
9th International Forum on Reservoir Simulation

December 9-13, 2007, Abu Dhabi, United Arab Emirates

Solving Reservoir Simulation Equations

Klaus Stüben
Fraunhofer Institute SCAI
Sankt Augustin, Germany

Reservoir simulation is a necessary tool for making decisions. It is through numerical
simulation that one can obtain knowledge pertaining to the processes occurring in the interior
of an oil reservoir and hence, to enable an analysis of the various recovery strategies in order
to guarantee optimal exploitation. History matching, optimization, and what-if scenarios
require the simulation of large numbers of complex field-scale models.

Deep inside any reservoir simulator, large linear systems of equations need to be solved
numerically over and over again. During the last years, reservoir models have been growing
in complexity (regarding both the geometry and the physical model), heterogeneity, and size,
causing these linear systems to get increasingly large and difficult to solve by classical
numerical solvers. In fact, the computational time required to solve these systems of equations
is today's major bottleneck in the practicability of numerical simulation. Hence, advanced
reservoir simulators necessarily require particularly efficient linear solver modules as well as
parallel computers to yield answers in an economical time frame.

The so-called algebraic multigrid (AMG) technique - the algebraic analog of the geometric
multigrid (GMG) technique - provides a state-of-the-art means to construct numerical solvers
suitable to tackle large applications with highest efficiency, usually much faster than any
classical solver. As a consequence, AMG-based approaches are becoming increasingly
popular as numerical kernel in many industrial simulation codes. AMG's major advantages -
numerical efficiency, robustness, scalability and ease-of-use - have become the driving forces
behind its growing success in industrial use. A state-of-the-art software package, SAMG,
developed at the Fraunhofer Institute SCAI, is currently being used in many industrial areas.
In particular, in the oil industry, SAMG has become a well-established tool for various
software providers as well as major oil companies.

This paper gives a short introduction to the multigrid technique in general, focusing on the
key aspects that make it scalable. We will then outline the idea of AMG, how it relates to
GMG, and how it can be employed to dramatically reduce computational times in reservoir
simulation. For demonstration we will present various examples.

Solving Reservoir Simulation Equations Klaus Stüben

 2

Contents

1 INTRODUCTION 3

2 GEOMETRIC MULTIGRID (GMG) 7

2.1 RELAXATION AS A SOLVER 8
2.2 RELAXATION AS A SMOOTHER 9
2.3 TWO-GRID METHOD 11
2.4 MULTIGRID AND SCALABILITY 12
2.5 ROBUST MULTIGRID 14
2.5.1 TWO CHARACTERISTIC MODEL CASES 14
2.5.2 TOWARDS ALGEBRAIC MULTIGRID 17

3 ALGEBRAIC MULTIGRID (AMG) 18

3.1 HISTORY 20
3.2 BASICS 21
3.2.1 SMOOTHING AND COARSENING 22
3.2.2 THE TWO-LEVEL METHOD 23
3.2.3 TWO-LEVEL THEORY 26
3.2.4 RECURSIVE DEFINITION 27
3.3 AMG IN PRACTICE 27
3.3.1 REMARKS ON GENERALIZATIONS 28
3.3.2 INCREASING ROBUSTNESS 29
3.3.3 EXEMPLARY COARSENING PROCESS 30
3.3.4 PERFORMANCE AND SCALABILITY 31

4 AMG FOR COUPLED PDE SYSTEMS 32

4.1 GENERAL IDEA: THE PRIMARY MATRIX 33
4.2 UNKNOWN-BASED APPROACHES 34
4.3 POINT-BASED APPROACHES 35
4.4 SOFTWARE PACKAGE SAMG 36

5 AMG IN RESERVOIR SIMULATION 37

5.1 IMPES AND STREAMLINE APPROACH 38
5.2 FULLY IMPLICIT MODELING (FIM) 40
5.2.1 TWO-STAGE PRECONDITIONING 41
5.2.2 DIRECT APPROACH 43
5.2.3 SOME COMPARISONS 44
5.3 ADAPTIVE IMPLICIT MODELING (AIM) 46
5.3.1 A SELF-ADAPTING DIRECT AMG STRATEGY 46
5.3.2 NUMERICAL EXPERIENCE 47

6 REFERENCES 50

Solving Reservoir Simulation Equations Klaus Stüben

 3

1 Introduction

The use and the impact of numerical simulation – e.g. for virtual product development, for the
understanding of product properties or the understanding and optimization of environmental
processes - are continuously growing. For the exploitation of oil fields, it is only through
numerical simulation that knowledge pertaining to the processes occurring in the interior of
an oil reservoir can be obtained and that an analysis of the various recovery strategies in order
to guarantee optimal exploitation can be made. A reduction of product cycle times, for
example in the automotive industry, is not possible without increasing the use of numerical
simulation.

It is still the creativity and experience of the engineer which ultimately determines the quality
of a product or the optimality of a process. However, he will be able to enhance his abilities to
the degree which

• simulation software is more strongly integrated into the engineering process;
• the precision of the model involved is increased;
• simulations can be carried out interactively.

Here, however, numerical simulation often reaches limits in that standard solver technology is
insufficient to account for the increasing complexity arising in industrial simulation. In
reservoir simulation, for instance, a primary challenge for a new generation of reservoir
simulators is the accurate description of multiphase flow in highly heterogeneous media and
very complex geometries. The implementation of robust and efficient solvers for such
simulations is one of the main challenges that most simulator developers currently face in the
oil industry. Simulation run times are often much too long to be practicable.

The general situation is the same in many other fields of numerical simulation such as in
computational fluid dynamics, structural mechanics, oil reservoir and ground water
simulation, casting and molding, process and device simulation in solid state physics, electro-
chemistry and many others. All of these areas are characterized by (usually time-dependent)
partial differential equations (PDEs).

For such problems to be treatable by a computer, they must first be discretized. That is, the
continuum is replaced by a grid (or a mesh) and each continuum function is replaced by a grid
(or mesh) function, represented by a set of discrete variables, each attached to a certain point
of the grid. After having discretized the PDEs by means of finite differences or finite elements
one finally obtains systems of linear or nonlinear algebraic equations. Hence, the core of the
computation at each time (and may be linearization) step is governed by the successive
solution of linear systems of equations, formally denoted as

(1) Au f= .

We will use the letter N to denote the total number of variables. Solving (1) may become very
difficult and extremely time consuming for several reasons:

1. First, it is the sheer size of the linear systems (1) which causes an enormous
computational complexity. In fact, to properly approximate the continuum and resolve
the interesting phenomena, the discretization grid must be sufficiently fine. The
number N of discrete variables thus tends to be huge. The number of algebraic

Solving Reservoir Simulation Equations Klaus Stüben

 4

relations between the variables must, of course, be equally large. Today’s large-scale
simulations operate on grids of the order of up to many millions of grid points. For
instance, in the automotive industry, flow simulations around complete cars bodies are
done on grids involving 10 to 100 million points (cf. Figure 1 and Figure 2).

Figure 1: Grids for computing the underhood flow (left; courtesy of Computational
Dynamics and Daimler-Benz) and the flow around an aircraft (right).

2. The problem to design efficient solvers becomes particularly difficult due to the fact
that we are not dealing with arbitrary matrices A. One of the characteristics of PDEs is
the locality of the basic physical laws. When discretized, the resulting algebraic
systems will be local too, that is, each algebraic relation will involve only a small
number of neighboring variables. As a consequence, the matrices A will be very
sparsely populated, typically only O(N) matrix entries are nonzero. At best, of course,
the computational time to solve such linear systems is also just O(N). Unfortunately,
standard solvers have a much higher numerical complexity than that (see below), the
reason being that they do not sufficiently exploit the origin and nature of the discrete
linear systems.

3. Special characteristics may cause a given problem to be particularly difficult to solve.

For instance, extremely unstructured or highly locally refined grids, not optimally
shaped elements, extreme parameters contrasts (see Figures 2,4,14,19). In reservoir
engineering, generally, the systems are highly nonsymmetric and indefinite.
Moreover, the condition number and degree of coupling may be subject to dramatic
changes due to abrupt flow variations induced by the high-heterogeneity and complex
well operations during the simulation process.

4. A final source of increased complexity is the need to repeat the calculations many

times over. The solution of linear systems of equations is routinely repeated over and
over, for a variety of reasons – to identify “characteristic parameters” on which the
system depends, to follow the time evolution of a problem, to resolve a non-linearity,
to solve an inverse problem, to follow a bifurcation diagram, etc. History matching,
optimization, and what-if scenarios require the simulation of large numbers of
complex field-scale models.

In principle, many numerical solvers are available to solve linear systems of equations.
Highest robustness is ensured by direct solvers (based on Gaussian elimination in one way or
the other). Unfortunately, except for relatively small N, the application of direct solvers to

Solving Reservoir Simulation Equations Klaus Stüben

 5

sparse matrices is not feasible. Both memory requirement and computational complexity grow
dramatically with increasing N. Typically, the computational time grows like O(N2) or even
faster. In contrast to direct solvers, the memory requirement of classical iterative solvers is
much lower, usually only O(N). From this point of view, iterative methods are often the only
choice in practice1. The computational work of classical iterative solvers typically grows like
W(N)=O(Nα) with some α>1 depending on the concrete numerical method. Unfortunately,
any method with α>1 is not practicable if only the problem becomes large enough (cf. Figure
3). Instead, robust numerical solvers are requested for which the numerical work grows only
linearly with the number of variables, W(N)=O(N). Such methods are called “optimal” or
“scalable”.

Figure 2: (left) Cross section of a highly complex mesh for the simulation of the
exterior flow around a racing car. (right) Corresponding surface mesh near the
driver. (Courtesy of Fluent and Sauber-Petronas)

In order to construct scalable solvers, one needs to exploit the physical background of the
problems, namely, their spatial origin. Any problem with that origin can be discretized and
treated not only on one grid, but on a hierarchy of increasingly fine grids. Based on such a
hierarchy of grids (or “levels”) it is possible to design numerical procedures that greatly
benefit from intergrid (interscale) interactions. Roughly speaking, each level of discretization
within the hierarchy is supposed to contribute only those “components” to the wanted solution
which really require the grain size of that level. Everything else is computed on coarser levels.
It is common opinion that, in order to really ensure scalability of a solver, such kind of
hierarchical approach is necessary.

A breakthrough, and certainly one of the most important advances in the development of
numerical solvers, was due to the invention of the geometric multigrid (GMG) principle (see
[50] and the references given therein). This principle was the first to allow the construction of
truly scalable numerical methods for solving elliptic PDEs. Unfortunately, the impact of
GMG on industrial software development was disappointingly limited. One reason for this is
certainly that GMG-based solvers cannot simply be integrated into an existing simulator. In
fact, GMG is not just a solver but it rather provides a technology which requires the complete
simulation environment to be “multigridded”. The development of GMG-based simulators
“from scratch”, however, is a very demanding task and, under certain industrial requirements,
may technically even be too complicated, if possible at all.

1 Very often incomplete LU factorization methods – for instance, ILUT or ILU(k) – are combined with standard
accelerators such as conjugate gradient, BiCGstab, GMRes or ORTHOMIN (see [37, 38, 39, 40, 52, 53]).

Solving Reservoir Simulation Equations Klaus Stüben

 6

Algebraic multigrid (AMG) solvers [36, 43, 18] attempt to combine the advantage of GMG,
namely, its efficiency and scalability, with those of easy-to-use “plug-in solvers” as
commonly used in most simulators. In contrast to GMG, which explicitly requires and
exploits grid structures, AMG operates directly on the linear system of equations (1). To
ensure scalability, AMG also requires a hierarchy (of linear systems of equations rather than
grids) following the same basic principles as GMG. In contrast to GMG, however, a
reasonable hierarchy is not only constructed fully automatically, it is also directly based on
the entries in the discretization matrix A without exploiting any geometric information.
Hence, AMG-based solvers are easy to integrate into existing simulators and they are
independent of the spatial dimension as well as the structure of the underlying mesh – major
reasons for their industrial success. Therefore, the interest in incorporating AMG methods as
basic linear solvers in industrial simulation codes - in particular, in reservoir simulation - has
been steadily increasing.

Figure 3: Computational work (scaled by the number of variables) for different types
of solvers.

Moreover, AMG-based solvers have also efficiently been parallelized. This is important since
parallel computers provide an important means to improve performance further, enhancing
the possibilities to perform much larger simulations. One might even be tempted to believe
that, because of the rapid improvement of parallel hardware, the numerical scalability of
solvers is not really that important any more. However, the opposite is true: the larger the
computer (in particular, its memory), the larger the problems to be simulated and the larger
the gain through numerical scalability will be! Remember that the gain through numerical
scalability is not simply a factor (as in the case of hardware), the gain increases with
increasing N (cf. Figure 3)!

Hence, from a practical point of view, it is most important to combine numerical scalability
with the scalability of parallel hardware. Only then can one achieve real breakthroughs in
terms of overall performance. In this paper, we will not discuss the parallelization aspects
further. However, we point out that a parallelization of AMG is not straightforward, and a lot
of research has been done in this respect. The program package employed for all numerical
computations in this paper, SAMG (see further below), is also available in parallel [30].

In this paper we discuss possibilities how to efficiently solve linear systems (1) obtained by
discretizing (generally elliptic) PDEs, with special focus on reservoir engineering
applications. The paper is organized as follows. Section 2 outlines the main idea of GMG,
highlighting the key aspects that make it scalable. We focus on aspects which are relevant for

Solving Reservoir Simulation Equations Klaus Stüben

 7

the development of its algebraic analog, AMG. Section 3 presents the idea of “classical”
AMG originally designed for solving scalar elliptic PDEs, outlining how it relates to GMG.
Although ideas how to extend “classical” AMG to coupled systems of PDEs have already
been considered in the early literature [36], a systematic application of AMG to industrial
PDE systems - such as those arising in reservoir simulation - has only been done in recent
years [18, 19, 46]. Possible ways of how to extend AMG to solve coupled systems of PDEs are
summarized in Section 4.

Section 5 describes how AMG is currently employed in reservoir engineering. We will
present examples of reservoir simulations based on different AMG approaches. All results
presented in this paper have been obtained by the AMG package SAMG (“Systems AMG”
[47]), developed at Fraunhofer Institute SCAI. For many years, SAMG has systematically
been developed and extended with industrial applications in mind.

Figure 4: Large-scale 3D flow model with unstructured mesh. This can be considered
as a typical transient finite-element groundwater model used in practical water
resources simulation. (Courtesy of Wasy GmbH)

Acknowledgements

We point out that significant parts of this work relies on [46] which was the result of a close
cooperation with Mary F. Wheeler and her group. We are particularly thankful to Hector Klie.
The results on adaptive implicit modeling have been derived by my colleague Tanja Clees
[19] in close cooperation with Leonard Ganzer, SMT Alps2. We thank the Austin group
headed by Mary F. Wheeler, the Stanford group headed by Hamdi Tchelepi as well as Martin
Blunt and Stephan Matthai from the Imperial College for their support of our work. Our very
particular thanks are directed to Marco Thiele from StreamSim Technologies for a long-
lasting cooperation, his never ending help and personal support.

