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Abstract 
We propose a new, efficient, adaptive algebraic multigrid 

(AMG) solver strategy for the discrete systems of partial 

differential equations arising from structured or unstructured 

grid models in reservoir simulation. The proposed strategy has 

been particularly tailored to linear systems of equations arising 

in adaptive implicit methods. The coarsening process of the 

AMG method designed automatically employs information on 

the physical structure of the models; as a smoother, an 

adaptive ILUT method is employed, taking care of an efficient 

solution of the hyperbolic parts whilst providing adequately 

smooth errors for the elliptic parts. To achieve a good 

compromise of high efficiency and robustness for a variety of 

problem classes – ranging from simple, small black-oil to 

challenging, large compositional models – an automatic, 

adaptive ILUT parameter and AMG solver switching strategy, 

α-SAMG, has been developed. Its efficiency is demonstrated 

for eight industrial benchmark cases by comparison against 

standard one-level and AMG solvers as well as the pure one-

level variant of the proposed new strategy. In addition, very 

promising results of first parallel runs are shown. 

 

Introduction 
Modern reservoir simulation faces increasingly complex 

physical models and highly resolved, unstructured grids. Both 

trends result in ever growing and more difficult to solve 

matrix equations. Especially compositional models for 

heterogeneous or fractured reservoirs provide a considerable 

challenge to solver efficiency, in particular, if fully implicit 

methods (FIM) are used. 

To avoid huge computational costs, adaptive implicit 

methods (AIM) have been developed, offering a good 

compromise between computational speed, memory 

requirements and accuracy. Still, comparably to FIM, the 

mixed hyperbolic-elliptic character of AIM matrices
a
 

aggravates the development of efficient linear solvers.  

On the one hand, iterative hierarchical solvers are 

necessary for the optimal solution of mixed hyperbolic-elliptic 

problems; only a hierarchy allows for a solver complexity 

which scales linearly with the problem size. On the other 

hand, algebraic multigrid (AMG) methods, providing optimal 

solvers for elliptic problems, loose efficiency if applied 

without modification to mixed hyperbolic-elliptic systems. 

In this paper, we develop AMG methods suitable for 

matrices arising from adaptive and also fully implicit methods. 

In particular, we will see that so-called point-based AMG 

methods employing a pressure-based coarsening with robust, 

ILUT-based smoothers and a special treatment of well 

equations provide efficient preconditioners. Moreover, we 

introduce an adaptive ILUT-parameter and solver switching 

strategy which can efficiently and robustly handle matrices 

arising from gas-water, black-oil and compositional fluid 

characterization in single- and dual-porosity simulation 

models. This solver strategy automatically adapts itself to the 

magnitude and physical complexity of each matrix to be 

solved during a simulation, making use of experiences gained 

with the series of matrices solved so far, so that matrices 

ranging from simple and/or small up to physically challenging 

and/or large are handled efficiently without the need to change 

solver settings manually.  

The outline of the paper is as follows. We start with an 

overview of adaptive implicit methods. In particular, 

properties of the arising matrices, as far as important for their 

efficient numerical solution, are described. We give an 

overview of the state-of-the-art solution methods for these 

matrices and point out advantages and disadvantages of these 

solvers. Afterwards, we explain a well-known class of multi-

level solvers, namely algebraic multigrid methods (AMG), 

which have the potential to solve matrices arising in AIM with 

(nearly) optimal numerical complexity. These methods have 

been developed for scalar elliptic partial differential equations. 

Since AIM matrices correspond to a PDE system of mixed 

elliptic-hyperbolic character, we summarize available AMG 

methods for PDE systems in general and methods promising 

for an application to AIM matrices. As the main contribution 

                                                           
a
 Matrices arising in adaptive implicit methods are called AIM matrices in the 

following. 
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of this paper, we describe in detail our new automatic, 

adaptive ILUT parameter and AMG solver switching strategy 

for AIM matrices, α-SAMG, and show its robustness and 

efficiency for selected industrial gas-water, black-oil and 

compositional benchmark cases of different physical 

complexity and model sizes ranging from ten thousand to 

more than one million active grid blocks. In the outlook, we 

will present very promising results of first parallel runs for 

representative matrices from the largest model case analyzed 

so far. 

 

Adaptive Implicit Methods (AIM) 
The fluid flow simulator used in this work is based on a 

general-purpose, compositional formulation. A mole balance 

equation in compositional formulation can be written for each 

component in the following form: 
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The mass transport in Eq.1 consists of two terms. The first 

term represents the convective flux, the second term represents 

the combined transport by dispersion and diffusion. In 

addition, the left hand side of the balance equation contains a 

source/sink contribution from the wells. The right hand side 

represents the rate of mass accumulation. Eq. 1 is valid for 

arbitrary grid block geometries. Darcy’s law is defined by 

ppp ku Φ∇−= λ
�

 ,   (2) 
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Combined with Darcy’s law, the mole balances yield highly 

non-linear partial differential equations of mixed hyperbolic-

elliptic type. 

Using a control volume finite difference (CVFD) 

discretization, the general mole balance equation in difference 

form for a component c in a gridblock i is given by 
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For simulating the reservoir, two alternatives have been 

pursued in the past: keep the grid structured and set up the 

equations in either IMPES or fully implicit mode. Using this 

approach, the resulting matrices have regular bands and 

structure principally allowing for highly cache-efficient solver 

algorithms.  

Alternatively, one may use unstructured Voronoi (or 

PEBI) grids with irregular number of connections and also 

permit both IMPES and fully implicit discretizations 

simultaneously within the model. This type is termed adaptive 

implicit formulation (AIM), because IMPES formulation is 

applied for some parts of the reservoir, but fully implicit 

formulation in other areas (e.g. at perforated grid blocks or in 

areas with large variable changes). As a result, the user gains a 

maximum in flexibility, but the linear solver encounters 

matrices with highly irregular structures. 

All benchmark cases illustrated in this work follow the 

latter description, use unstructured gridding and adaptive 

implicit formulation introduced by Thomas and Thurnau
1
. 

