation step to the next. In 
particular, their numerical character may change from nearly elliptic to increasingly 
hyperbolic. As a consequence, there is no fixed solver which solves all AIM-systems within a 
complete simulation run robustly and efficiently. Unfortunately, a theoretical forecast of what 

                                                 
23 Note that pressure-driven coarsening is possible since the pressure is implicitly computed everywhere. 
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is “the best” solver for a given AIM-system seems virtually impossible without further 
information. 
 
Hence, from a practical point of view, a strategy is required which automatically adapts the 
linear solver to the size and physical complexity of each AIM-system to be solved during a 
simulation run. Based on the above AMG approach (including its one-level variant), we have 
developed an automatic, self-adapting parameter and solver switching strategy. Separately for 
specific problem sizes, this strategy continuously keeps track of the histories of convergence 
factors, timings, AMG memory complexities and overall solver memory requirements. Based 
on this information, further information contained in the matrices and some “online testing”, 
the final solver is dynamically selected.  
 
The overall strategy combines three types of adaptivity: 
 

1. Switching between one-level and multilevel solver variants. 
2. Switching of the ILUT parameters lfil and droptol (see Section  5.2.2). These 

parameters are dynamically changed according to the convergence, timings and 
memory requirement history. This refers to both ILUT as a one-level method and as a 
smoother in a multi-level cycle. Various heuristics check for “optimality”. 

3. Automatic adaptation of AMG’s coarsening and interpolation to the coupling structure 
reflected by the AIM matrix entries. Special rows (typically the ones strongly 
violating diagonal dominance) are excluded from coarsening and coupled differently. 

 

5.3.2 Numerical experience 
 
The above strategy has been realized based on the SAMG library, called “α-SAMG” in the 
following. We have tested the feasibility and effectivity of α-SAMG in close cooperation with 
SMT Alps on the basis of their SURE simulator. 
 
For a wide variety of real-life test cases from different application types – gas-water, black-
oil, and compositional models – as well as different levels of physical complexity, α-SAMG 
outperforms the original solver24 as well as other one-level and multi-level variants in terms 
of overall computing time as well as memory requirements. As expected, the performance 
gain tends to be the better the larger and/or more physically involved the considered model is. 
For a reasonably complex and large black-oil model, for instance, a speedup of more than 15 
could be achieved keeping memory requirements reasonably low at the same time (see Case 
C2, below). Clearly, concrete performance details depend on the situation, in particular, on 
the dominance of the elliptic components. Roughly speaking, the more dominant the elliptic 
components are in the overall numerical solution, the higher the overall gain to be expected. 
 
For a complete discussion of a list of benchmark cases and further details on the numerical 
procedures considered, we refer to [ 19]. In the following, we just summarize on two black-oil 
models, a relatively small and a larger one: 
 

• Case C1 represents an undersaturated black-oil simulation model with faults, local 
grid refinement and fractures. There are more than 50 wells (vertical and horizontal). 
The model was chosen to investigate solver performance on dual porosity model, 

                                                 
24 The original linear SURE solver, ORILU, efficiently combines ILU-type approaches with ORTHOMIN. 



 
Solving Reservoir Simulation Equations  Klaus Stüben 

 48

because the natural fractures in this reservoir are modelled with a dual porosity 
approach applied to selected parts of the model. 

• Case C2 is a conventional 3-phase black-oil model, initially undersaturated, but due to 
production, the pressure drops below bubble point. The model contains more than one 
million active grid blocks and includes local grid refinement and faults. 

 
Some further information on these models is found in Table 2. Besides the grid sizes and the 
number of functions involved, the table shows the total number of AIM matrix problems to be 
solved during a full simulation run as well as the average and maximum number of matrix 
rows. Note that, at any given simulation step, the number of rows equals the number of 
variables which are coupled implicitly. The ratio between the number of rows and the number 
of points is called the degree of implicitness (DOI). Finally, the achieved speedups25 are 
shown. 
 