2 Geometric Multigrid (GMG)

For ease of motivation let us consider Poisson’s equation u f−∆ = , defined on the unit square

2[0,1]Ω = with Dirichlet boundary conditions, discretized by the standard 5-point stencil on a
grid hΩ with mesh size h,

2 now University of Leoben, Austria.

Solving Reservoir Simulation Equations Klaus Stüben

 8

(2) .

The resulting linear system of N variables will be denoted as

(3) h h hA u f= .

Some other model problems will be discussed in Section 2.5. Here and in the following we
will usually omit the index h. Only if we explicitly need to distinguish different levels of
discretizations will we use grid indices for clarity.

2.1 Relaxation as a solver

Thinking of u as a grid function, ui,j=u(xi,yj)=u(ih,jh), rather than a vector, the rows of (3)
(except near boundaries) read as

 2

, 1, 1, , 1 , 1 ,4 i j i j i j i j i j i ju u u u u h f− + − +− − − − = .

A classical numerical process to solve such systems consists of satisfying one equation at a
time by changing the associated variable, that is,

(4) 2

, 1, 1, , 1 , 1 ,() / 4i j i j i j i j i j i ju u u u u h f− + − +← + + + + .

Passing with that kind of local processing in some order over the entire grid - corresponding
to one iteration step - is called a Gauss-Seidel (GS) relaxation sweep.

The original purpose of iterating such sweeps is to drive the system towards a solution.
Unfortunately, the convergence will be very slow which is a direct consequence of the
locality of relaxation and the ellipticity of the mathematical model: While the ellipticity
implies that the solution at any grid point is determined by the boundary values all along the
boundary3, the local processing means that information “travels” very slowly across the grid.
In fact, in each iteration step, information at any grid point is essentially transported only to
its immediate neighbors whereas the influence on its further away neighbors decays
exponentially with distance. That is, it takes a large number of iterations for information to
travel from one side of the grid to the opposite side, say. Obviously, the finer the grid, the
more iterations are needed.

This heuristically explains not only why a local process such as GS relaxation converges
extremely slowly, it also explains why its convergence gets increasingly slow with decreasing
mesh size. To be more specific, one can prove that O(N) relaxation sweeps are needed to
reduce the error by a fixed quantity. Since the numerical cost of a single sweep is also O(N),

3 This is in contrast to hyperbolic problems for which the transport of information follows certain characteristic
directions.

Solving Reservoir Simulation Equations Klaus Stüben

 9

the total work to reduce the error by a fixed quantity is O(N2). That is, while the memory
requirement is minimal, the total computational time is comparable to that of a direct solver!
Hence, GS relaxation in its classical form is of virtually no use for practice (cf. Table 1).

2.2 Relaxation as a smoother

In order to analyze GS relaxation a bit further, we consider the characteristic behavior of the
residual and the error,

(5) r f Au= − and *e u u= − ,

respectively, in some more detail. Here u* denotes the exact solution of Au=f, and u its current
approximation.

Figure 5: Typical convergence history of GS relaxation to solve (2)

Figure 5 illustrates the typical convergence history in terms of the residual, measured in some
norm. While the residual drops rapidly during the very first relaxation steps, convergence
drastically slows down afterwards and gets increasingly slow with increasing number of
iterations. In order to understand the reason for this behavior, we need to have a closer look at
the corresponding behavior of the error. By subtracting (4) from the fixed point equation,

 * * * * * 2

, 1, 1, , 1 , 1 ,() / 4i j i j i j i j i j i ju u u u u h f− + − +≡ + + + + ,

we immediately see that the error e changes according to

(6) , 1, 1, , 1 , 1() / 4i j i j i j i j i je e e e e− + − +← + + + .

Obviously, this is just an averaging process for the error, causing the error very quickly to
become smooth. Figure 6 displays the shape of the error for a few consecutive relaxation
sweeps, starting with a random first guess: While the error gets smooth very quickly, its size
hardly changes!

Writing the residual (5) in terms of the error, *()r f Au A u u Ae= − = − = , or explicitly,

Solving Reservoir Simulation Equations Klaus Stüben

 10

 2
, , 1, 1, , 1 , 1(4) /i j i j i j i j i j i jr e e e e e h− + − += − − − − ,

we see that the slow-down of residual reduction observed in Figure 5 is directly related to the
error getting smooth. In fact, the randomness of the error at the beginning corresponds to
relatively large and random residual values ri,j. The increasing smoothness of the error during
the very first relaxation sweeps causes the residual to drop substantially. Once the error
becomes smooth, the residual is small (relative to the size of the error itself) and it is plausible
that a further reduction gets increasingly slow with increasing smoothness.

Figure 6: The shape of the error for the very first relaxation sweeps, starting from a
random first guess.

Obviously, relaxation reduces non-smooth error “components” much faster than smooth ones.
In fact, a closer analysis shows that the non-smooth components are reduced at a rate which is
even independent of the mesh size h. This can be analyzed quantitatively by considering
Fourier decompositions of the error and distinguishing “low” and “high” frequencies: By low
frequencies we denote those which can be approximated (“are visible”) also on a coarser
level, whereas the high frequencies are those which cannot be approximated (“are invisible”)4
on a coarser grid. For the case of “standard coarsening” (i.e., the coarser level is obtained by
doubling the mesh size), Figure 7 illustrates high and low frequencies in one dimension. From
the figure we see that high frequencies are those with a wavelength less than 4h. Frequencies
with larger wavelengths correspond to the low frequencies. This definition can directly be
extended to higher dimensions: Using standard h→2h coarsening, a Fourier component is
called high frequency if its wavelength is less than 4h in at least one spatial direction.
Otherwise, it is called low frequency.

Figure 7: Separation of Fourier components into low (smooth) and high (non-
smooth) frequencies, relative to a coarser grid of mesh size 2h (red dots).

4 More precisely, high frequency oscillations are not representable correctly any more on the next coarser level.
In fact, if restricted to the coarser level, high frequencies coincide with certain low frequencies.

Solving Reservoir Simulation Equations Klaus Stüben

 11

The separation of the error into low and high frequency Fourier components is the theoretical
basis for a very general smoothing analysis (see, for example, [56] and the references given
therein). In particular, one can define the so-called “smoothing factor” which is the minimum
factor by which all high frequency error components are reduced per relaxation sweep. The
main property of the smoothing factor is that it is independent of the mesh size. For example,
for the 2D Poisson equation, the smoothing factor of GS relaxation is 0.5. Ultimately, the
scalabilty of multigrid methods results from exploiting the h-independent smoothing behavior
not just on a single grid but rather on a hierarchy of grids.

Figure 8: Illustration of how relaxation acts on some error which is the superposition
of a low and a high frequency component.

2.3 Two-grid method

According to the previous section, it is only the low frequency error components which are
reduced slowly by relaxation, whereas the high frequency components are reduced very
rapidly and, most importantly, at a rate which is independent of the mesh size h. This gives
rise to the idea to combine the smoothing property of relaxation with a correction step using a
coarser grid (“coarse-grid correction step”). That is, we use relaxation only to smooth the
error; once the error is smooth, we approximate it by means of a coarse grid5.

Let us consider the case of just two consecutive grids based on “standard coarsening”, Ωh and
Ω2h. The following process describes the general frame of a two-grid method; various
components still need to be specified. In particular, the restriction 2h

hI and interpolation 2
h
hI -

mapping grid functions on Ωh to those on Ω2h and vice versa - need to be chosen. Postponing
this for a moment, the mathematical description of one iteration step (cycle), computing a new
approximation, 1m

hu + , from a previous one, m
hu , is as follows (cf. Figure 9 for a graphical

representation of the same process):

1. Apply ν1 (typically 1-2) smoothing steps starting with m
hu . For ease of notation denote

the resulting intermediate grid function again by m
hu ;

2. Compute the residual: m m
h h h hr f A u= − ;

5 Note that only smooth quantities can be approximated by the coarse level. Consequently, it is not the original
equation (3) which is transferred to the coarse grid, but rather the (equivalent) residual equation, h h hA e r= .

Solving Reservoir Simulation Equations Klaus Stüben

 12

3. Restrict the residual to the coarse grid: 2
2
m h m
h h hr I r= ;

4. Solve the coarse-grid correction equations5: 2 2 2
m

h h hA e r= ;
5. Interpolate e2h to the fine grid, and correct the old approximation: 2 2

m h
h h hu I e+ ;

6. Apply ν2 (typically 1-2) smoothing steps giving the new iterate 1m
hu + .

Figure 9: Mathematical description of a two-grid method

Typically, restriction is some local averaging, whereas interpolation is bi-linear. A important
class of applications for which this is not appropriate is given in Section 2.5.1. While A2h is
often chosen to be the analog of Ah applied on the coarse level, there are also other
possibilities (e.g., the Galerkin operator (10)). We mention that, generally, also the processes
of smoothing and coarsening are components which can be selected differently. Reasonable
choices specifically for the Poisson problem are summarized in Figure 10.

Figure 10: Reasonable components defining a two-grid method for solving Poisson
equation. The special fine-to-coarse averaging is usually called “full weighting”; the
coarse-to-fine mapping is just bi-linear interpolation.

2.4 Multigrid and scalability

Mathematically, the two-grid method is sufficient to describe the multigrid principle.
However, the coarse grid Ω2h will generally still be much too fine to allow for an efficient
solution. Hence, to obtain a numerically efficient process, the two-grid method has to be
recursively applied in a straightforward way to increasingly coarse grids down to a coarsest
grid for which the cost for a solution is negligible. Apart from the data transfer between grids
(and the direct solver on the very coarsest grid), we see that smoothing is the only process
performed on each grid level (right picture in Figure 11). Let us give some heuristic

Solving Reservoir Simulation Equations Klaus Stüben

 13

arguments why this process leads to a scalable method, meaning that its convergence rate is
independent of h.

Figure 11: (left) Schematic view of two-grid method. (right) Recursive extension of
the two-grid method to a multigrid method.

First, at the beginning of a cycle, all high frequency error components on Ωh are reduced by a
factor independent of h (the smoothing factor). The remaining (low frequency) error
components are effectively reduced by means of the coarser grids. In fact, any of these low
frequencies is high frequency w.r.t. the scale of a particular intermediate grid. Relaxation on
this particular grid will reduce the corresponding error component efficiently. That is, the
primary purpose of each grid is to reduce those error components which are high frequency
with respect to its own scale. Putting all this together we understand that, within each
multigrid cycle, all error frequencies will uniformly (i.e., at the same rate, namely, the one
given by the smoothing factor) be reduced. Of course, all this is under the assumption that the
transfer operators between levels do not interfere too much with the smoothing processes on
all levels. For further mathematical investigations of the multigrid process we refer to the
multigrid literature (e.g., [50] and the many references given therein)

The resulting method is not only scalable, each cycle is also very cheap. This is because the
numerical work per level decays by a factor of 1/4 from level to level. The total work, Wcycle,
required by a single multigrid cycle is asymptotically

 1 1 1 1
1 1 4...
4 16 3cycleW W W W W≈ + + + →

where W1 denotes the computational work performed on the finest level (for smoothing as
well as data transfers between Ωh and Ω2h). If WGS denotes the computational work for one
single GS relaxation step on the finest level, and if we assume two smoothing steps to be done
(i.e., ν1=ν2=1), we have W1 ≈ 4WGS. That is, each multigrid cycle costs about the same as just
a handful of GS sweeps on the finest level,

4 4 5.3
3cycle GS GSW W W≈ ≈ .

Table 1 shows timings demonstrating the dramatic gain by using GS relaxation as a smoother
in a multigrid process compared to using it as a solver. For the multigrid cycle, we use the

Solving Reservoir Simulation Equations Klaus Stüben

 14

components shown in Figure 10. As expected (due to its O(N2) complexity mentioned earlier),
GS relaxation as a solver is virtually of no practical use, whereas the corresponding multigrid
process is highly efficient: less than 30 sec on a standard laptop to solve Poisson equation on
a mesh with more than 16 million variables! For completeness, the last row shows the
performance of a particularly efficient multigrid approach known as “Full Multigrid6 (FMG)”.
This approach is again three times faster than plain multigrid cycling.

mesh size 256x256 512x512 1024x1024 2048x2048 4096x4096
plain GS relaxation 86 1250 18750 --- ---
multigrid cycling 0.09 0.44 1.69 6.77 27.41
Full multigrid (FMG) 0.03 0.16 0.53 2.14 8.30

Table 1: Computational time (in sec) to solve Poisson’s equation

2.5 Robust multigrid

The multigrid technique as outlined for Poisson’s equation carries over to general elliptic
PDEs as well as coupled systems of PDEs. Usually, however, the smoothing properties of
plain GS relaxation will not be sufficient any more to ensure high multigrid efficiency.
Instead, suitable block-relaxations (e.g. line-relaxation) may be required, or even completely
different iterative methods with robust smoothing properties such as iterative methods based
on incomplete LU decomposition (“ILU”). Here and in the following, we use the term
“smoother” to denote any method which can be used as a smoother in the multigrid context7.

In the remainder of this section we will summarize a few important aspects regarding the
generalization of GMG which are of particular relevance for reservoir simulation applications.
These aspects will later be used to demonstrate the conceptual differences between geometric
and algebraic multigrid and make clear AMG’s major advantages for a practical application.
For more details regarding the generalization of GMG we refer to [50].

2.5.1 Two characteristic model cases

Any reasonable multigrid process requires an efficient interplay between smoothing and
coarse-grid correction. Roughly, the following properties need to be satisfied:

A. On each level, after having applied a few smoothing steps, the resulting error can
sufficiently well be approximated on the next coarser level.

B. The discretization operators on the coarser grids approximate the respective finer ones
sufficiently well.

C. The intergrid data transfer (in particular, the interpolation) is accurate enough.

We briefly discuss two model cases demonstrating the meaning of properties A-C. Both
models are relevant for the efficient multigrid treatment of reservoir equations.

6 Essentially, FMG employs regular multigrid cycles in a nested way. Unfortunately, there is no analog of this
particularly fast multigrid variant in the context of algebraic multigrid to be introduced later.
7 In principle, all iterative methods can be used as a smoother. Typical robust smoothers used in practice are
(block-) relaxation methods, collective relaxation, distributive relaxation, ILU-type methods, approximate
inverses, etc.