Rather than providing a fixed number of implicit unknowns in 

a grid block, this method operates with different numbers of 

unknowns (level of implicitness) in adjacent grid blocks. The 

goal is to restrict the expensive fully implicit formulation to 

that part of the model that requires it, leaving the other parts in 

the less expensive IMPES mode. In any given time step, 

pressure will be calculated implicitly everywhere in the 

reservoir model, but other variables, such as phase saturations 

and concentrations will be implicit in selected grid blocks only 

and explicit elsewhere. This division into implicit and IMPES 

blocks within the simulation model may vary from one 

solution step to the next based on a switching criterion and 

leads to a distortion of the otherwise banded structure of the 

coefficient matrix. 

 

Properties of AIM matrices. The AIM matrices to be solved 

in the Newton-Raphson process are highly nonsymmetric and 

contain varying degrees of freedom caused by the variation in 

the number of implicit variables treated in a grid block. 

Individual matrix coefficients can be highly anisotropic and/or 

discontinuous. This is due to geological settings as well as due 

to numerical effects, among them different vertical and 

horizontal permeabilities, high porosity contrasts between 

adjacent grid blocks or other properties with drastic variations 

(several orders of magnitude).  

In addition, unstructured gridding, local grid refinement, 

fault modeling, large variations in grid spacing and adverse 

grid block aspect ratios (ratio of lateral to vertical block 

dimensions) cause additional distortion to the AIM matrices. 

Finally, well equations which are fully coupled to the system 

of equations relate grid blocks that otherwise are not 

geometrically connected. 

As analyzed by Klie
2
 and by Stüben, Clees, Klie et al.

3,4
, 

the pressure block is basically elliptic. Saturations add 

hyperbolic behavior to the system. Depending on the concrete 

situation, the system’s matrices can be of elliptic up to nearly 

hyperbolic character. Physically more involved models 

additionally change the eigenvalues of the matrices and make 

them more difficult to solve. In particular, ellipticity and 

diagonal dominance can suffer considerably from well 

equations, but also from larger time steps, which are 

nevertheless desirable in order to reduce computational time – 

as long as the linear solver employed can efficiently cope with 

the resulting matrices. A good compromise has to be found 

here.  
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Possibilities for solving AIM matrices. Linear complexity of 

the linear solver employed is strongly desired in order to 

reduce computing times and to cope with increasingly large 

models. The application of direct solution methods (based on 

Gaussian elimination) to matrices arising in oil reservoir 

simulation is not feasible since these methods exhibit a 

complexity far away from being linear – often, they are of 

quadratic complexity O(N
2
) or even worse – and the number 

of grid nodes and thus variables easily exceeds several 

hundred thousands already. 

Usually, standard iterative one-level methods are therefore 

used. Most often, an incomplete LU factorization method, as 

for instance ILUT
5 

or ILU(k)
6
, together with a standard 

accelerator, as for instance BiCGstab
7
, GMRes

8 
or 

ORTHOMIN
9
, is employed.  

However, also iterative one-level methods do not exhibit a 

linear complexity of O(N). It is common opinion that, in order 

to approach optimality here, multi-level methods are 

necessary. Among the well-known and most promising 

approaches are algebraic multigrid methods.   

 

Algebraic Multigrid (AMG) 
In the following, we briefly characterize approaches for scalar 

PDEs, before we give an overview of approaches for PDE 

systems, followed by a discussion of AMG for AIM matrices. 

 

AMG for scalar partial differential equations (variable-

based AMG, VAMG). Two main classes of algebraic 

multigrid methods are known today, namely classical AMG 

and aggregation- or agglomeration-based AMG.  

 
Classical AMG

10,11,12
 is known to provide very efficient 

and robust solvers or preconditioners for large classes of 

matrix problems bAv = , an important one being the class of 

(sparse) linear systems with matrices A which are “close” to 

being M-matrices. Problems like this widely occur in 

connection with discretized scalar elliptic partial differential 

equations (PDEs). In such cases, classical AMG is very 

mature and can handle millions of variables much more 

efficiently than any one-level method. Since explicit 

information on the geometry (such as grid data) is not needed, 

AMG is especially suited for unstructured grids both in 2D 

and 3D. In fact, the coarsening process is directly based on the 

connectivity pattern reflected by the matrix, and interpolation 

is constructed based on the matrix entries. Restriction is 

simply defined to be the transpose of interpolation, regardless 

whether the matrix to be solved is symmetric or not. The 

Galerkin coarse-level matrix for level n+1 is computed as  
n
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the restriction from level n to n+1, starting from level 1 which 

represents the original matrix equation bAv = . 

 

Aggregation- or agglomeration-based AMG differ from 

classical AMG in the way coarse-level variables and 

interpolation formulas are constructed. Aggregation means 

splitting the set of variables into disjoint subsets (the 

supernodes or macro variables), for each of which a constant 

interpolation formula is constructed. This approach yields a 

simple-to-compute Galerkin operator as well as low operator 

complexities
11,13

 for the hierarchy constructed. Interpolation in 

case of agglomeration-based AMG is also piecewise constant. 

However, agglomerates are sets of neighboring finite elements 

glued together. Here, variables on the interfaces of elements 

belong to more than one agglomerate. Their interpolation is 

just the “average interpolation” of the surrounding 

agglomerates. For both, aggregation- and agglomeration-based 

AMG, smoothing of interpolation
13

 can be used in order to 

increase the quality of interpolation and thus the robustness of 

the overall method which is especially necessary for matrices 

stemming from second-order discretizations. 

 

Classical AMG with aggressive coarsening
10,11,12

, roughly 

characterized, is a means to provide a compromise between 

the robustness of interpolation of classical AMG and the low 

grid and operator complexity resulting from aggregation-based 

AMG. 

 

AMG for PDE systems. Extensions of these “scalar” AMG 

methods are required to efficiently solve systems of PDEs 

involving two or more scalar functions (called unknowns in 

the following). This is because classical AMG realizes a 

variable-based approach which does not distinguish between 

different unknowns. Unless the coupling between different 

unknowns is very weak, such an approach cannot work 

efficiently for systems of PDEs where, in general, the 

corresponding matrix is far from being an M-matrix. In the 

past, several ways to generalize AMG have been investigated, 

and there is still an ongoing rapid development of new AMG 

and AMG-like approaches. For a review, we refer to Clees
14

. 

