
Copyright 2007, Society of Petroleum Engineers

This paper was prepared for presentation at the 2007 SPE Reservoir Simulation Symposium
held in Houston, Texas, U.S.A., 26–28 February 2007.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than
300 words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, Texas 75083-3836 U.S.A., fax 01-972-952-9435.

Abstract
We propose a new, efficient, adaptive algebraic multigrid

(AMG) solver strategy for the discrete systems of partial

differential equations arising from structured or unstructured

grid models in reservoir simulation. The proposed strategy has

been particularly tailored to linear systems of equations arising

in adaptive implicit methods. The coarsening process of the

AMG method designed automatically employs information on

the physical structure of the models; as a smoother, an

adaptive ILUT method is employed, taking care of an efficient

solution of the hyperbolic parts whilst providing adequately

smooth errors for the elliptic parts. To achieve a good

compromise of high efficiency and robustness for a variety of

problem classes – ranging from simple, small black-oil to

challenging, large compositional models – an automatic,

adaptive ILUT parameter and AMG solver switching strategy,

α-SAMG, has been developed. Its efficiency is demonstrated

for eight industrial benchmark cases by comparison against

standard one-level and AMG solvers as well as the pure one-

level variant of the proposed new strategy. In addition, very

promising results of first parallel runs are shown.

Introduction
Modern reservoir simulation faces increasingly complex

physical models and highly resolved, unstructured grids. Both

trends result in ever growing and more difficult to solve

matrix equations. Especially compositional models for

heterogeneous or fractured reservoirs provide a considerable

challenge to solver efficiency, in particular, if fully implicit

methods (FIM) are used.

To avoid huge computational costs, adaptive implicit

methods (AIM) have been developed, offering a good

compromise between computational speed, memory

requirements and accuracy. Still, comparably to FIM, the

mixed hyperbolic-elliptic character of AIM matrices
a

aggravates the development of efficient linear solvers.

On the one hand, iterative hierarchical solvers are

necessary for the optimal solution of mixed hyperbolic-elliptic

problems; only a hierarchy allows for a solver complexity

which scales linearly with the problem size. On the other

hand, algebraic multigrid (AMG) methods, providing optimal

solvers for elliptic problems, loose efficiency if applied

without modification to mixed hyperbolic-elliptic systems.

In this paper, we develop AMG methods suitable for

matrices arising from adaptive and also fully implicit methods.

In particular, we will see that so-called point-based AMG

methods employing a pressure-based coarsening with robust,

ILUT-based smoothers and a special treatment of well

equations provide efficient preconditioners. Moreover, we

introduce an adaptive ILUT-parameter and solver switching

strategy which can efficiently and robustly handle matrices

arising from gas-water, black-oil and compositional fluid

characterization in single- and dual-porosity simulation

models. This solver strategy automatically adapts itself to the

magnitude and physical complexity of each matrix to be

solved during a simulation, making use of experiences gained

with the series of matrices solved so far, so that matrices

ranging from simple and/or small up to physically challenging

and/or large are handled efficiently without the need to change

solver settings manually.

The outline of the paper is as follows. We start with an

overview of adaptive implicit methods. In particular,

properties of the arising matrices, as far as important for their

efficient numerical solution, are described. We give an

overview of the state-of-the-art solution methods for these

matrices and point out advantages and disadvantages of these

solvers. Afterwards, we explain a well-known class of multi-

level solvers, namely algebraic multigrid methods (AMG),

which have the potential to solve matrices arising in AIM with

(nearly) optimal numerical complexity. These methods have

been developed for scalar elliptic partial differential equations.

Since AIM matrices correspond to a PDE system of mixed

elliptic-hyperbolic character, we summarize available AMG

methods for PDE systems in general and methods promising

for an application to AIM matrices. As the main contribution

a
 Matrices arising in adaptive implicit methods are called AIM matrices in the

following.

SPE 105789

An Efficient Algebraic Multi-Grid Solver Strategy for Adaptive Implicit Methods in Oil
Reservoir Simulation
T. Clees, Fraunhofer SCAI; and L. Ganzer, SPE, SMT Alps*

*) now with University of Leoben

2 SPE 105789

of this paper, we describe in detail our new automatic,

adaptive ILUT parameter and AMG solver switching strategy

for AIM matrices, α-SAMG, and show its robustness and

efficiency for selected industrial gas-water, black-oil and

compositional benchmark cases of different physical

complexity and model sizes ranging from ten thousand to

more than one million active grid blocks. In the outlook, we

will present very promising results of first parallel runs for

representative matrices from the largest model case analyzed

so far.