Solving Reservoir Simulation Equations Klaus Stüben

 15

Anisotropic problems

Given a smoother, the details of its smoothing properties depend on the application such as its
degree of anisotropy. For instance, while plain GS relaxation is a very efficient smoother for
isotropic Poisson equations (2), this is no longer true for anisotropic equations,

(7) xx yyu u fε− − = with 1ε � ,

discretized by the standard 5-point stencil. Instead of (6) we now obtain

(8) , 1, 1, , 1 , 1() / 2(1)i j i j i j i j i je e e e eε ε ε− + − +← + + + +

showing that smooth error is essentially a weighted average of its neighbors in y-direction
only whereas it is hardly influenced by values in x-direction. This is illustrated in Figure 12.

Figure 12: Error smoothing by GS relaxation applied to the anisotropic Poisson
equation (7). Starting from a random first guess, the error gets quickly smooth only in
the y-direction (i.e. in the direction of “strong connections”).

Obviously, such error cannot reasonably be approximated on Ω2h (i.e., Property A from above
is violated), that is, the smoothing properties of plain GS relaxation are not sufficient in
connection with standard h→2h coarsening. We need a different smoother, namely, one
which smoothes the error uniformly, that is, in all spatial directions. We just mention that this
can easily be achieved by a block-variant of GS relaxation which relaxes (ie, solves for) all
strongly coupled points simultaneously. In our model case, this corresponds to line relaxation
with the lines being parallel to the y-axis. Similarly, x-line relaxation has perfect uniform
smoothing properties if 1ε � . In more realistic cases of strongly varying coefficients, we can
combine both approaches: Alternating line-relaxation (i.e. one sweep of x-line relaxation
followed by one sweep of y-line relaxation) has robust uniform smoothing properties for all
kinds of anisotropy.

While alternating line-relaxation provides an efficient smoother for general anisotropic
applications in 2D, this is no longer true for general 3D applications. In fact, the 3D analog of
alternating line-relaxation is alternating plane-relaxation, employing robust 2D multigrid
processes within each plane (using alternating line-relaxation for smoothing). This shows that,
even in relatively simple model cases, complex smoothers may be required in order to ensure
sufficient smoothing properties.

Solving Reservoir Simulation Equations Klaus Stüben

 16

Discontinuous coefficients

In reservoir simulation, drastic changes in permeabilities lead to PDEs with strongly
discontinuous coefficients. In such applications, care has to be taken to satisfy properties B
and C from above. To illustrate this, let us consider an exemplary diffusion problem,

(9) ()a u f−∇ ∇ = ,

on the unit square with the discontinuous coefficient a being defined in Figure 13. The figure
also shows the shape of the error after having performed a few GS relaxation steps.
Obviously, the error is not really smooth any more; it reflects the discontinuity along the
interior line of discontinuity. Clearly, in contrast to the anisotropic problems, this behavior
cannot be avoided by just choosing a different smoother. As a consequence, linear
interpolation as employed in the Poisson case (Figure 10) is not suitable near the line of
discontinuity. In fact, linear interpolation is feasible only if we can assume error after
smoothing to be continuous. Moreover, unless the line of discontinuity coincides with grid
lines on all coarser levels (which, generally cannot be ensured in real-life applications, cf.
Figure 14), the discretization accuracy of the coarse level operators will be quite bad. Hence,
both property B and C are violated.

Figure 13: (left) Definition of discontinuous coefficient a in (9). (right) “Smooth”
error obtained after a few sweeps of GS relaxation starting with a random guess.

Remedies to such kind of situation (cf. also Section 3.2.2 on Algebraic Multigrid):

• A reasonable interpolation needs to “reflect” the discontinuities. This can most easily
be achieved by basing interpolation directly on the difference equations. (Such kind of
stencil-based interpolation is called “operator-dependent interpolation” and has been
introduced in [1] for the first time.)

• Rather than using the “same” discretization on each level, the so-called Galerkin
operator,

(10) 2

2 2
h h

h h h hA I A I= ,

provides a robust alternative. This particular coarse-grid operator has its origin in
finite elements8. Note that (10) is a simple multiplication between matrices which can
be done purely algebraically.

8 In case of symmetric and positive definite matrices, this operator can also be motivated independently:
“Galerkin-based” multigrid satisfies a variational principle which, essentially, ensures optimal corrections from
coarser levels (as good as they can be, given the current coarser levels and transfer operators) if “optimality” is
measured w.r.t. the energy norm, that is, ||e||=(Ae,e)1/2.

Solving Reservoir Simulation Equations Klaus Stüben

 17

Figure 14: Drastic changes in permeabilities causing discontinuous coefficients

2.5.2 Towards Algebraic Multigrid

By now we have only considered standard h→2h coarsening. However, to satisfy Property A,
this is not necessary. In fact, Property A only says that error after relaxation needs to be
smooth relative to the coarse grids used. This indicates that we can loosen the requirements
on the smoother and still maintain an efficient interplay with the coarse-grid correction if we
introduce more flexibility in the selection of coarser grids. For the anisotropic case (7), for
instance, we can continue to use plain GS relaxation for smoothing if we coarsen only in the
direction of smoothness, that is, if we replace standard coarsening by “semi-coarsening” in y-
direction (cf. Figure 15). Similarly, if 1ε � , we can use semi-coarsening in x-direction. This
idea immediately generalizes to 3D applications.

Figure 15: Semi-coarsening in y-direction for anisotropic applications

Even though smoothing can indeed be simplified to quite some extent, the usefulness of semi-
coarsening in real-life problems seems rather limited: In case of anisotropies of strongly
varying directions, neither x-semi coarsening nor y-semi coarsening will do. In fact, it can be
shown that the two types of coarsening need to be employed simultaneously: each multigrid
level needs to employ more than one coarser grid, leading to the fairly complex “multiple
semi-coarsening” technique (i.e. semi-coarsening in multiple directions, [33], see Figure 16).

Summarizing, a robust GMG solver for general elliptic PDEs requires either complex
smoothers or sophisticated multiple semi-coarsening techniques. Moreover, to cover also
discontinuous coefficients, both operator-dependent interpolation as well as Galerkin coarse-
grid operators (10) are required. Hence, robust and general GMG methods may get rather
complicated, even in case of structured meshes. In case of fully unstructured meshes, the

Solving Reservoir Simulation Equations Klaus Stüben

 18

development of GMG solvers gets even more troublesome, if possible at all: On the one hand,
a natural, easy-to-construct grid hierarchy may simply not exist. On the other hand, even if
such a hierarchy was available, neither the above mentioned robust (line- and plane-)
smoothers nor the multiple semi-coarsening technique carry over to the unstructured case.

Figure 16: Outline of multiple semi-coarsening strategy for anisotropic problems in
connection with plain GS smoothing

One should observe that a major technical hurdle in constructing robust geometric multigrid
methods is due to the fact that, generally, a grid hierarchy is assumed to be pre-defined. Since
smoothness on a grid is always to be understood relative to a next coarser grid, this may
require complex smoothing methods of the type mentioned further above. On the other hand,
the semi-coarsening technique can principally be used to considerably weaken the
requirements on the smoother; but as long as this technique also assumes pre-defined grid
hierarchies, it seems still far from being flexible enough for an efficient treatment in “real-
life”.

As a way out one needs still more flexibility in constructing coarser levels. For instance, a
dynamic semi-coarsening strategy, allowing local adaptations to the true smoothing
properties of the current smoother, would cure many of the difficulties mentioned before.
Clearly, it is hardly possible to realize this in a structured geometric environment. However,
observing that the operator-dependent interpolation and the Galerkin operator mentioned in
Section 2.5.1 are essentially independent of the geometry, one might attempt to formulate a
generalized multigrid method in purely algebraic terms, that is, without any direct reference to
underlying grids. In fact, this is essentially what Algebraic Multigrid is all about.

3 Algebraic Multigrid (AMG)

We have seen that GMG can be used to solve elliptic PDEs very efficiently. For instance,
Poisson equation on a 16 million point mesh can be solved in a few seconds on a standard
laptop (see Table 1)! Since around 1970, world-wide research has demonstrated that the
multigrid principle - the combination of smoothing and coarse-grid correction - is not only
efficient but also very general. The development of multigrid can actually be regarded as the
most important development in numerical mathematics over the last 40 years.

Solving Reservoir Simulation Equations Klaus Stüben

 19

However, in spite of its revolutionary success in academia, GMG had only very limited
impact on the development of industrial simulation software. From a practical point of view,
there seem to be essentially two reasons for this:

1. GMG solvers are not suited to simply replace classical solvers in existing simulators.
This is because GMG is a general technique to solve PDEs, and a GMG-based
simulator has to be conceptually tailored to this technique, it has to be “multigridded”.

2. The alternative - to develop a GMG-based simulator from scratch - is possible in
principle. However, the technical realization may, under industrial requirements,
become rather cumbersome. In particular, in case of unstructured meshes the
development of GMG-based simulators gets even more troublesome, if possible at all
(cf. Figure 19).

The algebraic multigrid9 (AMG) approach was driven by the attempt to automate and
generalize GMG so that it can be applied directly to certain (sparse) matrix equations without
explicitly referring to geometry and without requiring any pre-defined hierarchy. The
construction of a hierarchy is actually part of AMG and is done fully automatically. That is,
AMG solvers attempt to combine the advantages of GMG with those of easy-to-use plug-in
solvers. In contrast to GMG, AMG-based solvers are easy to integrate into existing
simulators, actually one of the major reasons for their industrial success.

Figure 17: Being based on the same basic principles as GMG, AMG operates on a
hierarchy of increasingly coarse matrix problems all of which are constructed fully
automatically as part of the numerical algorithm (“setup phase”).

AMG can formally be described purely algebraically as an approximate Schur complement
approach. This approach has the advantage of providing a unified abstract description of
various hierarchical methods including, for instance, multilevel variants of ILU (see, e.g.,
[34]). From a practical point of view, however, aspects regarding the heuristic motivation for
certain algorithmic details may get less transparent or even get lost. Instead, we prefer a more
intuitive description which allows pointing out the analogy between AMG and GMG. For that
purpose we “visualize” a matrix by its graph representation (nodes correspond to variables,
edges stand for non-vanishing matrix entries). This way, at least formally, we can argue and
describe AMG in a GMG-like terminology. For instance, we can still think in terms of grids,
grid points, grid functions, etc.

9 Since algebraic multigrid is applied to matrices rather than grid structures, we should actually use the term
multilevel rather than multigrid. It is just for historical reasons that we use the term multigrid.

Solving Reservoir Simulation Equations Klaus Stüben

 20

Figure 18: Graph representation of a
matrix: The nodes of the graph stand
for the variables; edges for non-
vanishing couplings between variables.
In analogy to the finest grid in the
context of GMG, we denote this graph
by Ω h. “F” stands for fine level nodes.

In the next subsections, we briefly introduce the basic ideas of “classical” AMG. Note that,
although AMG is formally more general, we generally still have the solution of PDEs in
mind. Also, in spite of the fact that geometry is not explicitly exploited, the heuristics behind
the algorithmic details is often still motivated by geometric arguments. Some results will
demonstrate AMG’s efficiency and potential.

Figure 19: (left) Large-scale 3D basin flow model with unstructured mesh. The
pentahedral prismatic mesh necessarily incorporates a number of faulty zones which
leads to a vertical distortion of the prisms along these locations. (right) A complex
cross-sectional 2D problem. The triangular mesh is fully unstructured and locally
refined in a layered geometry. The problem models an aquifer-aquitard system with
heterogeneous distribution of conductivity and storativity. (Courtesy of Wasy GmbH)

3.1 History

The development of AMG started in the early nineteen-eighties [9, 10, 11, 35, 36, 42] when
Galerkin-based coarse-grid correction processes and, in particular, operator-dependent
interpolation were introduced into GMG ([1], see also Section 2.5.1). One of the motivations
for AMG was the observation that reasonable operator-dependent interpolation and the
Galerkin operator (10) can be derived directly from the underlying matrices, without any
reference to the grids. To some extent, this fact had already been exploited in the first “black-
box” multigrid code [20]. However, regarding the selection of coarser levels, this code was

Solving Reservoir Simulation Equations Klaus Stüben

 21

still geometrically based. In a purely algebraic setting, the coarsening process itself is also
defined algebraically, i.e., strictly based on information contained in the given matrix.

The very first AMG program is described and investigated in [35, 36, 42], see also [16]. At that
time, the primary interest was of a scientific nature, namely, to demonstrate that - under
certain conditions - multigrid methods can be designed even when no grids are available or, if
available, without exploiting them. The original AMG approach was designed for the class of
linear algebraic systems (1) with matrices A being symmetric, positive definite and “close to”
weakly diagonally dominant M-matrices10. Problems like this widely occur in connection with
discretized scalar elliptic PDEs of 2nd order, the simplest one being the Poisson equation (2).

Since the resulting code, AMG1R5, was made publicly available in the mid eighties, there
had been no substantial further research and development in AMG for many years. In spite of
its potential, it took until around 1995 before there was a remarkable increase of interest in
AMG and, more generally, in algebraically oriented hierarchical methods, both in science and
applications. Among other reasons, this interest was fed by the increasing geometrical
complexity of applications which, technically, limited the immediate use of alternate fast
solvers such as those based on GMG. Another reason was the steadily increasing demand for
efficient “plug-in” solvers. In reservoir simulation this demand was driven by ever-increasing
problem sizes, complex structures, heterogeneities, multiphase flows, and wells which made
clear the limits of classical one-level solvers used in industrial simulators. This development
was similar in many other areas of numerical simulation.

Fostered by this situation, sophisticated extensions of the original AMG method have been
developed aiming at increasing its range of applicability. In particular, substantial progress
has been achieved towards the efficient treatment of coupled systems of PDEs (see Section 4).
Moreover, various other hierarchical algebraic approaches have been developed which differ
substantially from the original AMG11.

3.2 Basics

We recall that, from a practical point of view, a major drawback of GMG is that it requires a
pre-defined hierarchy of grids. This is not only the main reason for its technical difficulties in
treating unstructured grid problems (if treatable at all), it is also responsible for the fact that
particularly strong smoothers need to be employed in order to achieve a high robustness.

Once we give up the request of a pre-defined hierarchy, we can get along with much simpler
smoothers and, at the same time, gain more flexibility in treating unstructured meshes.
Formally, this is the starting point of AMG and the main reason for its flexibility. In fact,
AMG fixes the smoother to some simple scheme - typically just plain GS relaxation - and
attempts to ensure an efficient interplay with the coarse-grid correction by locally and
dynamically adapting coarser levels and (operator-based) interpolations to the smoothing
properties of the smoother. Geometrically speaking, AMG attempts to coarsen only “in
directions” in which relaxation really smoothes the error for the problem at hand. For many
classes of applications, the relevant information is contained in the (discretization) matrix

10 More specifically: 0, 0 ()ii ija a i j> ≤ ≠ and 0ijj

a ≥∑ .
11 AMG, as we understand it, is structurally completely analogous to GMG in the sense that the basic algorithmic
components - smoothing and coarse-grid correction - play the same role.

Solving Reservoir Simulation Equations Klaus Stüben

 22

itself, so that the complete coarsening process can be performed based only on information
contained in the matrix, without any reference to the grid.