However, there is no unique and best approach yet. All 

approaches seem to have their range of applicability but all of 

them may fail to be efficient in certain other applications. 

 

Unknown-Based AMG (UAMG). We first want to recall a 

rather popular AMG approach to solve systems of PDEs, the 

so-called unknown-based approach, which is very similar to 

the variable-based approach except that all unknowns are 

treated separately. To be more specific, let us assume the 

variables to be ordered by unknowns, that is, bAv =  has the 

form 
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where nu denotes the number of unknowns of the given system 

of PDEs, v[n] denotes the vector of variables corresponding to 

the n-th unknown, b[n] the respective part of the right-hand 

side, and the matrices A[m,n] reflect the couplings of the m-th to 

the n-th unknown. Using this notation, coarsening the set of 

variables which correspond to the n-th unknown is strictly 

based on the connectivity structure reflected by the submatrix  

A[n,n], and interpolation is based on the corresponding matrix 

entries. In particular, interpolation to any variable vi involves 
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only coarse-level variables corresponding to the same 

unknown vi belongs to. The Galerkin matrices, however, are 

usually computed w.r.t. all unknowns.  

This unknown-based approach has been proposed already 

in the very early papers on AMG (see references given in 

Stüben
11

). It is certainly the simplest approach for solving 

PDE systems, which nevertheless works quite efficiently for 

some important practical applications. Compared to the 

variable-based approach, the only additional information 

required is information about the correspondence between 

variables and unknowns. 

The unknown-based approach is mainly used for 

applications where the matrices A[n,n] are close to being M-

matrices. The essential additional condition for the approach 

to work is that smoothing results in an error which is smooth 

separately for each unknown. One advantage of this approach 

is that it can easily cope with anisotropies which are different 

between the different unknowns. Another advantage is that 

unknowns can virtually be distributed arbitrarily across mesh 

points. However, this approach will become inefficient, for 

instance, if the cross-unknown couplings are too strong. 

 

Point-Based AMG (PAMG): A General Framework. Many 

PDE systems of practical importance are too strongly coupled 

for VAMG and also UAMG. This is especially the case for oil 

reservoir simulation. Clees
14

 developed a flexible framework 

for constructing so-called “point-based” AMG approaches to 

solve various types of strongly coupled PDE systems. This 

framework for PAMG approaches along with (classical) 

VAMG and UAMG approaches is integrated in Fraunhofer 

SCAI’s (parallel) linear solver library SAMG(p)
15,16

. 

In contrast to the unknown-based approach, a point-based 

approach operates (i.e. coarsens and/or interpolates) on the 

level of points rather than variables as in VAMG and UAMG. 

Since we have the solution of PDEs in mind, we think of 

points as being real physical grid nodes (in space). However, 

from AMG’s point of view, it is sufficient to think of the 

nodes of a graph representing the connectivity structure of A. 

Regarding a point-based approach, it is only relevant whether 

there are (disjoint!) “blocks” of variables (corresponding to 

different unknowns) which may be coarsened, maybe also 

interpolated, simultaneously. 

To be more specific, we assume a reasonable splitting of 

variables into points to be given. Let bAv =  then be ordered 

point-wise, i.e. 
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where np denotes the number of points, v(k) the vector of 

variables corresponding to the k-th point, b(k) the respective 

part of the right-hand side, and the matrices A(k,l) reflect the 

couplings of the k-th to the l-th point. 

In order to coarsen A, a so-called primary matrix P of 

dimension np is constructed. Its entries can be seen to result 

from a “condensation” of the point-coupling matrices A(k,l)  to 

scalar values of P in such a way that the resulting P reflects 

the couplings between the points reasonably well. A VAMG 

coarsening process is applied to P. The resulting hierarchy of 

points is then used for all unknowns. Note that this is different 

from the unknown-based approach where each unknown is 

associated with its own hierarchy. 

Many different approaches for constructing P, and 

subsequently a suitable interpolation are possible and available 

in SAMG. For a brief overview on SAMG’s main 

components, see Fig. 1. It should be noted that a reasonable 

choice of components strongly depends on the class of 

applications at hand. 

Results for industrial applications in semiconductor device 

simulation are presented in Clees
14

, showing that (different) 

suitable PAMG approaches yield efficient solution processes 

for three very different and important types of PDE systems, 

namely Lamé equations (linear elasticity), reaction-diffusion 

and drift-diffusion equations. 

 

 

 

 

AMG Methods for AIM matrices 
It is known that classical AMG is an efficient and robust 

preconditioner for matrices arising in IMPES and streamline 

methods
11,17

, as long as the algebraic manipulations used for 

IMPES as well as the integration of well equations do not 

destroy the M-matrix property too much. This is because the 

discrete pressure equations to be solved then are nearly 

elliptic, and AMG has been designed for such matrices.  

Since AIM matrices - as FIM matrices - stem from a 

discretization and linearization of a strongly coupled PDE 

system, AMG methods for scalar PDEs do not work 

efficiently for them. At the moment, there are two general 

ways for employing AMG in AIM or FIM: 

• Use inside a two-stage approach as, for instance, the 

commonly used CPR
18 

method: a VAMG method with 

standard components (in particular, Gauss-Seidel 

relaxation) as used for a discrete Poisson equation is 

employed as a preconditioner for an IMPES-like 

equation. In addition, an incomplete LU factorization
19

, 

multi-level ILU
3
 or even a simpler method as LSOR, for 

instance
3
, is used as a preconditioner for (the remaining 

variables or, typically) the whole system. This two-stage 

preconditioner is accelerated by a standard Krylov-

subspace method, for instance BiCGstab
7
 or GMRes

8
, to 

 
 

Fig. 1: Main components of the linear solver library SAMG
15

. 
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yield the overall approach, called CPR-VAMG in the 

following. 