Adaptive Implicit Methods (AIM)
The fluid flow simulator used in this work is based on a

general-purpose, compositional formulation. A mole balance

equation in compositional formulation can be written for each

component in the following form:

() ()

()







=

+







+∇−

∑

∑∑

=

==

P

p

pppc

P

p

pcp

P

p

Dcpppc

SDx
t

xqjuDx

1

11

φ
∂

∂

��

 (1)

The mass transport in Eq.1 consists of two terms. The first

term represents the convective flux, the second term represents

the combined transport by dispersion and diffusion. In

addition, the left hand side of the balance equation contains a

source/sink contribution from the wells. The right hand side

represents the rate of mass accumulation. Eq. 1 is valid for

arbitrary grid block geometries. Darcy’s law is defined by

ppp ku Φ∇−= λ
�

 , (2)

where

p

rp

p

k

µ
λ = and gp ppp

�
ρ−∇=Φ∇ . (3)

Combined with Darcy’s law, the mole balances yield highly

non-linear partial differential equations of mixed hyperbolic-

elliptic type.

Using a control volume finite difference (CVFD)

discretization, the general mole balance equation in difference

form for a component c in a gridblock i is given by

() ()

() ()
i

P

p

pcppt
i

n

i

P

p

pcpp

P

p

n

pipj

n

ijpppc

N

j

ij

xDS
t

V
xDq

Dx












∆

∆
=+












Φ−Φ

∑∑

∑∑

=

+

=

=

++

=

1

1

1

1

11

1

φ

λτ

 (4)

For simulating the reservoir, two alternatives have been

pursued in the past: keep the grid structured and set up the

equations in either IMPES or fully implicit mode. Using this

approach, the resulting matrices have regular bands and

structure principally allowing for highly cache-efficient solver

algorithms.

Alternatively, one may use unstructured Voronoi (or

PEBI) grids with irregular number of connections and also

permit both IMPES and fully implicit discretizations

simultaneously within the model. This type is termed adaptive

implicit formulation (AIM), because IMPES formulation is

applied for some parts of the reservoir, but fully implicit

formulation in other areas (e.g. at perforated grid blocks or in

areas with large variable changes). As a result, the user gains a

maximum in flexibility, but the linear solver encounters

matrices with highly irregular structures.

All benchmark cases illustrated in this work follow the

latter description, use unstructured gridding and adaptive

implicit formulation introduced by Thomas and Thurnau
1
.

Rather than providing a fixed number of implicit unknowns in

a grid block, this method operates with different numbers of

unknowns (level of implicitness) in adjacent grid blocks. The

goal is to restrict the expensive fully implicit formulation to

that part of the model that requires it, leaving the other parts in

the less expensive IMPES mode. In any given time step,

pressure will be calculated implicitly everywhere in the

reservoir model, but other variables, such as phase saturations

and concentrations will be implicit in selected grid blocks only

and explicit elsewhere. This division into implicit and IMPES

blocks within the simulation model may vary from one

solution step to the next based on a switching criterion and

leads to a distortion of the otherwise banded structure of the

coefficient matrix.

Properties of AIM matrices. The AIM matrices to be solved

in the Newton-Raphson process are highly nonsymmetric and

contain varying degrees of freedom caused by the variation in

the number of implicit variables treated in a grid block.

Individual matrix coefficients can be highly anisotropic and/or

discontinuous. This is due to geological settings as well as due

to numerical effects, among them different vertical and

horizontal permeabilities, high porosity contrasts between

adjacent grid blocks or other properties with drastic variations

(several orders of magnitude).

In addition, unstructured gridding, local grid refinement,

fault modeling, large variations in grid spacing and adverse

grid block aspect ratios (ratio of lateral to vertical block

dimensions) cause additional distortion to the AIM matrices.

Finally, well equations which are fully coupled to the system

of equations relate grid blocks that otherwise are not

geometrically connected.

As analyzed by Klie
2
 and by Stüben, Clees, Klie et al.

3,4
,

the pressure block is basically elliptic. Saturations add

hyperbolic behavior to the system. Depending on the concrete

situation, the system’s matrices can be of elliptic up to nearly

hyperbolic character. Physically more involved models

additionally change the eigenvalues of the matrices and make

them more difficult to solve. In particular, ellipticity and

diagonal dominance can suffer considerably from well

equations, but also from larger time steps, which are

nevertheless desirable in order to reduce computational time –

as long as the linear solver employed can efficiently cope with

the resulting matrices. A good compromise has to be found

here.

SPE 105789 3

Possibilities for solving AIM matrices. Linear complexity of

the linear solver employed is strongly desired in order to

reduce computing times and to cope with increasingly large

models. The application of direct solution methods (based on

Gaussian elimination) to matrices arising in oil reservoir

simulation is not feasible since these methods exhibit a

complexity far away from being linear – often, they are of

quadratic complexity O(N
2
) or even worse – and the number

of grid nodes and thus variables easily exceeds several

hundred thousands already.

Usually, standard iterative one-level methods are therefore

used. Most often, an incomplete LU factorization method, as

for instance ILUT
5

or ILU(k)
6
, together with a standard

accelerator, as for instance BiCGstab
7
, GMRes

8
or

ORTHOMIN
9
, is employed.

However, also iterative one-level methods do not exhibit a

linear complexity of O(N). It is common opinion that, in order

to approach optimality here, multi-level methods are

necessary. Among the well-known and most promising

approaches are algebraic multigrid methods.