Hence, the application of AMG to solve a given problem (1) is a two-part process: First, there
is the setup phase which consists of recursively choosing the coarser levels and dynamically
defining the transfer and coarse-grid operators. Second, the solution phase just uses the
resulting components in order to perform normal multigrid cycling until a desired level of
tolerance is reached. Since the solution phase is straightforward, in the following we need to
consider only the setup phase.

3.2.1 Smoothing and coarsening

In order to motivate the basic AMG idea, we first need to define “smoothness” in an algebraic
context and understand how AMG can exploit this in constructing coarser levels. Recall first
that smoothness in GMG is defined relative to a given coarser grid. For example, an error
may be smooth with respect to a semi-coarsened grid but not with respect to a standard h→2h
coarsened grid (see Figure 15). Since there are no pre-defined coarser grids in AMG (there
may even be no grids at all), smoothing in the previous sense becomes meaningless. Instead,
we exploit the relation between smoothness and slow convergence as discussed in Section 2.2
and simply define an error e to be “algebraically smooth” if it is slow to converge with respect
to the selected smoother. In other words, we call an error “smooth” if it has to be
approximated by means of a coarser level12 (which then needs to be properly constructed!).
From an algebraic point of view, this is the important point in distinguishing smooth and non-
smooth errors.

Note that it is not important whether relaxation really smoothes the error in any geometric
sense. What is important, though, is that algebraically smooth error can be characterized to a
degree that makes it possible to perform an automatic coarsening process. In order to
demonstrate what this means, let us reconsider the arguments of Section 2.2 for the class of
matrix problems with weakly diagonally dominant M-matrices10, assuming GS relaxation to
be used for smoothing:
In one GS relaxation sweep, each variable ui in turn will be replaced by the new value, iu ,

(11) () / /i i ij j ii i i ii

j i
u f a u a u r a

≠

= − = +∑ with i i ij j
j

r f a u= − ∑

denoting the i-th residual before relaxing ui. In terms of the error, *
i i ie u u= − , this means

(12) /i i i iie e r a= −

which follows immediately by subtracting (11) from the fixed point equation, * *

i iu u= . By
definition, error is algebraically smooth if it is slow to converge, i.e., if i ie e≈ . From this and
(12) we heuristically conclude that algebraically smooth error is characterized by the relation

(13) | | | |i ii ir a e� ,

12 Remember that, roughly speaking, any component of the error which cannot be reduced by smoothing
necessarily needs to be reduced by computations on coarser levels and vice versa.

Solving Reservoir Simulation Equations Klaus Stüben

 23

meaning that the (scaled) residuals are much smaller than the errors themselves. This simple
relation expresses the most important property of algebraically smooth error: while such error
may still be very large globally, locally we can approximate every ei fairly well as a function
of its neighboring error values ej,

 () 0i ii i ij jj i

r a e a e
≠

= + ≈∑

or

(14)
1 | |i ij j

j iii

e a e
a ≠

≈ ∑ .

The latter gives us a simple and practical characterization: At any point, i, the value of
algebraically smooth error is well approximated by the weighted average of its neighboring
values with weights being given by the corresponding coupling coefficients, aij. This
immediately implies that algebraically smooth error “changes slowly in the direction of strong
couplings”, that is, from i to j if |aij| is large (cf. Figure 20).

Figure 20: Visualization of algebraic smoothness for isotropic and anisotropic problems

This sounds very familiar from the GMG discussion in Section 2.2. However, while the
previous characterization was just a conclusion in the case of GMG, in the context of AMG it
plays a different role in that it provides the basis for explicitly performing the coarsening
process: Coarsening will only be in directions where smooth error changes slowly, i.e., “in the
direction of strong couplings”. Even more, it will also be the basis for defining interpolation
between levels.

3.2.2 The two-level method

Based on the characterization of algebraic smoothness, this section outlines the main idea of
how to design a two-level method. Generally, the following three steps need to be followed:

1. Subdivide Ωh, the set of all variables, into F- and C-variables: while the F-variables
remain on the finest level, the C-variables will be taken down to the next coarser one.

Solving Reservoir Simulation Equations Klaus Stüben

 24

That is, the next coarser level, formally denoted by ΩH, consists of just the C-
variables. We call this process the “C/F-splitting”.

2. Define transfer operators (“interpolation” and “restriction”) which map coarse vectors
(defined on Ω H) into fine ones (defined on Ω h) and vice versa.

3. Finally, define the matrix operator (“coarse-grid correction operator”) on Ω H.

Figure 21: Meaning of “coarsening in the direction of strong couplings” in case of
the anisotropic model operator.

As motivated before, coarsening should be “in the direction of strong couplings”. What this
means in a simple model case is illustrated in Figure 21. Applying this idea in a more general
context means that the C/F-splitting should be done so that F-variables are “sufficiently
strongly” coupled to C-variables. Conflicting to this is the goal that we want a rapid
coarsening (producing low fill-in on coarser levels in later steps). This gives rise to the
following two criteria in performing a C/F-splitting:

1. The set of C-variables should be independent, that is, C-variables should not be
strongly coupled among each other.

2. Under the previous constraint, the set of C-variables should be a maximal set.

While these criteria reflect the most important goals of a C/F-splitting, obviously, there is
much arbitrariness to realize a splitting concretely. We cannot go into further details here but
rather refer to [36, 43, 44] for concrete algorithms and additional motivations.

Figure 22: Illustration of the C/F-splitting13

Once a coarse level has been constructed, we need to define a reasonable coarse-to-fine
interpolation. In the simplest case, we directly exploit (14) saying that the value of a smooth

13 We here make use of the graph representation (see Figure 18), the grids are just for illustration. To simplify
the description, we assume that only edges are shown which correspond to strong couplings (based on some
reasonable threshold); weak couplings are ignored in the graph.

Solving Reservoir Simulation Equations Klaus Stüben

 25

error is essentially determined by the values of its strongly coupled neighbors (those with
large coefficients). Applying this to an F-variable, we obtain a simple interpolation formula,

(15) | | () and ()h H h H

i i ij j i i
j C

e a e i F e e i Cα
∈

= ∈ = ∈∑

where the scaling factor, αi, is defined by collapsing all F-to-F couplings to the diagonal (cf.
Figure 23). Since this simple interpolation formula uses only “direct” couplings, it is called
“direct” interpolation. While useful in simple applications, in general more complex types of
operator-dependent interpolation are preferable both for reasons of efficiency and robustness.
However, (15) shows the main principle; for more details and variants, see [43].

Figure 23: Principle of interpolation

Denoting the interpolation matrix by h

HI , the restriction is generally defined as its transpose,
that is, ()H h T

h HI I= . Once both transfer matrices are available, the coarse-level matrix is
defined to be the Galerkin operator,

(16) H h

H h h HA I A I= .

We have introduced this kind of algebraically defined coarse-grid correction operator already
in GMG, see (10). We here just recall that the Galerkin operator is mathematically justified by
its optimality property regarding the quality of coarse-grid corrections8.

Figure 24: The ingredients of a two-level method

Summarizing, we obtain the two-grid components as illustrated in Figure 24. Using these
components, the final two-grid method runs exactly as in GMG, see Figure 9, just replacing
2h by H. Note that there are only two components which actually have to be constructed,

Solving Reservoir Simulation Equations Klaus Stüben

 26

namely, the C/F-splitting and the interpolation matrix, h
HI . We point out that the “operator-

dependency” of interpolation, together with the optimality property of the Galerkin operator,
makes AMG an efficient tool also for discontinuous coefficient applications. This is in
contrast to standard GMG, cf. Section 2.5.1. In fact, AMG's interpolation (15) can be regarded
as a generalization of the operator-dependent GMG interpolation introduced in [1, 20].

3.2.3 Two-level theory

AMG methods used in practice14, are largely heuristically motivated. However, under certain
assumptions, in particular symmetry and positive definiteness (“s.p.d.”), some theory is
available. In particular, a two-level theory is available showing that convergence can be
expected to be independent of the size of the problem and as fast (and expensive!) as we wish.
In the following, we give an exemplary result.

Theorem: Assume the weakly diagonally dominant M-matrix A to be s.p.d. Furthermore, for
any fixed 0 1τ< ≤ , assume a C/F-splitting to be selected so that, for all i F∈ ,

(17) | | | | ik ij

k C j i
a aτ

∈ ≠

≥∑ ∑

and define interpolation according to (15). Then the two-level method with GS smoothing has
a convergence factor 0 1ρ≤ < which does not depend on the matrix (neither the coefficients
nor its dimension) but only on τ. While in the limit case τ =1 the resulting method degenerates
to a direct solver, decreasing 0τ → causes increasingly slow convergence, 1ρ → .

To satisfy (17) with both a low number of C-variables and a reasonably large τ means that
only few of the strongest neighbors should be put into C; the use of weak couplings would
increase the computational work but hardly affect the convergence. Note that this implicitly
means that coarsening will be in the direction of smoothness.

The more strong connections are put into C (and used for interpolation), the better the
convergence can be. In the limit case τ =1, for which the two-grid method degenerates to a
direct solver15, (17) means that, for each i F∈ , all of its neighbors are in C. In this case,
interpolation is “most accurate” but also most expensive. In fact, the resulting direct solvers
are of no practical relevance since, in terms of computational work and memory requirement,
they will generally be extremely inefficient if recursively extended to a hierarchy of levels.

However, this limit shows something important, namely, that the convergence of AMG is not
generally a problem; the more effort is put into its coarsening, the faster the convergence can
be. More specifically, by suitably selecting τ, AMG can always be forced to converge rapidly.
Unfortunately, however, the benefit of an improved interpolation in terms of convergence
speed is offset by the expense in terms of additional computational work (which is also
directly related to the memory requirement). That is, from a practical point of view, a major
problem in designing efficient AMG algorithms is not convergence but rather the tradeoff
between convergence and numerical workload. Keeping the balance between these aspects is
the ultimate goal of any practical algorithm! Note that this is, in a sense, just opposite to

14 Remember that there is a lot of arbitrariness in both the C/F-splitting and the definition of interpolation.
15 As a matter of fact, the limit case τ =1 results in a direct solver for any non-singular matrix A.

Solving Reservoir Simulation Equations Klaus Stüben

 27

GMG where the numerical work per cycle is known and “controllable” but the convergence
may not be satisfactory.

Figure 25: The key to an efficient AMG approach: The tradeoff between convergence,
workload and robustness.

3.2.4 Recursive definition

The recursive application of two-grid cycles finally leads to real multigrid cycles. Since this
is, formally, completely analogous to GMG (cf. Figure 11), we do not need to explain this in
more detail but rather refer to Figure 26.

Figure 26: Complete AMG cycle recursively defined two-grid cycles

3.3 AMG in practice

Before an AMG cycle can finally be composed and the actual solution phase can start, the
setup phase - in which all AMG components are recursively computed - has to be concluded.
This overhead is the price for the flexibility of AMG and its simplicity of use and is one
reason for the fact that AMG is usually less efficient than GMG (if applied to problems for
which GMG can be applied efficiently). Another reason is that AMG's components can,
generally, not be expected to be “optimal”, they will always be constructed on the basis of
compromises between numerical work and convergence. Nevertheless, if applied to typical
elliptic test problems, the computational cost of AMG's solution phase (ignoring the setup
cost) should be comparable to the cost of a robust GMG solver.

However, AMG should not be regarded as a competitor of GMG. The strengths of AMG are
its robustness, its applicability in complex geometric situations and its applicability to even
solve certain problems which are beyond the reach of GMG, in particular, problems with no

Solving Reservoir Simulation Equations Klaus Stüben

 28

geometric or continuous background at all (as long as the underlying matrices have similar
properties as those derived from elliptic PDEs). That is, AMG provides an attractive multi-
level variant whenever GMG is either too difficult to apply or cannot be used at all. In such
cases, AMG should be regarded as an efficient alternative to standard numerical (one-level)
methods.

All results given in this section are obtained by the SAMG software library [47].

3.3.1 Remarks on generalizations

Up to now, for ease of motivation, we have confined ourselves to the case of weakly
diagonally dominant M-matrices. Although representative for some important class of
problems, most applications will not strictly be of that type. “Mild” deviations from the M-
matrix type or the weak diagonal dominance can simply be ignored. However, if deviations
become too strong, AMG’s efficiency may substantially deteriorate.

It is difficult to say precisely, to which type of problems (matrices) AMG can efficiently be
generalized. The most essential requirement for a generalization is that we are able to define
“strength of connectivity” in a physically correct way. Without this, AMG will not be able to
perform any reasonable coarsening. Note that this definition was obvious in weakly
diagonally dominant M-matrix cases. Moreover, operator-dependent interpolation should be
so that algebraically smooth error is interpolated accurately enough. Again, while the
definition of a reasonable interpolation is fairly obvious in the M-matrix case, this is not at all
true in other cases.

In the following, we list a few typical situations for which the AMG processes need to be
extended. None of these situations will cause a problem just by itself; whether AMG can
efficiently be extended, or whether it may fail, strongly depends on the concrete situation, in
particular, the physical origin of the respective new aspect. For the sake of brevity, we here
cannot discuss these cases in more detail (except for the important case of coupled PDE
systems which will be treated in Section 4).

• If matrix rows contain (large) positive off-diagonal entries, there is no simple and
unique rule of how to deal with them in a physically correct way. In fact, what is
correct and what not depends to a large extent on the origin of these positive entries;
different situations require different procedures. In general, one has to be careful in
defining strength of connectivity as well as the interpolation.

• For problems with near-zero eigenvalues, sufficiently accurate AMG interpolation
may often not be computable based only on matrix information. The major difficulty
is caused by the fact that the smaller an eigenvalue of a given problem, the more
accurately the corresponding eigenvector needs interpolating. Clearly, unless such
eigenvectors are close to being constants, the accuracy of interpolation for these
eigenvectors will be limited without exploiting additional information.

• For (slightly) indefinite problems, AMG is often applicable without any change.
However, whether this is really true depends not only on the number of negative
eigenvalues but also on whether or not there are near-zero eigenvalues (cf. the
previous case). Since it is difficult to easily detect “bad cases” by merely looking at
matrix entries, the application of AMG on indefinite problems may or may not work.

Solving Reservoir Simulation Equations Klaus Stüben

 29

• If matrices are far from weakly diagonal dominant, it strongly depends on the physical
origin whether or not AMG can efficiently cope with such a case. Without any
adaptation, AMG will most probably loose much of its efficiency or will even fail.

• In practice, matrices A are often re-scaled by applying diagonal matrices, D1 and D2,

(18) 1 1
1 2A D AD− −← .

There are various reasons for doing this. In the context of AMG, however, such re-
scalings need to be done with great care; at best they should be avoided altogether. In
particular, re-scalings from the right (column scaling) may completely destroy matrix
properties which are important for an efficient AMG treatment. For instance, while A
may correspond to a nicely elliptic discretization, a re-scaling from the right may
completely destroy this property, causing a fatal failure of AMG. Re-scalings from the
left are usually somewhat less critical. But still, such re-scalings may negatively
influence the quality of AMG’s coarsening to quite some extent.