• Use of a coupled AMG solver, i.e. direct application of 

AMG to the whole matrix: here, an AMG method 

suitable for the discrete PDE systems arising in AIM or 

FIM is necessary.  

 

Two-stage approach (CPR-VAMG). Whereas such 

approaches are already quite common in FIM, little experience 

seems to have been gained for AIM. In general, the efficiency 

of CPR (-like)-VAMG methods is limited by three factors: 

• the efficiency of the AMG preconditioner for the 

IMPES-like equation. AMG is perfectly suited for 

anisotropic diffusion equations (with a standard second-

order discretization). However, IMPES-like equations 

might substantially deviate from this situation. They are 

obtained from the overall system’s matrix by algebraic 

manipulations. As an effect, they might not be M-

matrices any more 
2,3,4

. In particular, negative 

eigenvalues can arise, which usually decrease AMG’s 

efficiency drastically. Several attempts have been made 

to circumvent these problems (see Klie
2
, for instance). 

However, a solution of this problem is not known. 

Moreover, an appropriate integration of well equations in 

the overall process (maybe via approximate decoupling 

as another stage) is an open issue. 

• the efficiency of the incomplete LU factorization (or 

LSOR or a multi-level ILU) as a preconditioner for (the 

remaining variables or, typically) the whole system. In 

general, the optimal choice of the preconditioner for the 

second stage is an open question. 

• the interplay of both methods being part of the two-stage 

preconditioner. Both preconditioners are only weakly 

coupled. It is crucial for the efficiency, though not 

obvious at all, which stopping criteria shall be used for 

the different stages. 

 

Coupled AMG solver for AIM and FIM matrices. Solving 

FIM or AIM matrices directly (in one stage) by means of an 

AMG-based approach is – besides first simple attempts
14,20

 for 

FIM – apparently new. In Stüben, Clees et al.
3,
 first results for 

some standard, yet physically rather simple benchmark cases 

are presented. We here concentrate on the description and 

discussion of an approach which is capable of solving a wide 

variety of AIM matrices efficiently and robustly. We make 

use of SAMG(p)
15,16

. The main components of the approach 

finally chosen, used as a preconditioner for BiCGstab and 

called (ILUT-)pc-PAMG, are discussed in the following. 

 

PAMG as the principal strategy. We already indicated that 

AIM and FIM matrices cannot be treated with VAMG and are 

too strongly coupled for UAMG, unless only simple models 

are considered. Since in oil-reservoir simulation finite-volume 

discretizations are used, the technical prerequisites for 

SAMG’s PAMG approach are fulfilled: points simply 

correspond to grid nodes here. This also works for AIM since 

SAMG allows for a changing number of variables per point. 

With the pressure, the discrete AIM/FIM PDE system contains 

an elliptic component which drives – at least to a certain 

amount – the long-range couplings of the whole system. 

Hence, we now analyze the applicability of PAMG 

approaches, in particular based on the pressure unknown, to 

AIM/FIM matrices. 

 
ILUT Smoothing. Since AIM/FIM matrices stem from 

PDE systems of mixed elliptic-hyperbolic character, one 

should choose a smoother which additionally acts as a solver 

for the “characteristic saturation directions”, i.e. the (more or 

less) hyperbolic part here. Block-Gauss-Seidel, ILU(0) and 

block-ILU(0)
b
 do not provide enough robustness since they 

only work for some models and do even then not perform 

efficiently enough (see also Table 4). Especially, if one tries to 

enlarge time steps without loosing efficiency of the linear 

solver, one has to use stronger smoothers. A good candidate is 

ILUT
5
. Its two parameters are lfil, which is the level of 

absolute fill-in, as well as droptol, which is a threshold for 

dropping paths belonging to small couplings during 

elimination. As other ILU-type approaches, ILUT’s efficiency 

strongly depends on the ordering of variables of the matrix 

equation. We found that, for instance, the ordering provided 

by the simulator used is very appropriate for ILUT. 

 

Pressure-based coarse-level correction with special 
treatment of critical matrix rows. Numerical experiments 

have shown that both, norm-based and pure pressure-based 

PAMG face problems. Norm-based methods, even with strong 

block-smoothers do not converge here usually. Pure pressure-

based PAMG, on the other hand, seems to suffer considerably 

from more complicated physical situations (especially well 

equations). Matrix rows strongly violating diagonal 

dominance (also for the pressure-to-pressure-coupling sub-

matrix of A), which can result, for instance, from well 

equations, seem to be the main reason. However, these matrix 

rows can be marked, and corresponding information can be 

submitted to SAMG. If we force SAMG to exclude these rows 

from the coarsening process, but include them in smoothing 

(on the finest level)
c
 and acceleration, a good convergence is 

obtained again.  

 

The coupled AMG preconditioner pc-PAMG proposed in 

comparison to a multi-stage preconditioner, as for instance 

CPR-VAMG:  

• No artificial IMPES-like pressure matrix is constructed. 

Hence, we avoid problems with “additional” 

indefiniteness and “unphysical” eigenvalues.  

• Moreover, extra time/memory needed in CPR-VAMG, 

for creating/storing such a matrix is spared.  

• A complicated tuning of the interplay between the 

different stages of a multi-stage method is omitted. 

• A special, global treatment of “special” rows, for 

instance coming from well equations, can be integrated 

directly. Algebraic (pre-)manipulations can be avoided 

also here. 

                                                           
b
 abbreviated below by BGS, ILU, BILU, respectively. 

c
 Another possibility would be treating them with a(n overlapping) Schwarz 

method or an approximate Schur complement approach. Numerical tests have 
shown that this was not necessary for the cases analyzed so far. 
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• By even forcing all variables not belonging to the (main) 

pressure unknown to stay on the finest level, an approach 

being a compromise between the pc-PAMG approach 

detailed above and CPR-VAMG would result. However, 

a main difference being that, due to the Galerkin 

operator, cross-unknown couplings are still taken into 

account on coarser levels in pc-PAMG approaches. 