 Case C1 Case C2 
number of grid points 70,742 1,103,334 
number of functions 5 5 
number of matrix problems 935 703 
average number of rows 84,608 1,147,276 
maximum number of rows 110,201 1,332,839 
average DOI 1.20 1.04 
maximum DOI 1.56 1.21 
speedup compared to ORILU 1.46 15.51 

 
Table 2: Black-oil benchmark cases 

 
The below figures show detailed results on the switching as performed by α-SAMG during 
full simulation runs corresponding to the above two cases. 
 
The model C1 is fairly small so that there is a relatively high probability that, due to their 
lower overhead, one-level solvers may be more efficient than multi-level solvers. In fact, 
Figure 35 shows that α-SAMG switches between one-level and multi-level solvers during the 
course of the simulation. The concrete switching behavior as well as the number of iterations 
required for each matrix problem can be seen from the figure. The number of iterations ranges 
between just a couple and around 50, the average being 11.1 which is very reasonable. 
Obviously, the higher iteration numbers are attained by the one-level solvers whereas the 
multi-level solvers require much less iteration. To avoid misunderstandings, we should recall 
that the primary guiding principle of α-SAMG is to optimize efficiency, that is, to minimize 
overall computing time. Clearly, in comparing different types of linear solvers, the mere 
number of iterations provides hardly any indication for efficiency. 
 
While Figure 35 details the solver switching for Case C1, Figure 36 details the corresponding 
ILUT parameter switching26. One sees that, most of the time, the fill-in parameter lfil is 4 
except for some cases where it increases to 6 or even 7. At the same time, droptol is decreased 
by one order to magnitude. This shows that, during the course of the simulation, some more 
problematic matrices occur. Overall, however, parameters do not change dramatically during 
the simulation. 
 

                                                 
25 Speedup values refer to the total simulation times; the speedup of the linear solver part alone is higher. 
26 The minimum fill-in value lfil is 4, and the maximum threshold value droptol is 0.01. 
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By replacing the original ORILU solver24 by α-SAMG, a speedup25 of 1.5 is observed for 
Case 1. Recalling that this particular problem is relatively small (around 70,000 grid points 
only) and that the overall switching process will always cause some overhead (in particular, 
due to its online testing), this is very acceptable. 
 

 
 

Figure 35: Solver switching and number of iterations for Case C1. Both, one-level 
(blue dots) and multi-level (red dots) methods are chosen by α-SAMG. 

 

 
 

Figure 36: ILUT parameter switching for Case C1 
 
For larger problems, the speedup may be much higher. This is demonstrated by Case 2 for 
which a speedup of approximately 15 is observed. For this large case, one-level methods are 
not competitive and α-SAMG decides to only use multi-level solvers. Figure 37 shows the 
corresponding number of iterations per simulation step. Although the average number of 
iterations needed is very reasonable, namely 16, there are some peaks where the number of 
iterations gets close to 100 or even higher. Note that these high iteration numbers are due to 
the fact that sometimes problems have to be re-run (e.g., with different ILUT parameters), and 
iterations are summed up over all attempts then. Indeed, as can be seen from Figure 38, there 
is a strong switching of ILUT parameters. The figure shows that the fill-in parameter lfil 
changes from around 4 to around 16, with 7.2 being the average. At the same time, also the 
droptol parameters changes strongly, namely, between 10-2 and 10-7. 
 
Cases C1 and C2 give some indication about how the general switching process works and 
what can be gained. Many more results and discussions can be found in [ 19]. The results 
clearly indicate that a reasonable and automatic switching mechanism is necessary since the 
type of problems to be solved during a full simulation run changes drastically and there is no 
hope to find a single parameter setting which is not only robust but also efficient. 
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Figure 37: Number of SAMG iterations for Case C2. Only real multi-level methods 
are chosen by α-SAMG, one-level variants are not competitive. 

 

 
 

Figure 38: ILUT parameter switching for Case C2 
 
In spite of the fact that a switching strategy as realized here causes quite some overhead, we 
have seen that the speedup achieved may be substantial. Of course, in each individual 
simulation case, the concrete numerical solution process could be optimized further. 
However, this is not the intention of α-SAMG. The intention is actually to demonstrate that, 
based on the set of solvers and parameters selected here, an automatic process can be 
designed which is efficient as a “pitch-black box” without the need of manually changing any 
further parameter. 
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