• Finally, the discretization of coupled systems of PDEs leads to matrices A which are
usually far from weakly diagonally dominant M-matrices. The AMG treatment of such
matrix problems requires special generalizations. Because of the importance of
coupled PDE systems for practice, we will outline a generalized AMG strategy to deal
with such applications in Section 4.

3.3.2 Increasing robustness

In order to increase the robustness of AMG approaches, it has become very popular to not use
AMG-based solvers “stand-alone” but rather combine them with acceleration methods such as
conjugate gradient (CG), BiCGstab or GMRES [37, 40, 52]. Practical experience has clearly
shown that AMG is a very good preconditioner, much better than standard (one-level) pre-
conditioners. Heuristically, the major reason is due to the fact that AMG, in contrast to any
one-level preconditioner, aims at the efficient reduction of all error components, short-range
as well as long-range. However, although AMG tries to capture all relevant influences by
proper coarsening and interpolation, its interpolation will hardly ever be optimal. It may well
happen that error reduction is significantly less efficient for some very specific error
components. This may cause a few eigenvalues of the AMG iteration matrix to be
considerably closer to 1 than all the rest. If this happens, AMG's stand-alone convergence
factor would be limited by the slow convergence of just a few exceptional error components
whereas the majority of the error components is reduced very quickly. Acceleration by, for
instance, conjugate gradient typically eliminates these particular components very effectively.
The alternative, namely, to try to prevent such situations by putting more effort into the
construction of interpolation, will generally be much more expensive. And even then, there is
no final guarantee that such situations are avoided.

We finally want to mention that, although AMG generally gets along with much “weaker”
smoothers than GMG, it often pays to add robustness to AMG by using somewhat “stronger”
smoothers than just GS relaxation. Often used in practice are smoothers of ILU- or ILUT-
type. Such smoothers will be extensively used, for example, in oil reservoir simulation (FIM
and AIM approaches, see Section 5).

Solving Reservoir Simulation Equations Klaus Stüben

 30

3.3.3 Exemplary coarsening process

In this section we demonstrate AMG’s flexibility in adjusting its coarsening process locally to
the requirements of a given problem. The underlying problem is the differential problem

(19) () () (,)x x y y xyau bu cu f x y− − + =

defined on the unit square with Dirichlet boundary conditions. We
set a=b=1 everywhere except in the upper left quarter of the unit
square (where b=103) and in the lower right quarter (where a=103).
The coefficient c is zero except for the upper right quarter where
we set c=2.

The diffusion part is discretized by the standard 5-point and the
mixed derivative by the (left-oriented) 7-point stencils. The
resulting discrete system is isotropic in the lower left quarter of the
unit square but strongly anisotropic in the remaining quarters. In the upper left and lower right
quarters we have strong connections in the y- and x-directions, respectively. In the upper right
quarter strong connectivity is in the diagonal direction. The left part of Figure 27 shows what
a “smooth” error looks like on the finest level after having applied a few GS relaxation steps
to the homogeneous problem, starting with a random function. The different anisotropies as
well as the discontinuities across the interface lines are clearly reflected in the picture.

Figure 27: (left) “Smooth” error in case of Problem (19). (right) The finest and three
consecutive levels created by the standard SAMG coarsening algorithm.

We have learned that such error can effectively be reduced by means of a coarser grid only if
that grid is obtained by essentially coarsening in directions in which the error really changes
smoothly in the geometric sense, and if interpolation treats the discontinuities correctly.
Indeed, this is exactly how SAMG operates: First, its operator-based interpolation ensures the
correct treatment of the discontinuities. Second, SAMG coarsening is in the direction of
strong connectivity, that is, in the direction of smoothness.

To illustrate this further, the right part of Figure 27 depicts the finest and three consecutive
grids created by using standard SAMG coarsening and interpolation. The smallest dots mark
grid points which are contained only on the finest grid, the squares mark those points which

Solving Reservoir Simulation Equations Klaus Stüben

 31

are also contained on the coarser levels, the bigger the square, the longer the corresponding
grid point stays in the coarsening process. The picture shows that coarsening is uniform in the
lower left quarter where the problem is isotropic. In the other quarters, AMG adjusts itself to
the different anisotropies by locally coarsening in the proper direction. For instance, in the
lower right quarter, coarsening is in x-direction only. Since SAMG takes only strong
connections in coarsening into account and since all connections in the y-direction are weak,
the individual lines are coarsened independently of each other. Consequently, the coarsening
of neighboring x-lines is not “synchronized”; it is actually a matter of “coincidence” where
coarsening starts within each line. This has to be observed also in interpreting the coarsening
pattern in the upper right quarter: within each diagonal line, coarsening is essentially in the
direction of this line.

3.3.4 Performance and scalability

As a benchmark, we consider the application of SAMG to solve the pressure-correction
equation which occurs as the most time-consuming part of the segregated solution approach
to solve the Navier-Stokes equations. The discretization is based on finite-volumes. The
concrete application is the industrial computation of the exterior flow over a complete
Mercedes-Benz E-Class model (see left picture in Figure 28). The underlying mesh consists
of several million cells and is highly complex.

Figure 28: (left) Mercedes-Benz E-Class model. (right) Comparison of convergence
histories between SAMG and a standard one-level solver. (Courtesy of Daimler-Benz
and Computational Dynamics)

The right picture of Figure 28 refers to the solution of a single pressure-correction equation at
one particular time step taken from a normal production run. It compares SAMG's
convergence history with that one of a standard solver (ILU(0) pre-conditioned conjugate
gradient, ILU/cg). In terms of total computational time, SAMG is about 19 times faster. This
reflects the typical performance of SAMG in geometrically complex applications of the type
and size considered here. Since, due to its scalability, SAMG's convergence is virtually
independent of the problem size, the gain by employing SAMG grows further with increasing
problem size.

Finally, we want to demonstrate SAMG’s scalability properties. For this purpose we consider
a simple model problem which can easily be scaled up, the so-called Durlofsky flow problem.
This corresponds to a square domain with a conductivity field as shown in Figure 29. The

Solving Reservoir Simulation Equations Klaus Stüben

 32

flow enters on the left side of the domain and exists on the right side with impervious
boundaries at the top and the bottom.

Figure 29: Durlofsky problem: (left) Conductivity pattern (red=1m/s; blue=10-6 m/s),
basic 20x20 mesh. (right) Performance of SAMG compared to that of a standard one-
level solver for increasing mesh size.

The problem is steady-state, characterized by a structured regular gridding and heterogeneous
conductivity distribution. The parameter contrast refers to a power of six. The domain is
initially discretized by a 20x20 square quadrilateral mesh representing the first refinement. To
test SAMG’s scalability, we perform a stepwise global refinement by recursively subdividing
quadrilaterals into four equally sized quadrilaterals. For the sequence of meshes obtained this
way, the bar chart in Figure 29 compares the performance of SAMG with that of a standard
pre-conditioned conjugate gradient solver, PCG. The results clearly indicate the superiority of
SAMG for this problem as well as its scalability property. In fact, the required number of
iterations does not increase for SAMG if the problem enlarges whereas it increases
significantly for the standard solver. For large problems, in the order of a million variables,
SAMG is more than ten times faster than the standard solver.

4 AMG for coupled PDE systems

Classical AMG as outlined in the previous section has been designed for the solution of linear
systems (1), obtained by discretizing scalar elliptic PDEs. Such matrices have characteristic
properties - in simple cases they are weakly diagonally dominant M-matrices - which are
exploited by the AMG algorithm. Unfortunately, matrices obtained by discretizing coupled
systems of PDEs are usually far from satisfying these properties. Hence, if applied directly to
such systems, classical AMG will fail or, at least, seriously deteriorate. Except for
applications with very weak cross-couplings between different physical unknowns16, the
coarsening and interpolation rules of classical AMG are no longer appropriate. Without (at
least) being able to distinguish between different unknowns, no efficient AMG processing can
be expected.

Notation: Linear systems (1) corresponding to discretized coupled systems of PDEs will
simply be called coupled systems as opposed to scalar systems corresponding to scalar PDEs.

16 For historical reasons, in the context of AMG, the different physical functions defined by a coupled system of
PDEs are usually called “unknowns”.

Solving Reservoir Simulation Equations Klaus Stüben

 33

Correspondingly, AMG approaches which are directly applicable to coupled systems are
called coupled AMG as apposed to scalar AMG which is applicable only to scalar systems.

In practice, the solution of a coupled system of PDEs is very often reduced to the solution of a
series of scalar problems. This is very popular, for example, in computational fluid dynamics
(“pressure-correction methods”) or oil reservoir simulation (“two-stage preconditioning”, see
Section 5.2.1). In such cases, scalar AMG approaches can immediately be applied to elliptic
sub-problems. However, whether such a “decoupled” approach is efficient, depends on the
application. In many cases it will be more efficient to treat coupled systems “directly” by a
suitably generalized AMG approach. Before we will discuss procedures of how to obtain such
coupled AMG approaches, we want to make a general remark:

Although AMG finally operates only on matrices, we must generally not ignore the physical
background of a given problem. Generally speaking, the following three basic assumptions
necessarily have to be satisfied for an AMG approach to be meaningful:

1. For any linear system to be solved by AMG, a natural hierarchy (of resolution scales)
has to exist. Otherwise, there cannot exist an efficient AMG approach either.
However, since we are only considering PDEs, this request is naturally satisfied.

2. AMG is able to construct a reasonable hierarchy. This essentially means that AMG is
able to correctly distinguish between weak and strong couplings. This was easy and
straightforward for M-matrices. In general, however, this is not straightforward at all.

3. AMG is able to exploit the hierarchy. This means that AMG is able to use coarse-level
approximations to effectively correct fine-level ones. This is essentially a requirement
regarding the “accuracy” of AMG’s interpolation.

Unfortunately, there is no simple answer on how to satisfy these assumptions in general and
there is no straightforward extension of classical AMG resulting in a black-box which can
efficiently solve any coupled system of PDEs. In fact, concrete approaches need to be
specifically designed for certain classes of applications and black-box usage can only refer to
such classes.

Already in the early work [36], but more systematically during the last years [17, 18, 23, 47],
extensions of the classical AMG have been considered. In the following, the goal is not to
present a final algorithm, but rather to describe a general framework which is flexible enough
to exploit additional (including user-provided) information and which can easily be adjusted
to specific requirements of a given problem class. For demonstration, we mention some
typical examples.

4.1 General idea: the primary matrix

The basic idea to define coarsening processes under very general assumptions relies on the
introduction of some auxiliary (sparse) control matrix, the so-called primary matrix, generally
denoted by P: Rather than defining the strength of connectivity between variables directly via
the entries of the given matrix A, it is defined via the entries of P. Formally, this provides a
very general framework allowing the method to be adjusted to many different situations17.

17 We point out that, in most practical cases, a primary matrix does not need to be explicitly assembled and
stored. The concept of primary matrices is rather used for a simple description of the approaches.

Solving Reservoir Simulation Equations Klaus Stüben

 34

While primarily introduced for the treatment of coupled systems of PDEs, the concept of
primary matrices makes sense also in case of scalar PDEs. Classical AMG as described in the
previous section corresponds to selecting P=A, that is, P represents the connectivity structure
between variables as provided directly by the given matrix. However, in non-standard scalar
applications, one may also define P differently, for instance, based on geometric distances of
the variables (if known), or on alternate (for instance, less accurate but simpler) discretization
schemes. One may also define rows of P by suitably combining certain neighboring rows of
the matrix A (“local elimination”). This provides, for instance, a natural way to analyze the
influence of “critical” (e.g., large positive) off-diagonal matrix entries and treat them correctly
in terms of strength of connectivity.

The main purpose of a primary matrix is to allow for a reasonable coarsening process; in
many situations it may also be useful in constructing interpolation. That is, coefficients of
interpolation are defined based on the matrix entries of P rather than those of A. Obviously,
one can imagine many possible algorithmic combinations and which one is best, strongly
depends on certain characteristics of a given application.

In the following, we concentrate on the “direct” treatment of coupled systems, outlining two
different approaches, unknown-based and point-based.

4.2 Unknown-based approaches

Let us consider a coupled system for nf physical unknowns such as the pressure, the saturation
of a particular species, or a velocity component. We require that, besides the linear system (1)
itself, information is available allowing to distinguish between the different unknowns. Since
this is the only additional information required, the resulting AMG approaches are called
“unknown-based”. The idea is to perform coarsening and interpolation separately for each
unknown18; the basis AMG approach applied to each of the unknowns is analogous to the
scalar AMG approach. Hence, unknown-based AMG approaches are both simple and
powerful for many classes of applications, at least if the cross-couplings between unknowns
do not exceed a certain strength. Typical application classes are given by diffusion problems
or linear elasticity.

The general form of an unknown-based approach is most easily described if we assume all
variables to be ordered unknown-wise, so that the matrix A takes the form

[1,1] [1,]

[,1] [,]

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
%

…

nf

nf nf nf

A A
A

A A
 .

Them, a general primary matrix has the form

1

nf

P

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

% .

18 This does not mean that all unknowns are treated independently of each other. In fact, on each level of the
multigrid hierarchy the Galerkin operator re-introduces cross-couplings between different unknowns.

Solving Reservoir Simulation Equations Klaus Stüben

 35

The sparse block sub-matrices Pi are assumed to have the same dimension as A[i,i] and to be
suitable for scalar AMG. Hence, the connectivity structure reflected by the auxiliary matrix Pi
can be used to coarsen the i-th unknown. Clearly, for this to make sense, Pi should reflect the
physical connectivity between variables corresponding to the i-th unknown reasonably well.
For instance, for all diagonal blocks A[i,i] which are appropriate for scalar AMG (eg, which are
close to being weakly diagonally dominant M-matrices), a standard choice would be Pi=A[i,i].
However, analogous to the scalar case outlined above, various other choices are possible.

In the unknown-based approaches, interpolation is kept separate for the different unknowns,
that is, variables corresponding to the i-th unknown, say, are interpolated from variables of
the same type only. Concrete weights may, for example, be based on the entries of Pi, A[i,i] or
on geometric distances (if available).

Note that unknown-based approaches have no analog in GMG where coarsening is always on
the basis of grids and, hence, all physical functions live on the same hierarchy.

4.3 Point-based approaches

In contrast to unknown-based approaches, point-based ones additionally need to distinguish
between different points. More precisely, point-based approaches need to know which
variables are sitting at the same physical point of a given grid (they generally do not need to
know the location of grid points, though). For this to make sense, we require all unknowns to
be defined at the same grid (i.e., we do not consider “staggered” grids). Note, however, that
not all unknowns are required to be defined everywhere, allowing for adaptive strategies such
as those realized in the AIM approach in reservoir simulation (see Section 5.3).