 

Further important properties of pc-PAMG(-BiCGstab): 

• Due to ILUT smoothing, the approach can be made more 

robust also for quite tightly coupled systems as well as 

larger time steps. 

• We use aggressive coarsening on all levels which 

produces very reasonable operator complexities (see also 

Table 6) which further contributes to low memory 

requirements (see also Table 5). 

• The accelerator used, BiCGstab, is free of parameters. 

• The ILUT smoother cannot be used with a fixed setting 

of its parameters lfil and droptol. Hence, a control 

mechanism which performs a “forecast” of suitable 

values seems mandatory. 

• The overhead (AMG’s setup phase as well as ILUT’s 

decomposition phase) of the approach proposed pays off 

only if the matrix exceeds a certain magnitude (number 

of variables). 

• The real multi-level variant needs a certain level of 

(discrete) ellipticity since this part is the one accelerated 

by the hierarchy. 

• Couplings of “essentially hyperbolic” matrices are 

strongly driven by characteristic directions. Hence, the 

above approach in its one-level variant should be 

appropriate. 

 

 

αααα-SAMG, an Automatic and Adaptive Parameter and 
Solver Switching Strategy 
The properties of the coupled solver mentioned above are 

confirmed by practically relevant test cases, as for instance 

(but not restricted to) the ones presented in this paper. 

Benchmarks with many different matrices and full simulation 

runs for different models have shown that – at least so far – 

not one single solver with a fixed set of parameters is able to 

solve all matrices efficiently and robustly. This is because the 

character of the matrices can change drastically from nearly 

elliptic to more and more hyperbolic. A practical way to 

circumvent this problem very efficiently and robustly is 

sketched now. 

 

ILUT switching. Our numerical experiments have shown that 

all matrices can be solved by means of our basic solver 

described above, in both its multi-level or one-level variant, if 

suitable values for ILUT’s lfil and droptol are chosen. ILUT’s 

robustness can be increased by means of a larger lfil and/or 

smaller droptol. By decreasing lfil or increasing droptol, ILUT 

can be made less memory- or time-consuming, respectively.  

However, a careful adjustment of these parameters is 

necessary since a forecast of ILUT’s effective performance for 

a given matrix without further information or “online testing”, 

i.e. testing during the simulation run, is virtually impossible. 

Hence, a carefully designed control mechanism should allow 

for solving all matrices efficiently. The mechanism we have 

developed is integrated in the solver switching outlined in the 

following. 

 

Online Solver switching. In order to allow for the 

employment of the most efficient solver possible for 

differently large matrices, we divide the range of 

(theoretically) possible numbers of variables for the 

application at hand into so-called “dimension classes (D-

classes)”. A rough upper limit for the maximum number of 

variables is given by the maximum number of points times the 

maximum number of physical unknowns.   

During a simulation run, for each D-class, a history of 

convergence factors, timings, AMG memory complexities and 

overall solver memory requirement is continuously being 

stored and updated. Within a given D-class, comparisons 

between different solvers (currently the one-level and multi-

level variant of our basic solver) and ILUT settings are made 

from time to time (e.g. for every 50th matrix within its D-

class) in order to define the direction of higher efficiency and 

switch the solver and/or ILUT settings appropriately.  

 

Treatment of large matrices. If the overall memory 

requirement for a concrete run and matrix reaches the limits of 

the machine used, the switching mechanism changes its 

default strategy. In particular, it tries to maintain efficiency by 

means of a lower lfil combined with a smaller droptol.  

 

Treatment of small matrices and pc-PAMG’s coarsest level 

solver. For AIM matrices with up to 100,000 rows, we also 

tested a powerful sparse direct solver, namely PARDISO
21,22

. 

Our numerical tests have shown that our α-SAMG solver in its 

one- or multi-level variant is more efficient here than 

PARDISO if, roughly, the number of variables for the original 

matrix exceeds only 10,000. A(ny) powerful direct solver can, 

however, be used as a coarsest-level solver inside SAMG so 

that coarse-level matrices might have up to several thousand 

rows. This way, the performance of a good direct solver and 

(pc-P)AMG can be combined in an efficient way. 

 

Overall approach (αααα-SAMG). In summary, we propose an 

automatic, adaptive ILUT parameter and solver switching 

strategy based on a special PAMG method, pc-PAMG, 

suitable for handling matrices arising in oil reservoir 

simulations based on AIM (and FIM). This approach is called 

α-SAMG in the following. The switching is accomplished by 

three types of adaptivity:  

• For each D-class, the basic solver used is switched 

according to results of online solver testing. The results 

“automatically” depend not only on the magnitude 

(number of variables) of the matrix, but also on the 

physical complexity of the underlying model. 

• The parameters lfil and droptol of the ILUT smoother 

employed are changed according to the convergence, 

timings and memory requirement history. In particular, it 

is checked based on various heuristics whether more or 

less robust settings shall be used for the actual and/or 

following matrices of the same D-class.   
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• The underlying pc-PAMG method adapts its coarsening 

and interpolation automatically to the coupling structure 

reflected by the matrix entries. Special rows (currently 

the ones strongly violating diagonal dominance) are 

marked and (currently) excluded from coarsening. 

Memory consumptions (grid, operator, interpolation 

complexities
11

) are continuously being adapted during a 

simulation run. 

 

 

Benchmark Cases 

In order to test our solver switching strategy, α-SAMG has 

been integrated into the simulator mentioned above. Detailed 

results are presented and discussed for eight different 

industrial benchmark cases: 

• Model M1 is a small compositional simulation model 

with 7 hydrocarbon components used in the equation-of-

state computations. The fluid composition changes with 

depth, the reservoir fluid exhibits dew points at the top 

and bubble points at the grid blocks closer to the water-

oil contact. A gas recycling operation is simulated. 

• Model M2 is a two-phase gas water model with about 

200 wells and frequent abrupt changes in flow direction. 

The process simulated is a gas storage system with many 

cycles of gas injection and production. 

• Model M3 represents a 3-phase, black-oil model with 

about 150 wells. The model contains local grid 

refinement and faults. This is a classical history match 

simulation model with production processes and typical 

well reactions due to excessive water-cut or gas-oil ratio. 