For an outline of point-based approaches, we assume all variables to be numbered point-wise
so that the matrix A takes the form

(1,1) (1,)

(,1) (,)

np

np np np

A A
A

A A

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

"
%

…

where np denotes the number of grid points. In contrast to unknown-based approaches, point-
based ones are controlled by a single primary (sparse) npxnp matrix P which is defined on the
level of “points” rather than variables, and all unknowns are coarsened based on the same P.
That is, all unknowns are coarsened simultaneously and live on the same coarse grids.
Clearly, for this to make sense, the connectivity structure defined by P should represent the
connectivity of all unknowns in the coupled system reasonably well.

In the standard case that all unknowns are defined at all grid points, point-based coarsening
with the primary matrix P can actually be regarded as a special unknown-based coarsening
with Pi≡P. The fact that point-based approaches produce only a single hierarchy of grids
makes them particularly flexible in taking care of strong cross-couplings between unknowns.
For instance, smoothing can be performed in a block sense (e.g. block Gauss-Seidel or block
ILU). If required, interpolation can also be performed block-wise with blocks being induced
by the system’s point block coupling (see below). Hence, in applications with strong
couplings between different unknowns, point-based AMG may be advantageous compared to
unknown-based AMG.

Solving Reservoir Simulation Equations Klaus Stüben

 36

There are many possibilities of choosing a primary matrix P, some of them being sketched in
the following. Often, the connectivity inherent to one of the given PDE system’s unknowns, k
say, can be regarded as being representative also for the other unknowns of the coupled
system. In such cases, provided that the k-th unknown is defined at each point of the grid, a
possible choice is

 [,]k kP A= .

In reservoir modeling, for instance, we will use the pressure block for that purpose (see
Sections 5.2.2 and 5.3). In other applications, depending on certain characteristics of the class
of PDEs under consideration, potential choices are P=(pij) with

 (,)|| ||ij i jp A= − or 21/ (,)ijp dist i j= −

where i j≠ and, for instance,

≠
= −∑ii ijj i

p p .

While the first choice leads to what is sometimes called „block approach“, the second choice
(assuming point coordinates to be available) is closely related to geometric coarsening19. One
can also imagine applications for which P can be defined based on some natural physical
quantity for which there is no obvious equation contained in the given system.

Once a primary matrix has been selected for coarsening, there are still many ways to define
interpolation. In particular, interpolation may be different for each physical unknown (e.g.,
based on the original matrix blocks A[i,i]), it may be the same for each unknown (e.g., based on
the primary matrix P or on coordinates), or it may be defined based on the point-wise block
couplings.

4.4 Software package SAMG

Formally, by combining the various coarsening and interpolation possibilities outlined above,
one obtains a general framework to define concrete AMG approaches. It seems clear,
however, that there is no single approach which will work satisfactorily for all systems of
PDEs. Instead, different approaches will be required for different classes of applications.

During the last years, a software library, SAMG [30, 47], has been developed at Fraunhofer
Institute SCAI which realizes most of the ideas introduced above. Hence, SAMG is not just a
solver but rather a very flexible multilevel framework which can be adapted to specific
requirements of various problem classes. Primary matrices are either defined internally to
SAMG (i.e. are constructed automatically) or they are user-provided. The latter option makes
particular sense in applications where SAMG cannot construct a reasonable primary matrix
automatically, based solely on algebraic information contained in the given linear system.
However, in many such cases, a user may still be able to define a reasonable matrix himself,
based on the underlying physics.

19 Note that the use of distances requires the additional definition of a non-zero pattern in order for the primary
matrix to be sparse. Clearly, this pattern should be related to the connectivity patterns of the matrix itself.

Solving Reservoir Simulation Equations Klaus Stüben

 37

Over the years, SAMG has been applied to various types of coupled systems of PDEs from
such diverse areas as fluid flow, structural mechanics, oil reservoir and ground water
simulation, casting and molding, process and device simulation in solid state physics, electro-
chemistry, and circuit simulation. In particular, in oil reservoir simulation, SAMG has become
a well-established tool for various software providers as well as major oil companies.
Regarding some more discussion in various areas, see, for example, [17, 18, 19, 22, 45, 46]. For
further information, see also http://www.scai.fraunhofer.de/samg.

5 AMG in reservoir simulation

Modern reservoir simulation faces increasingly complex physical models and highly resolved,
unstructured grids. Both trends result in ever growing and more difficult to solve matrix
equations. Especially compositional models for heterogeneous or fractured reservoirs provide
a considerable challenge to solver efficiency, in particular, if fully implicit methods (FIM) are
used.

The core of the computation at each time step is governed by the successive solution of
coupled linear (Jacobian) systems representing the behavior of different physical entities
sharing the same discretization element. Generally, the underlying “FIM matrices” are highly
nonsymmetric and indefinite. Individual matrix coefficients are typically strongly anisotropic
and/or discontinuous. This is due to geological settings as well as due to numerical effects,
among them different vertical and horizontal permeabilities, high porosity contrasts between
adjacent grid blocks or other properties with drastic variations (typically by several orders of
magnitude). In addition, unstructured gridding, local grid refinement, fault modeling, large
variations in grid spacing and adverse grid block aspect ratios (ratio of lateral to vertical block
dimensions) cause additional distortion to the FIM matrices making them even more difficult
to treat numerically. Finally, well equations which are fully coupled to the system of
equations relate grid blocks that otherwise are not geometrically connected. The condition
number and degree of coupling of these systems may be subject to dramatic changes due to
abrupt flow variations induced by the high-heterogeneity and complex well operations during
the simulation process.

Advanced AMG solvers offer an efficient technology for solving linear systems that are
“sufficiently elliptic”. Since, when applicable, AMG solvers are both scalable and easy to use,
interest in incorporating AMG into industrial oil reservoir simulation codes has been steadily
increasing during the last years. In this section, we summarize overall strategies to
numerically tackle reservoir simulation and demonstrate the use of AMG in all cases:

1. Classical IMPES and modern streamline approaches implicitly solve only for the
pressure. Hence, in principle, scalar AMG can immediately be applied.

2. In contrast to this, fully implicit modeling (FIM) requires solving coupled systems.
a. The most popular way to do this is via a two-stage preconditioning approach

which numerically decouples the treatment of pressure and non-pressure
variables. As a result, the computationally most expensive part consists of
solving pressure systems for which, again, scalar AMG seems most natural.

b. As an important alternative, we introduce a coupled AMG approach to
“directly” solve FIM systems. We demonstrate that AMG can be applied to
efficiently deal with such systems although they are not of elliptic type. In fact,
FIM systems are essentially of mixed elliptic-hyperbolic character.

Solving Reservoir Simulation Equations Klaus Stüben

 38

3. To reduce computational cost, adaptive implicit modeling (AIM) has been developed,
offering a good compromise between computational speed, memory requirements and
accuracy. However, as for FIM, the mixed elliptic-hyperbolic character of AIM
matrices aggravates the development of efficient linear solvers. We demonstrate how
coupled AMG has efficiently been used in real-life simulations.

All results shown in this section have been obtained with the SAMG package [18, 43, 47] as
part of cooperations with StreamSim Technologies, SMT Alps and the University of Texas at
Austin.

5.1 IMPES and streamline approach

Streamline-based flow simulation is an effective and complementary technology to more
traditional flow modeling approaches such as finite differences (see Thiele [48] and the
references given therein). This is because streamline-based flow simulation is particularly
effective in solving large, geologically complex and heterogeneous systems, where fluid flow
is dictated by well positions and rates, rock properties (permeability, porosity, and fault
distributions), fluid mobility (phase relative permeabilities and viscosities), gravity, and
voidage replacement ratios close to one. These are the class of problems more traditional
modeling techniques have difficulties with. More diffusive mechanisms, such as capillary
pressure effects and expansion-dominated flow, on the other hand, are not modeled efficiently
and accurately by streamlines.

Streamline-based simulation is an IMPES-type formulation and therefore involves the implicit
solution for a single variable only, namely, pressure on the global 3D scale (see Figure 30).
Hence, scalar AMG is well suited for solving the pressure equation. The high efficiency of
AMG in solving the pressure equations makes streamline-based simulations computationally
highly efficient, one important reason making this approach so attractive (Figure 31).

Figure 30: (left) Schematic view of the streamline approach. (right) SPE 10 upscaling
benchmark model, 1.12 million cells.

Some characteristics of the pressure equations may cause difficulties for a linear solver,
namely, the variation of permeabilities (leading to strongly discontinuous and anisotropic
coefficients) as well as the presence of well equations. While strongly varying permeabilities
may substantially slow down the convergence speed of any standard linear solver, they do not

Solving Reservoir Simulation Equations Klaus Stüben

 39

provide any particular difficulty for AMG. It is the dynamic and automatic features of AMG
which allow a flexible adaptation to any variation of coefficients.

On the other hand, the non-PDE character of well equations disturbs the locality and
ellipticity of a system to some extent. Without providing any extra information to AMG, such
equations are treated just like any other equation of the discretized PDE, causing the quality
of the well equation’s coarse-level correction to be limited. Whether this will slow down the
overall convergence, and to which extent, depends on the number and type of wells. While
often no special treatment of the well equations is needed, in more complex situations a
reasonable “well decoupling” may pay. The idea is to apply AMG only to the reservoir part
and couple the well equations differently. To explain three straightforward approaches, we re-
write the linear system (1) as

(20)
rr rw r r

wr ww w w

A A u f
A A u f

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

where the indices r and w mark the reservoir and well quantities, respectively.

Coupling via the finest-level smoother. This means that all “critical” variables (e.g. those
corresponding to wells) are excluded from any coarsening process. That is, they are simply
forced to stay on the finest level, coupled to the remaining variables only via the finest-level
smoothing process. This is the simplest procedure which should work if the number of critical
variables is small and if the coupling between critical and non-critical variables is not too
strong. Clearly, the finest level smoother should be sufficiently strong.

Schwarz alternating method (with overlap). This essentially means that, starting with some
first approximation, (0)

wu , we solve the two sub-systems

 (1) ()i i

rr r r rw wA u f A u+ = − and (1) (1)i i
ww w w wr rA u f A u+ += −

one after the other for i=0,1,2,...... While the reservoir part is approximately solved by
applying one or more AMG cycles, the well part is solved by a block solver (eg, sparse Gauss
elimination). Since the number of wells is limited, the block solve should be inexpensive
compared to the solution of the reservoir part. This type of iterative process is called
“Schwarz alternating method”. To speed up the “outer convergence”, the block solve should
include some “overlap” variables.

Approximative Schur complement approach. The Schur complement approach essentially
corresponds to a block elimination of (20):

0 rrr r

wwr ww w

uA f
uA A f

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 with

1

1
rr rr rw ww wr

rr rr rw ww w

A A A A A
f f A A f

−

−

⎧ = −
⎨

= −⎩
.

Assuming the number of wells to be not too large, the most costly part in solving this block
tridiagonal system is the solution of

(21) rr r rA u f= .

Solving Reservoir Simulation Equations Klaus Stüben

 40

In principle, rrA can explicitly be evaluated. Unfortunately, due to the algebraic manipulation
of the block elimination process (disturbing the ellipticity), rrA has to be expected to be “less
favorable“ for an AMG solution than rrA . Hence, we do not solve (21) directly, but rather by
an iterative “pre-conditioning” process of the form

(22)

(1) () 1 ()i i i
r ru u M r+ −= + with

() ()i i
r rr rr f A u= − .

The „pre-conditioner“, M, is some reasonable approximation to rrA which is more suitable for
an AMG solution20. In many cases, rrM A= (possibly scaled so that the row sums of M equal
those of rrA) is a reasonable choice. In practice, 1 ()iM r− in (22) is not evaluated explicitly but
rather stands for the application of one or more AMG cycles to the system with matrix M and
right hand side ()ir .

Figure 31: Comparison of SAMG’s convergence history with that of a standard one-
level method in solving the pressure equation in the streamline approach. The figures
correspond to a symmetric (left) and non-symmetric (right) test case.

5.2 Fully implicit modeling (FIM)

To demonstrate the principle of how to apply AMG, let us consider the black-oil model,

20 Note that, if M equals rrA , one iteration of (22) yields the exact solution of rr r rA u f= .

Solving Reservoir Simulation Equations Klaus Stüben

 41

supplemented by well equations and boundary conditions. The letters S, p, q and k stand for
saturation, pressure, velocity and permeabilities, respectively. The index a stands for the
phases oil (o), water (w) and gas (g).

The discretization by finite differences results in coupled linear systems of the form

(23)
ss sp s s

ps pp p p

A A u f
A A u f

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

where the indices p and s denote the pressure and saturation quantities, respectively. For the
question of how to efficiently apply AMG to solve coupled systems (23), it is important to
note that the block App has the character of a purely elliptic problem, whereas the block Ass
behaves essentially hyperbolic. This motivates two different (but in a sense related)
possibilities of using AMG, namely, the “two-stage preconditioning” and the “direct”
approach. We will outline both approaches in the following. For a more detailed discussion as
well as an extensive list of references, we refer to [19, 46].

5.2.1 Two-stage preconditioning

Two-stage preconditioners are based on the idea that coupled system solutions (23) are
mainly determined by the solution of their elliptic component (i.e., pressure). The procedure
consists of “extracting” and accurately solving pressure subsystems. Residuals associated
with this intermediate solution are corrected with an additional step that recovers part of the
global information contained in the original system. Two-stage preconditioners have been
investigated by, for instance, Behie, Vinsome, Forsyth, Wallis, Klie and Dawson (see [46] for
a list of references).

Generally, to help convergence when iterating between the two stages, the procedure is not
applied directly to (23). Instead, some “decoupling” is performed aiming at weakening the
existing coupling between pressure and non-pressure blocks. That is, based on some
reasonable decoupling operators, D1 and D2, the original system (23) is transformed into

(24)
1 1

1 2 with ss sp

ps pp

A A
Au f A D AD

A A
− −

⎛ ⎞
= = = ⎜ ⎟⎜ ⎟

⎝ ⎠

� �
�� �� � � .

Clearly, a “full” decoupling, forcing spA� or psA� (or even both) to vanish, is prohibitive. For
reasons of numerical efficiency, the decoupling process should be computationally
inexpensive but still provide a good preconditioning effect on the original system. One of the
most popular decoupling strategies is known as quasi-IMPES which sets D2=I and selects D1
so that the pressure at a grid point is decoupled from the saturations at the same point.
Another approach also sets D2=I but selects D1 so that pressure and saturation values sitting at
the same grid point are completely decoupled from each other (“point-block diagonal
scaling”). For more details on these decoupling operators, see, for instance, [46].

A two-stage preconditioner for solving (24) consists of iteratively applying the following two
steps, describing how a new approximation (1)u� is computed from an old one, (0)u� :

Solving Reservoir Simulation Equations Klaus Stüben

 42

(25) (1/ 2) (0) (0) (0) 1 (0)
1, u u M rδ δ −= + =� � and (1) (1/ 2) (1/ 2) (1/ 2) 1 (1/ 2)

2, u u M rδ δ −= + =� �

with the residuals () ()i ir f Au= −� � � . That is, the approach is analogous to (22), except that we
now select two different preconditioners, M1 and M2. Both of them should approximate A� in
some sense but we will choose them so that, roughly, the first pre-conditioning step improves
the current pressure approximation whereas the second step updates the saturation. More
specifically, one iteration step, computing (1)u� from (0)u� , runs as follows21:

Various aspects need to be balanced to ensure robustness and highest efficiency. Although the
two-stage preconditioning approach is widely considered as the currently most successful
approach for FIM simulations, there are still several open questions some of which are
mentioned in the following. In general, the performance of the above two-stage process is
influenced by three factors:

The efficiency of the 1st preconditioning step. The 1st preconditioning step requires the
(approximate) solution of the (transformed) pressure equation,

(0) (0)
pp p pA rδ =� .

Since this is related to the elliptic part of the original system (23), scalar AMG seems most
promising as a solver. However, two aspects have to be taken into account.

• The main purpose of the decoupling process mentioned further above is to help the
“outer” convergence. Unfortunately, the decoupling has an unwanted side effect: it
influences the elliptic properties of the pressure block to some extent. As a
consequence, the transformed matrix, ppA� , may be “less favorable” than ppA for an
efficient AMG-treatment. Several attempts have been made to minimize this unwanted
side effect by choosing the decoupling carefully. However, a robust, final solution to
this problem seems not yet known.

21 Note that the description (25) is somewhat sloppy: M1 approximates only ppA� and, hence, is not invertible in
the sense of (25). However, it is obvious how to interpret this.

Solving Reservoir Simulation Equations Klaus Stüben

 43

• Second, well equations may require careful attention. To obtain highest efficiency,
well equations should be appropriately integrated into the overall solver process, for
instance, by some kind of well-decoupling strategy as described in Section 5.1.

The efficiency of the 2nd preconditioning step. The purpose of the 2nd preconditioning step
is to update the non-pressure variables to a sufficient extent. Since the non-pressure
subsystem behaves essentially hyperbolic (the variables have a directional dependence), this
is often much simpler to accomplish than solving the pressure system. In practice, M2 is
typically selected as an ILU-type factorization of A� . In simple applications, it may be
sufficient to restrict the factorization just to the non-pressure variables or to use an even
simpler method such as a relaxation method. In general, the optimal choice of the
preconditioner M2 is an open question.

The interplay between the two preconditioning steps. The number of AMG cycles and the
number of ILU steps performed in the first and second preconditioning step, respectively, is
crucial for the overall efficiency. However, it is not obvious how to optimally control these
“inner” iterations, in particular, when to terminate them.

5.2.2 Direct approach

To treat FIM systems (23) “directly” by coupled AMG, we may consider the general
approaches introduced in Section 4. However, in composing a concrete approach, one has to
take into account that the FIM matrices are not purely elliptic but rather of mixed elliptic-
hyperbolic type.

It is important to recall that it is mainly the elliptic part which needs accelerating by
hierarchical processing. Hence, a possible point-based AMG approach should be “driven” by
the elliptic pressure relations (i.e. based on a primary matrix P=App, see Section 4.3),
combined with a strong smoother which adds some properties as an approximate solver for
the hyperbolic part. Often smoothers of type block Gauss-Seidel, ILU(0) or block ILU(0)
work sufficiently well. However, more robust and flexible in this context is ILUT [38], an
ILU-version which is controlled by two parameters, generally known as lfil and droptol:

• lfil - defines the maximum level of absolute fill-in;
• droptol - defines a threshold for dropping small couplings during elimination.

These parameters can be used to flexibly adjust the ILUT-process to the requirements.
However, as with any ILU-type approach, ILUT’s efficiency depends to some extent on the
ordering of variables of the matrix equation.

Numerical experiments have shown that, based on these ingredients, robust coupled AMG
solvers can be obtained if, in addition, “critical” equations are treated with care. In particular,
matrix rows strongly violating diagonal dominance (resulting, for instance, from well
equations), may cause convergence problems. As before, decoupling processes similar to
those described in Section 5.1 might be installed to exclude critical equations from
coarsening.

Remark: Similar to the two-stage preconditioning approach described in Section 5.2.1, the
direct AMG approach is motivated by the fact that solutions of (23) are mainly determined by
their elliptic component. Moreover, the two-stage and the direct approach are related if one

Solving Reservoir Simulation Equations Klaus Stüben

 44

regards the second stage of the two-stage preconditioning approach as a smoothing process
(restricted to the finest level only): By forcing all non-pressure variables to stay on the finest
level, the direct AMG approach becomes very similar to a two-stage preconditioning
approach, except that no algebraic manipulation is performed on the pressure block App.

5.2.3 Some comparisons

In this section we compare both AMG approaches to solve FIM problems, the two-stage
preconditioning (“AMG-2stage”) and the direct approach (“AMG-direct”). All results have
been obtained with the IPARS simulator [55]. For the direct approach, we use the simplest
possible smoother, namely, plain Gauss-Seidel relaxation. The two-stage preconditioning uses
the quasi-IMPES decoupling and line SOR (LSOR) as 2nd preconditioning step.

We consider five test cases with size and type as follows:

1. 60x220 (1st slice of the non-fluvial reservoir, Tarbert formation);
2. 60x220 (1st slice of the fluvial reservoir, Upper Ness formation);
3. 17x12x44 (upscaled version of the original data, including Tarbert and Upper Ness

formations);
4. 25x15x55 (Upper Ness formation, upscaled version);
5. 50x30x110 (Upper Ness formation, upscaled version).

For all cases we define one water injection well at the center of the reservoir, and four
production wells at the four corners. All are bottomhole pressure specified. For each of the
considered problem sizes, we performed tests for an oil-water and a black-oil system. For the
black-oil system, the PVT and saturation-dependent curves data were adapted from the SPE
9th Comparative Project.

Figure 32: Oil-water simulations: (left) Comparing AMG solver strategies. (right)
Comparing AMG with multilevel ILU [3] for solving the pressure equation in a two-
stage preconditioning approach.

Figure 32 summarizes timings for oil-water simulations. Simulations were carried out for
2000 days except for Case 5 which was simulated for 500 days only. We first observe that, for
all test cases and solver approaches considered here, AMG is efficient as a basic linear solver.
According to the left figure, AMG-2stage seems to be slightly more efficient than AMG-
direct, at least for the cases considered here. The right figure clearly shows the substantial
gain in performance in switching from multilevel ILU to AMG. Figure 33 shows similar

Solving Reservoir Simulation Equations Klaus Stüben

 45

timings for the black-oil case. Again, there appears to be no striking difference between
AMG-direct and AMG-2stage, with a slight preference for the latter.

These results seem to indicate that there is no real advantage of AMG-direct as compared to
AMG-2stage. However, one should observe that many factors may affect the algebraic
properties of the FIM matrices and, through this, the solver comparison. For instance, a
serious violation of diagonal dominance - for instance, caused by well equations - may have a
strong impact on solver performance. More testing is certainly needed to draw some well-
founded and final conclusion.

Figure 33: Black-oil simulations comparing AMG solver strategies.

For the specific cases tested here it is actually not surprising that AMG-direct is slightly more
expensive than AMG-2stage. This is because AMG-2stage works efficiently with simplest
algorithmic components such as plain Gauss-Seidel relaxation for smoothing and LSOR as
2nd preconditioner, M2. In such cases it is plausible that AMG-direct is not more efficient
than AMG-2stage. However, we want to recall that the performance of AMG-2stage is
strongly tied to the decoupling process, the pressure solution and the 2nd preconditioner, M2.
In general, stronger and more costly preconditioners M2 as well as more robust smoothers will
be required. Most importantly, however, algebraic manipulations such as those done in the
decoupling process, may negatively influence the ellipticity of the pressure block to an extent
which causes AMG to deteriorate significantly. For instance, depending on the situation, row
sums may get increasingly negative and, eventually, ppA� may become indefinite. The risk of a
substantial performance drop can certainly be reduced by a proper choice of the decoupling.
However, a rigorous analysis, taking all aspects into account, seems fairly difficult.22

In contrast to AMG-2stage, AMG-direct attempts to get along without any algebraic
manipulations except possibly for well-decoupling etc. This makes the direct approach
particularly interesting and promising regarding its robustness. In fact, AMG-direct is applied
to the unmodified system (23), with the coarsening process being driven by the fully elliptic
pressure block, App. Convergence of the direct AMG approach is expected to be less
dependent on the strength of cross-couplings between pressure and saturation. This is due to
its hierarchical nature, combined with its potential in employing strong block-wise smoothing
and interpolation.

22 We recall that re-scalings may substantially influence AMG’s performance (see (18) in Section 3.3.1).

Solving Reservoir Simulation Equations Klaus Stüben

 46

5.3 Adaptive implicit modeling (AIM)

In contrast to the fully implicit modeling approach as discussed in the previous section,
adaptive implicit modeling (AIM, [49]) permits both explicit and implicit discretizations
simultaneously within a model. The goal is to restrict the expensive fully implicit formulation
to that part of a model that really requires implicitness (e.g. at perforated grid blocks or in
areas with large variable changes), leaving the other parts in the much less expensive IMPES
mode. At any given time step, pressure will be calculated implicitly everywhere in the
reservoir model, but other variables, such as phase saturations and concentrations will be
implicit in selected grid blocks only and explicit elsewhere.

As a result, the user gains a maximum in flexibility, but the linear solver (which is naturally
applied only to the implicitly coupled variables) encounters matrices with highly irregular and
dynamically changing structures. This is because the division into implicit and IMPES blocks
typically varies from one simulation step to the next, based on some automatic control
mechanism.

Figure 34: Type of grid used by the SURE simulator (Voronoi grid; courtesy SMT Alps)

5.3.1 A self-adapting direct AMG strategy

Regarding the employment of AMG, FIM carries over to AIM. In the following, we consider
the direct application of AMG, using basically the same algorithmic components as before
(cf. Section 5.2.2): Point-based AMG with pressure-driven coarsening23 combined with robust
ILUT-type smoothers, accelerated with some Krylov method (usually BiCGstab). As before,
depending on the concrete situation, a special treatment of “critical” equations may be
necessary (cf. well-decoupling in Section 5.1).

However, compared to the FIM case, there is a major difference in that the size and the
character of the AIM matrices may change drastically from one simulation step to the next. In
particular, their numerical character may change from nearly elliptic to increasingly
hyperbolic. As a consequence, there is no fixed solver which solves all AIM-systems within a
complete simulation run robustly and efficiently. Unfortunately, a theoretical forecast of what

23 Note that pressure-driven coarsening is possible since the pressure is implicitly computed everywhere.

Solving Reservoir Simulation Equations Klaus Stüben

 47

is “the best” solver for a given AIM-system seems virtually impossible without further
information.

Hence, from a practical point of view, a strategy is required which automatically adapts the
linear solver to the size and physical complexity of each AIM-system to be solved during a
simulation run. Based on the above AMG approach (including its one-level variant), we have
developed an automatic, self-adapting parameter and solver switching strategy. Separately for
specific problem sizes, this strategy continuously keeps track of the histories of convergence
factors, timings, AMG memory complexities and overall solver memory requirements. Based
on this information, further information contained in the matrices and some “online testing”,
the final solver is dynamically selected.

The overall strategy combines three types of adaptivity:

1. Switching between one-level and multilevel solver variants.
2. Switching of the ILUT parameters lfil and droptol (see Section 5.2.2). These

parameters are dynamically changed according to the convergence, timings and
memory requirement history. This refers to both ILUT as a one-level method and as a
smoother in a multi-level cycle. Various heuristics check for “optimality”.

3. Automatic adaptation of AMG’s coarsening and interpolation to the coupling structure
reflected by the AIM matrix entries. Special rows (typically the ones strongly
violating diagonal dominance) are excluded from coarsening and coupled differently.

5.3.2 Numerical experience

The above strategy has been realized based on the SAMG library, called “α-SAMG” in the
following. We have tested the feasibility and effectivity of α-SAMG in close cooperation with
SMT Alps on the basis of their SURE simulator.

For a wide variety of real-life test cases from different application types – gas-water, black-
oil, and compositional models – as well as different levels of physical complexity, α-SAMG
outperforms the original solver24 as well as other one-level and multi-level variants in terms
of overall computing time as well as memory requirements. As expected, the performance
gain tends to be the better the larger and/or more physically involved the considered model is.
For a reasonably complex and large black-oil model, for instance, a speedup of more than 15
could be achieved keeping memory requirements reasonably low at the same time (see Case
C2, below). Clearly, concrete performance details depend on the situation, in particular, on
the dominance of the elliptic components. Roughly speaking, the more dominant the elliptic
components are in the overall numerical solution, the higher the overall gain to be expected.

For a complete discussion of a list of benchmark cases and further details on the numerical
procedures considered, we refer to [19]. In the following, we just summarize on two black-oil
models, a relatively small and a larger one:

• Case C1 represents an undersaturated black-oil simulation model with faults, local
grid refinement and fractures. There are more than 50 wells (vertical and horizontal).
The model was chosen to investigate solver performance on dual porosity model,

24 The original linear SURE solver, ORILU, efficiently combines ILU-type approaches with ORTHOMIN.

Solving Reservoir Simulation Equations Klaus Stüben

 48

because the natural fractures in this reservoir are modelled with a dual porosity
approach applied to selected parts of the model.

• Case C2 is a conventional 3-phase black-oil model, initially undersaturated, but due to
production, the pressure drops below bubble point. The model contains more than one
million active grid blocks and includes local grid refinement and faults.

Some further information on these models is found in Table 2. Besides the grid sizes and the
number of functions involved, the table shows the total number of AIM matrix problems to be
solved during a full simulation run as well as the average and maximum number of matrix
rows. Note that, at any given simulation step, the number of rows equals the number of
variables which are coupled implicitly. The ratio between the number of rows and the number
of points is called the degree of implicitness (DOI). Finally, the achieved speedups25 are
shown.

 Case C1 Case C2
number of grid points 70,742 1,103,334
number of functions 5 5
number of matrix problems 935 703
average number of rows 84,608 1,147,276
maximum number of rows 110,201 1,332,839
average DOI 1.20 1.04
maximum DOI 1.56 1.21
speedup compared to ORILU 1.46 15.51

Table 2: Black-oil benchmark cases

The below figures show detailed results on the switching as performed by α-SAMG during
full simulation runs corresponding to the above two cases.