• Model M4 represents an undersaturated black-oil 

simulation model with faults, local grid refinement and 

fractures. There are more than 50 wells (vertical and 

horizontal). The model was chosen to investigate solver 

performance on dual porosity model, because the natural 

fractures in this reservoir are modelled with a dual 

porosity approach applied to selected parts of the model. 

• Models M5 and M6 represent a fine gridded, single well 

simulation model with more than 400 layers. Model M5 

simulates the processes with a gas-water formulation, 

model M6 uses a 7-component EOS compositional 

formulation. The well is an extended-reach type 

horizontal well. 

• Model M7 is a fairly large simulation model with faults, 

local grid refinement in an extended black-oil 

formulation, where the water phase consists of a variable 

salt concentration. With this model it is possible to trace 

movement of reservoir and injected waters with different 

salinities. 

• Model M8 is a conventional 3-phase black-oil model, 

initially undersaturated, but due to production, the 

pressure drops below bubble point. The model contains 

more than one million active grid blocks and includes 

local grid refinement and faults. 

 

General properties of these benchmark cases can be found in 

Tables 1 and 2. Here and in the following, “avr.” means 

average number, “max.” maximum, “min.” minimum, and 

“rel.” relative to the number of functions. 

 

model Type points avr. rows max. rows 

M1 compositional 6999 29821 69997 

M2 gas-water 26536 28523 36200 

M3 black-oil 69933 75488 93712 

M4 black-oil 70742 84608 110201 

M5 gas-water 265389 265795 269738 

M6 compositional 265389 267788 317925 

M7 black-oil + salt 678351 683935 699445 

M8 black-oil 1103334 1147276 1332839 

 
Table 1: Properties of the benchmark cases. 
 
 

model fn. avr. doi max. doi rel. max. doi 

M1 10 4,26 10,00 100% 

M2 3 1,07 1,36 45% 

M3 5 1,08 1,34 27% 

M4 5 1,20 1,56 31% 

M5 3 1,00 1,02 34% 

M6 10 1,01 1,20 12% 

M7 6 1,01 1,03 17% 

M8 5 1,04 1,21 24% 

 
Table 2: Further properties of the benchmark cases. “fn.” means 
number of physical functions, “doi” degree of implicitness (equal 
to the number of rows divided by the number of points). 

 

 

Numerical Results 
In the following, different aspects are analyzed in order to 

judge the efficiency and robustness of α-SAMG and to find 

ways to improve the switching mechanisms currently 

implemented even further. In particular, we show that α-

SAMG is more efficient than ORILU
23

, an adaptive ILU(k)-

ORTHOMIN solver, originally integrated into the simulator 

employed. We discuss timings in comparison with several 

relevant solvers and smoothers, memory consumptions of the 

total simulation run as well as the linear solver part, and the 

ILUT and solver switching behaviour.  

 

General Remarks. The benchmark cases react very 

differently during simulation due to their different “physical” 

nature. This is not only due to the different magnitudes and the 

general application classes (types) they belong to, but also due 

to the “physical complexity” as well as the amount of 

(effective discrete) ellipticity.  

In this respect, models M5 and M6 are extreme since both 

are medium-sized and contain only one extended horizontal 

well. These models are interesting for testing the solver and 

parameter switching since they are (effectively discrete) 

hyperbolic. Hence, both can be solved very quickly by means 

of even a very cheap one-level method if (and only if) it 

correctly “surfs” along the characteristic directions. 

The small gas-water model M2 and the small 

compositional model M1 are a bit extreme w.r.t. size because 

their matrices fit into (a 2 Mbytes sized L2-)cache in single 

precision, but not completely in double precision. Since 

ORILU is a mixed single and double precision solver, a 

“speedup” between 0.5 and 1 for α-SAMG compared to 
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ORILU would be achieved if both solvers are comparable 

despite precision. 

These four models, M1, M2, M5 and M6, thus also show 

whether ORILU and the one-level variant of α-SAMG are 

comparable in a “fair” way. 

The other models are intended to test especially the multi-level 

part of α-SAMG. Note, however, that M3, M4, M7, and M8 

cannot directly be compared so that a “scalability study” (i.e. 

how close is α-SAMG to an O(N) method) based on the 

models available is not possible. 

 

Robustness. For most test cases and at several stages, matrix 

properties can drastically change from one step to the next. In 

such a case, it sometimes happens that pc-PAMG (or the one-

level method) does not converge with the ILUT parameters 

chosen. α-SAMG then adapts the settings and performs a 

second run (if necessary, this process would be repeated). This 

way, all matrix equations arising for all models could be 

solved without problems, proving the robustness of α-

SAMG’s concept.  

 

Timings of α-SAMG compared to ORILU. Moreover, α-

SAMG outperforms ORILU for each model (see Table 3). As 

discussed above, for the small models M1 and M2 and also the 

quite hyperbolic M5 and M6 a performance comparable to 

ORILU is very reasonable. In fact, α-SAMG is even slightly 

more efficient here. For the medium-sized models, M3 and 

M4, the performance of α-SAMG is already reasonably 

higher, and for the largest model, M8, with a speedup of more 

than 15 very convincing. M4 is due to the dual porosity 

feature more involved than the similarly sized M3, 

correspondingly α-SAMG performs a bit better for M3. Only 

M7 seems to be a bit poor considering its size. However, one 

should take into account here that M7 contains another 

physical unknown due to the salt component on one hand. On 

the other hand, it seems to be more hyperbolic. The discussion 

on M7 will be continued in the section on ILUT settings.  

 

 

model matrices time ORILU time α−SAMG speedup 

M1 941 930 928 1.00 

M2 8120 5833 4489 1.30 

M3 2007 6674 4159 1.60 

M4 935 3205 2188 1.46 

M5 4454 16822 14123 1.19 

M6 3998 77477 65047 1.19 

M7 473 14034 11604 1.21 

M8 703 391070 25216 15.51 

 

Table 3: Total simulator run times [sec] for ORILU and αααα-SAMG. 
The speedup values displayed refer to these total run times. The 
speedup of the linear solver part itself is higher. 