The model C1 is fairly small so that there is a relatively high probability that, due to their
lower overhead, one-level solvers may be more efficient than multi-level solvers. In fact,
Figure 35 shows that α-SAMG switches between one-level and multi-level solvers during the
course of the simulation. The concrete switching behavior as well as the number of iterations
required for each matrix problem can be seen from the figure. The number of iterations ranges
between just a couple and around 50, the average being 11.1 which is very reasonable.
Obviously, the higher iteration numbers are attained by the one-level solvers whereas the
multi-level solvers require much less iteration. To avoid misunderstandings, we should recall
that the primary guiding principle of α-SAMG is to optimize efficiency, that is, to minimize
overall computing time. Clearly, in comparing different types of linear solvers, the mere
number of iterations provides hardly any indication for efficiency.

While Figure 35 details the solver switching for Case C1, Figure 36 details the corresponding
ILUT parameter switching26. One sees that, most of the time, the fill-in parameter lfil is 4
except for some cases where it increases to 6 or even 7. At the same time, droptol is decreased
by one order to magnitude. This shows that, during the course of the simulation, some more
problematic matrices occur. Overall, however, parameters do not change dramatically during
the simulation.

25 Speedup values refer to the total simulation times; the speedup of the linear solver part alone is higher.
26 The minimum fill-in value lfil is 4, and the maximum threshold value droptol is 0.01.

Solving Reservoir Simulation Equations Klaus Stüben

 49

By replacing the original ORILU solver24 by α-SAMG, a speedup25 of 1.5 is observed for
Case 1. Recalling that this particular problem is relatively small (around 70,000 grid points
only) and that the overall switching process will always cause some overhead (in particular,
due to its online testing), this is very acceptable.

Figure 35: Solver switching and number of iterations for Case C1. Both, one-level
(blue dots) and multi-level (red dots) methods are chosen by α-SAMG.

Figure 36: ILUT parameter switching for Case C1

For larger problems, the speedup may be much higher. This is demonstrated by Case 2 for
which a speedup of approximately 15 is observed. For this large case, one-level methods are
not competitive and α-SAMG decides to only use multi-level solvers. Figure 37 shows the
corresponding number of iterations per simulation step. Although the average number of
iterations needed is very reasonable, namely 16, there are some peaks where the number of
iterations gets close to 100 or even higher. Note that these high iteration numbers are due to
the fact that sometimes problems have to be re-run (e.g., with different ILUT parameters), and
iterations are summed up over all attempts then. Indeed, as can be seen from Figure 38, there
is a strong switching of ILUT parameters. The figure shows that the fill-in parameter lfil
changes from around 4 to around 16, with 7.2 being the average. At the same time, also the
droptol parameters changes strongly, namely, between 10-2 and 10-7.

Cases C1 and C2 give some indication about how the general switching process works and
what can be gained. Many more results and discussions can be found in [19]. The results
clearly indicate that a reasonable and automatic switching mechanism is necessary since the
type of problems to be solved during a full simulation run changes drastically and there is no
hope to find a single parameter setting which is not only robust but also efficient.

Solving Reservoir Simulation Equations Klaus Stüben

 50

Figure 37: Number of SAMG iterations for Case C2. Only real multi-level methods
are chosen by α-SAMG, one-level variants are not competitive.

Figure 38: ILUT parameter switching for Case C2

In spite of the fact that a switching strategy as realized here causes quite some overhead, we
have seen that the speedup achieved may be substantial. Of course, in each individual
simulation case, the concrete numerical solution process could be optimized further.
However, this is not the intention of α-SAMG. The intention is actually to demonstrate that,
based on the set of solvers and parameters selected here, an automatic process can be
designed which is efficient as a “pitch-black box” without the need of manually changing any
further parameter.

6 References

1. Alcouffe, R.E.; Brandt, A.; Dendy, J.E.; Painter, J.W.: The multi-grid method for the diffusion

equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput. 2, pp 430-454,
1981.

2. Bank, R.E.; Smith, R.K.: The incomplete factorization multigraph algorithm, SIAM J. Sci.
Comput. 20, pp 1349-1364, 1999.

3. Bank, R.; Wagner, Ch.: Multilevel ILU decomposition, Numer. Math. 82, pp. 543-576, 1999.

4. Barrett, R. et.al.: Templates for the solution of linear systems: building blocks for iterative
methods, SIAM, Philadelphia, 1994.

Solving Reservoir Simulation Equations Klaus Stüben

 51

5. Brand, C. W.; Ganzer, L.: Iterative Solvers for Dynamically Implicit Reservoir Flow Equations on
Irregular Grids, paper presented at the 5th European Conference on the Mathematics of Oil
Recovery (ECMOR), Leoben, Austria. Sep. 3-6, 1996.

6. Brandt, A.: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value
problems, Lecture Notes in Physics 18, Springer 1973.

7. Brandt, A.: Multi-level adaptive solutions to boundary value problems, Math. Comp. 31, 1977.

8. Brandt, A.: Multigrid techniques: 1984 Guide with applications to fluid dynamics, GMD-Studie
No. 85, 1984.

9. Brandt, A.; McCormick, S.F.; Ruge, J.: Algebraic multigrid (AMG) for automatic multigrid
solution with application to geodetic computations, Institute for Computational Studies, POB
1852, Fort Collins, Colorado, 1982.

10. Brandt, A.; McCormick, S.F.; Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations, in
„Sparsity and its Applications“, D.J. Evans (ed.), Cambridge University Press, pp 257-284,
Cambridge, 1984.

11. Brandt, A.: Algebraic multigrid theory: the symmetric case, Appl. Math. Comp. 19, pp 23-56,
1986.

12. Brandt, A., The scope of multiresolution iterative computations, SIAM News 23, pp 8-9, 1990.

13. Brandt, A: General highly accurate algebraic coarsening schemes, Proceedings of the Ninth
Copper Mountain Conference on Multigrid Methods, Copper Mountain, April 11-16, 1999.

14. Brezina, M.; Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.; Manteuffel, T.A.;
McCormick, S.F.; Ruge, J.W.: Algebraic Multigrid Based on Element Interpolation (AMGe),
SIAM J. Sc. Comp. 22, 2000.

15. Briggs, W.: A multigrid tutorial, SIAM, Philadelphia (1987). New edition: 2001.

16. Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.; Manteuffel, T.A.; McCormick, S.F.;
Miranda, G.N.; Ruge, J.W.: Robustness and scalability of algebraic multigrid, SIAM Journal on
Scientific Computing, special issue on the “Fifth Copper Mountain Conference on Iterative
Methods“, 1998.

17. Clees, T.; Stüben, K.: Algebraic multigrid for industrial semiconductor device simulation,
Proceedings of the First International Conference on Challenges in Scientific Computing, Berlin,
Germany, Oct 2-5, 2002. Lecture Notes in Computational Science and Engineering 35, Springer,
Heidelberg, Berlin, 2003.

18. Clees, T., AMG Strategies for PDE Systems with Applications in Industrial Semiconductor
Simulation. Dissertation, University of Cologne, Shaker Verlag, Aachen, Germany, October 2005.

19. Clees, T. and Ganzer, L.: An Efficient Algebraic Multi-Grid Solver Strategy for Adaptive Implicit
Methods in Oil Reservoir Simulation, paper SPE 105789 presented at the 2007 SPE Reservoir
Simulation Symposium, Houston, TX, Feb. 26-28, 2007.

20. Dendy, J.E. (Jr.): Black box multigrid, J. Comp. Physics 48, pp. 366-386,1982.

21. Falgout, R.D.: An Introduction to Algebraic Multigrid, Computing in Science and Engineering,
Special issue on Multigrid Computing, 8 (2006), pp. 24-33, UCRL-JRNL-220851.

22. Füllenbach, T.; Stüben, K.; Mijalkovic, S.: Application of an algebraic multigrid solver to process
simulation problems, Proceedings of the International Conference on Simulation of
Semiconductor Processes and Devices, Seattle (WA), USA, Sep 6-8, 2000. IEEE, Piscataway
(NJ), USA, pp. 225-228, 2000.

23. Füllenbach, T.; Stüben, K.: Algebraic multigrid for selected PDE systems, Proceedings of the
Fourth European Conference on Elliptic and Parabolic Problems, Rolduc (The Netherlands) and
Gaeta (Italy), 2001. World Scientific, New Jersey, London, pp. 399-410, 2002.

24. Hackbusch, W.: On the multigrid method applied to difference equations, Computing 20, 1978.

Solving Reservoir Simulation Equations Klaus Stüben

 52

25. Hackbusch, W.: Multigrid methods and applications, Springer Series in Comp. Math. 4, Springer,
1985.

26. Häfner, F.; Stüben, K.: Simulation and Parameter Identification of Oswald’s Saltpool Experiments
with the SAMG Multigrid-Solver in the Transport code MODCALIF, Proceedings of the
Conference “Finite-Element Models, MODFLOW, and More 2004: Solving Groundwater
Problems”, September 13-16, 2004, Karlovy Vary (Carlsbad), Czech Republic.

27. Klie, H., Wheeler, M.F., Clees, T., Stüben, K.: Deflation AMG Solvers for Highly Ill-Conditioned
Reservoir Simulation Problems, paper SPE 105820 presented at the 2007 SPE Reservoir
Simulation Symposium, Houston, TX, Feb. 28–30.

28. Krechel, A.; Stüben, K.: Operator dependent interpolation in algebraic multigrid, Lecture Notes
in Computational Science and Engineering 3, Springer Verlag, 1998.

29. Krechel, A.; Stüben, K.: Parallel algebraic multigrid based on subdomain blocking, Parallel
Computing 27, pp. 1009-1031, 2001.

30. Krechel, A., Stüben, K.: SAMGp User’s Manual, Fraunhofer SCAI, can be downloaded from
http://www.scai.fraunhofer.de/samg.

31. McCormick, S.; Ruge, J.: Algebraic multigrid methods applied to problems in computational
structural mechanics, in: „State-of-the-Art Surveys on Computational Mechanics“, pp 237-270,
ASME, New York, 1989.

32. McCormick, S. (ed.).: Multigrid methods, Frontiers in Applied Mathematics, Vol. 5, SIAM,
Philadelphia, 1987.

33. Naik, N.H.; van Rosendale, J.: The improved robustness of multigrid elliptic solvers based on
multiple semicoarsened grids, SIAM Num. Anal. 30, 215-229, 1993.

34. Notay, Y.: Algebraic multigrid and algebraic multilevel methods: a theoretical comparison,
Numer. Linear Algebra Appl. 12, pp.419-451, 2005.

35. Ruge, J.W.; Stüben, K.: Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG), Multigrid Methods for Integral and Differential Equations (Paddon,
D.J.; Holstein H.; eds.), The Institute of Mathematics and its Applications Conference Series, New
Series Number 3, pp. 169-212, Clarenden Press, Oxford, 1985.

36. Ruge, J.W.; Stüben, K.: Algebraic Multigrid (AMG), In „Multigrid Methods“ (McCormick, S.F.,
ed.), SIAM, Frontiers in Applied Mathematics, Vol 5, Philadelphia, 1986.

37. Saad, Y.; Schultz, M.H.: GMRes: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7, 856, 1986.

38. Saad, Y.: ILUT: A dual threshold incomplete ILU factorization, Numer. Lin. Alg. Appl. 1, 387,
1994.

39. Saad, Y.: ILUM: a multi-elimination ILU preconditioner for general sparse matrices, SIAM J.
Sci. Comput. 17, pp 830-847, 1996.

40. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM Society for Industrial &
Applied Mathematics, 2003, http://www-users.cs.umn.edu/~saad/books.html.

41. Stüben, K.; Trottenberg, U.: Multigrid methods: Fundamental algorithms, model problem analysis
and applications, Lecture Notes in Mathematics 960, Springer, 1982.

42. Stüben, K.: Algebraic multigrid (AMG): Experiences and comparisons, Appl. Math. Comp. 13,
pp. 419-452, 1983.

43. Stüben, K.: An Introduction to Algebraic Multigrid, Appendix in the book „Multigrid“ by U.
Trottenberg; C.W. Oosterlee; A. Schüller, Academic Press, pp. 413-532, 2001.

44. Stüben, K.: A Review of Algebraic Multigrid, Journal of Computational and Applied Mathematics
128, pp. 281-309, 2001.

Solving Reservoir Simulation Equations Klaus Stüben

 53

45. Stüben, K.; Delaney, P.; Chmakov, S.: Algebraic Multigrid (AMG) for Ground Water Flow and
Oil Reservoir Simulation, Proceedings of the Conference “MODFLOW and More 2003:
Understanding through Modeling”, International Ground Water Modeling Center (IGWMC),
Colorado School of Mines. Golden, Colorado, Sept 17-19, 2003.

46. Stüben, K., Clees, T., Klie, H., Lou, B., Wheeler, M.F.: Algebraic Multigrid Methods (AMG) for
the Efficient Solution of Fully Implicit Formulations in Reservoir Simulation, paper SPE 105832
presented at the 2007 SPE Reservoir Simulation Symposium, Houston, TX, Feb. 28–30, 2007.

47. Stüben, K. and Clees, T.: SAMG User’s Manual, Fraunhofer Institute SCAI, can be downloaded
from http://www.scai.fraunhofer.de/samg.

48. Thiele, M.: Streamline Simulation, 8th International Forum on Reservoir Simulation, Stresa / Lago
Maggiore, Italy, June 20-24, 2005 (see also 9th International Forum on Reservoir Simulation, Abu
Dhabi, United Arab Emirates, Dec 9-13, 2007).

49. Thomas, G.W.; Thurnau, D.H.: Reservoir Simulation Using an Adaptive Implicit Method, SPEJ
23, 759, 1983.

50. Trottenberg; U.; Oosterlee, C.W.; Schüller, A.: Multigrid, Academic Press, 2001 (with appendices
by Brandt, A., Oswald, P. and Stüben, K.).

51. Vanek, P.; Mandel, J.; Brezina, M.: Algebraic Multigrid by Smoothed Aggregation for Second and
Fourth Order Problems, Computing 56, 179, 1996.

52. Van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of non-symmetric linear systems, SIAM J. Sci. Stat. Comp. 13, 631, 1992.

53. Vinesome, P.K.W.: Orthomin, an Iterative Method for Solving Sparse Banded Sets of
Simultaneous Linear Equations, paper SPE 5729 presented at the 4th SPE Symposium on
Reservoir Simulation, Los Angeles, CA. Feb. 19-20, 1976.

54. Wesseling, P.: An introduction to multigrid methods, Pure and Applied Mathematics Series, John
Wiley and Sons, 1992.

55. Wheeler, J.: IPARS User’s Manual, Tech Report CSM, ICES, The University of Texas at Austin,
Austin, TX, 2000.

56. Wienands, R.; Joppich, W.: Practical Fourier Analysis for Multigrid Methods, CRC Press,
Bocaraton, Florida, USA, 2004.

57. Yavneh, I.: Why Multigrid Methods are so Efficient, Computing in Science and Engineering,
Special issue on Multigrid Computing, 8 (2006), pp. 12-22, UCRL-JRNL-220851.