 

 

Comparison to other solvers and different smoothers.  
Table 4 endorses the discussion on appropriate smoothers 

from above. Other smoothers, namely the parameter-free 

methods ILU, BILU and BGS defined above, are not as robust 

and efficient as the adaptive ILUT employed in α-SAMG. In 

addition, a pure ILU- or BILU-preconditioner does also work 

neither robustly nor efficiently (only the ratio for the best out 

of these two methods is shown in Table 4). 

 

Comparison to αααα-SAMG’s pure one-level variant (OL-αααα-

SAMG). α-SAMG is at least as fast as OL-α-SAMG, see 

Table 4. In three cases, namely M1, M5 and M6, α-SAMG 

results - for the reasons (size or hyperbolic behavior) 

explained above - in a pure one-level method, see also Table 

7. Interestingly, OL-α-SAMG is already slower for the small 

M2 than the full α-SAMG. Again, the fact that M4 features 

dual porosity is reflected also here to some extend: OL-α-

SAMG performs better for M3 than for M4.  

 

 

model restr. α-SAMG (B)ILU 
ILU-pc-
PAMG 

BILU-pc-
PAMG 

BGS-pc-
PAMG 

M1 ML: 0.61 0.52 0.48 0.21 div 

M2 0.87 0.31 0.29 0.45 0.32 

M3 0.41 div 0.43 0.23 0.29 

M4 0.83 0.25 0.57 0.41 0.53 

M5 ML: 0.92 0.58 div 0.46 div 

M8 0.45 div div div div 

 
Table 4: Total simulator run times for different preconditioners 

divided by respective simulator run time for αααα-SAMG (see Table 

1). Accelerator always BiCGstab. “restr. αααα-SAMG” means αααα-SAMG 

restricted to OL-αααα-SAMG if αααα-SAMG does not result in a pure one-
level method itself. Exceptions are marked by “ML” (pure multi-

level variant of αααα-SAMG). “div” means unrecoverable solver 
problems during the simulator run. 
 

 

 

Memory consumptions. Although α-SAMG employs a 

hierarchy for all models except of M1, M5, M6, the memory 

consumptions of α-SAMG are principally the same or even 

less than those of ORILU, as can be seen from Table 5. This is 

because of two reasons: the adaptive ILUT strategy slightly 

favors memory-cheap variants, i.e. a small lfil, if possible. On 

the other hand, the AMG method employs an aggressive 

coarsening strategy, so that coarser levels only add a small 

amount of memory. For concrete operator-complexities, 

memory consumptions of the linear solver part only, and 

ILUT parameters, see Table 6. 

 
 

 

  total memory [MBytes] avr. memory [Mbytes] 

model ORILU α−SAMG factor ORILU α−SAMG factor 

M1 210 95 2.21 146 53 2.75 

M3 108 99 1.09 102 73 1.40 

M4 163 135 1.21 158 100 1.58 

M5 261 274 0.95 260 168 1.55 

 
Table 5: Peak memory requirements for the simulator runs; 
average requirements including all overhead for each Newton 

step; both for ORILU and αααα-SAMG. Values for M6 are nearly 
identical to M5. Both M7 and M8 can be run within 2 GBytes RAM. 
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  complex. peak mem. lfil log10(droptol) 

model min. max. min. max. avr. max. min. avr. 

M1 1.00 1.00 3.0 43.6 12.4 24 -6.2 -3.6 

M2 1.00 1.38 7.1 28.7 4.7 16 -4.1 -2.2 

M3 1.11 1.24 23.6 45.7 5.0 13 -2.6 -2.1 

M4 1.00 1.35 19.4 53.9 4.1 7 -2.7 -2.0 

M5 1.00 1.00 68.7 100.4 4.1 6 -2.7 -2.0 

M6 1.00 1.00 69.3 131.6 4.0 12 -3.4 -2.0 

M7 1.30 1.33 246.4 319.3 4.0 6 -2.7 -2.0 

M8 1.15 1.46 432.0 923.3 7.2 16 -6.9 -3.0 

 
Table 6: Characteristic values for runs with αααα-SAMG: Operator 
complexities (including finest-level matrix), peak memory 
requirements of the linear solver, ILUT parameters lfil and droptol. 
Minimum for lfil is always 4, maximum for droptol always 1e-2. 
 

 

 

ILUT Parameter and Solver Switching behavior. 
Summaries of important statistics on the ILUT parameter 

switching as well as the solver switching can be found in 

Tables 6 and 7. 

More detailed results on the development of the switching 

during simulation are presented for the models M4 and M8. 

M4 is the largest model, for which both one-level and multi-

level solvers are employed during simulation. M8 is the 

largest model in the benchmark set presented, and at the same 

time the largest one for which only multi-level solvers are 

used by α-SAMG. Detailed information on the series of ILUT 

parameters resulting for models M4 and M8 are presented in 

Figs. 2 and 3. BiCGstab iterations needed by the solver chosen 

for each of the matrices are shown in Figs. 4 and 5. 

In all benchmark cases, the average number of BiCGstab 

iterations is very reasonable, although for the runs with multi-

level solvers less lfil than the average number of entries per 

matrix row is needed. Hence, the resulting smoother is less 

memory-expensive than an ILU(0) would theoretically be 

(which still would be very reasonable). High peaks of the 

iteration numbers are due to the effect described in the section 

on robustness above and Table 7. 

Continuing the discussion from above for Model M7, one 

can see that the ILUT settings employed result in a rather 

cheap smoother. Obviously, M7 is not too complicated to be 

solved by means of ILU-type preconditioners. This should 

explain the fact that α-SAMG is only a bit faster than ORILU 

for M7. 

Slightly more iterations seem to be necessary for M8, at 

least for the settings of the ILUT parameters as resulting from 

the current switching mechanism. However, one has to take 

into account here first that M8 has been run on a machine with 

2 GBytes RAM only: α-SAMG’s control mechanism has to 

restrict the maximum lfil here and switches to a droptol which 

seems to be smaller than really necessary, just adding 

superfluous run time. Second, although the lfil needed is a bit 

higher than for the other models, the smoother employed is 

still cheaper than ILU(0) in terms of memory consumptions. 

Hence, iterations can be slightly higher. Third, the model 

contains several faults and grid refinement. Both facts seem to 

distort favorable characteristic directions so that the ordering 

of the variables, as produced by the simulator, might suffer. 

Still, overall, α-SAMG is more than 15 times faster than 

ORILU for the large M8 model which demonstrates the high 

potential of α-SAMG for even larger models. 

 
 
 
 

 
 
Fig. 2: ILUT parameters chosen by αααα-SAMG for M4. 
 
 
 
 
 

 
 
Fig. 3: ILUT parameters chosen by αααα-SAMG for M8. 
 
 
 
 
 

  all: iters. OL: iters. ML: iters. runs with 

model avr. max. avr. max. avr. max. OL ML 

M1 30.7 186 30.7 186  0  0 941 0  

M2 16.0 106 17.5 100 6.8 106 7008 1112 

M3 7.6 28  0 0 7.6 28  0 2007 

M4 11.1 52 20.3 52 5.0 12 374 561 

M5 7.0 11 7.0 11  0  0 4454 0  

M6 5.0 114 5.0 114  0  0 3998 0  

M7 6.3 12 0  0 6.3 12  0 473 

M8 16.4 155 0  0 16.4 155  0 703 

 
Table 7: Number of BiCGstab iterations per matrix for runs with αααα-
SAMG; number of iterations and runs separated into cases where 
ILUT-BiCGstab (OL) or ILUT-pc-PAMG-BiCGstab (ML) are used, 
respectively. Note that high peaks for iteration numbers are due 
to the fact that sometimes matrices have to be re-run, and 
iterations are summed up over all attempts then. 
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Fig. 4: Number of iterations of αααα-SAMG for M4. Both, one-level 
(depicted by blue dots) and multi-level (red dots) methods are 

chosen by αααα-SAMG. A dot on the zero line means that the 
respective other solver is used.  

 

 

 
 

Fig. 5: Number of iterations of αααα-SAMG for M8. Only multi-level 

methods are chosen by αααα-SAMG. 

 

 

 
 
Conclusions and Outlook 
The results presented in this paper clearly indicate the 

efficiency and robustness of the new solution method α-

SAMG proposed. For a wide variety of test cases from 

different application types – gas-water, black-oil, and 

compositional models – as well as different levels of physical 

complexity, α-SAMG performs better in terms of overall 

computing time as well as memory requirements than the 

original adaptive ORILU solver as well as other one-level and 

multi-level variants. The performance tends to be the better 

the larger and/or more physically involved the model 

considered is. For a reasonably complex and large black-oil 

model, namely M8, a speedup of more than 15 could already 

be achieved keeping memory requirements reasonably low at 

the same time. However, if the model is still of mixed elliptic-

hyperbolic type, but features a larger hyperbolic behavior than 

M8, as is the case for some models presented, full advantage 

of multi-level approaches is expected to be seen for model 

sizes beyond 1 million grid points. 

 

Possible further improvement of the switching strategy. 

Our strategy α-SAMG already takes D-classes into account. 

Special a-priori or online adjustments with respect to physical 

properties, such as application type (A-classes, including gas-

water, black-oil, compositional) or physical complexity (P-

classes, among them being concrete well models, dual-

porosity dual-permeability, etc.) and level of ellipticity could 

help to further improve efficiency. In addition, further 

possibilities for improving the underlying AMG method are 

under investigation
3,4

. 

 

A parallel version of the approach proposed. A full MPI-

based parallel version of α-SAMG’s solver switching strategy 

is currently under development. In particular, the control 

mechanism has to be extended to take into account different 

numbers of processors, different characteristics (e.g. w.rt. 

communication) of the parallel cluster, and so on. 

However, the underlying pc-PAMG solver including a first 

parallel version of our ILUT smoother (ILUT with overlap) is 

already available in the parallel variant SAMGp
16

 of the linear 

solver library SAMG. First promising results are given in 

Tables 8 and 9 for two typical matrices from M8, the largest 

model analyzed so far. We used lfil=8, droptol=1e-4, an 

overlap
d
 of 1 and up to 4 processors. Runs on more processors 

do not really make sense here since the matrices only have 

about 1.1 million variables (see Table 1). 

A detailed analysis and benchmarking of a full parallel 

variant of α-SAMG will be published in a subsequent paper. 

 

 

 
Table 8: Results of parallel runs with SAMGp for a representative 
matrix of M8. “p” is the number of processors, “sp.” the speed-
up, “eff.” the parallel efficiency (equal to “sp.” divided by “p”). 
 
 

 
Table 9: Results for another matrix of M8, analogously to Table 8. 
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d
 An overlap of 0 or more than 1 would just be slightly more expensive for 

these matrices. Also the level of overlap has to be controlled inside a parallel 

version of α-SAMG. 

  total run time cycling phase only total memory 

p time sp. eff. cycles time sp. memory factor 

1 82.67     10 75.86   624.17   

2 47.79 1.73 0.86 9 39.24 1.93 347.80 1.79 

4 33.61 2.46 0.61 10 24.40 3.11 184.64 3.38 

  total run time cycling phase only total memory 

P time sp. eff. cycles time sp. memory factor 

1 94.89     12 88.13   613.94   

2 61.18 1.35 0.68 13 52.51 1.68 343.26 1.79 

4 41.95 1.97 0.49 13 31.67 2.78 182.12 3.37 
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Nomenclature 

pD  = phase molar density 

k   = permeability 

pq  = production/injection rate 

pS  = phase saturation 

iV   = block volume 

pcx  = molar fraction of component c in phase p 

ijτ  = inter-block transmissibility 

pλ  = phase mobility 

pΦ  = phase potential 

t∆  = time step length 

φ   = porosity 

 

Subscripts/Superscripts 
c   = component 

ji,  = blocks 

p   = phase 

N  = number of neighbors 

P   = number of phases 
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