Algebraic Multigrid (AMG)
In the following, we briefly characterize approaches for scalar

PDEs, before we give an overview of approaches for PDE

systems, followed by a discussion of AMG for AIM matrices.

AMG for scalar partial differential equations (variable-

based AMG, VAMG). Two main classes of algebraic

multigrid methods are known today, namely classical AMG

and aggregation- or agglomeration-based AMG.

Classical AMG

10,11,12
 is known to provide very efficient

and robust solvers or preconditioners for large classes of

matrix problems bAv = , an important one being the class of

(sparse) linear systems with matrices A which are “close” to

being M-matrices. Problems like this widely occur in

connection with discretized scalar elliptic partial differential

equations (PDEs). In such cases, classical AMG is very

mature and can handle millions of variables much more

efficiently than any one-level method. Since explicit

information on the geometry (such as grid data) is not needed,

AMG is especially suited for unstructured grids both in 2D

and 3D. In fact, the coarsening process is directly based on the

connectivity pattern reflected by the matrix, and interpolation

is constructed based on the matrix entries. Restriction is

simply defined to be the transpose of interpolation, regardless

whether the matrix to be solved is symmetric or not. The

Galerkin coarse-level matrix for level n+1 is computed as
n

nn

n

nn IAIA 1

1

1 +
+

+ = (5)

with
n

nI 1+ being the interpolation from level n+1 to n, and

 ()Tn

n

n

n II 1

1

+
+ = (6)

the restriction from level n to n+1, starting from level 1 which

represents the original matrix equation bAv = .

Aggregation- or agglomeration-based AMG differ from

classical AMG in the way coarse-level variables and

interpolation formulas are constructed. Aggregation means

splitting the set of variables into disjoint subsets (the

supernodes or macro variables), for each of which a constant

interpolation formula is constructed. This approach yields a

simple-to-compute Galerkin operator as well as low operator

complexities
11,13

 for the hierarchy constructed. Interpolation in

case of agglomeration-based AMG is also piecewise constant.

However, agglomerates are sets of neighboring finite elements

glued together. Here, variables on the interfaces of elements

belong to more than one agglomerate. Their interpolation is

just the “average interpolation” of the surrounding

agglomerates. For both, aggregation- and agglomeration-based

AMG, smoothing of interpolation
13

 can be used in order to

increase the quality of interpolation and thus the robustness of

the overall method which is especially necessary for matrices

stemming from second-order discretizations.

Classical AMG with aggressive coarsening
10,11,12

, roughly

characterized, is a means to provide a compromise between

the robustness of interpolation of classical AMG and the low

grid and operator complexity resulting from aggregation-based

AMG.

AMG for PDE systems. Extensions of these “scalar” AMG

methods are required to efficiently solve systems of PDEs

involving two or more scalar functions (called unknowns in

the following). This is because classical AMG realizes a

variable-based approach which does not distinguish between

different unknowns. Unless the coupling between different

unknowns is very weak, such an approach cannot work

efficiently for systems of PDEs where, in general, the

corresponding matrix is far from being an M-matrix. In the

past, several ways to generalize AMG have been investigated,

and there is still an ongoing rapid development of new AMG

and AMG-like approaches. For a review, we refer to Clees
14

.

However, there is no unique and best approach yet. All

approaches seem to have their range of applicability but all of

them may fail to be efficient in certain other applications.

Unknown-Based AMG (UAMG). We first want to recall a

rather popular AMG approach to solve systems of PDEs, the

so-called unknown-based approach, which is very similar to

the variable-based approach except that all unknowns are

treated separately. To be more specific, let us assume the

variables to be ordered by unknowns, that is, bAv = has the

form

















=
































][

]1[

][

]1[

],[]1,[

],1[]1,1[

uuuuu

u

nnnnn

n

b

b

v

v

AA

AA

⋮⋮

…

⋮⋱⋮

⋯

 , (7)

where nu denotes the number of unknowns of the given system

of PDEs, v[n] denotes the vector of variables corresponding to

the n-th unknown, b[n] the respective part of the right-hand

side, and the matrices A[m,n] reflect the couplings of the m-th to

the n-th unknown. Using this notation, coarsening the set of

variables which correspond to the n-th unknown is strictly

based on the connectivity structure reflected by the submatrix

A[n,n], and interpolation is based on the corresponding matrix

entries. In particular, interpolation to any variable vi involves

4 SPE 105789

only coarse-level variables corresponding to the same

unknown vi belongs to. The Galerkin matrices, however, are

usually computed w.r.t. all unknowns.

This unknown-based approach has been proposed already

in the very early papers on AMG (see references given in

Stüben
11

). It is certainly the simplest approach for solving

PDE systems, which nevertheless works quite efficiently for

some important practical applications. Compared to the

variable-based approach, the only additional information

required is information about the correspondence between

variables and unknowns.

The unknown-based approach is mainly used for

applications where the matrices A[n,n] are close to being M-

matrices. The essential additional condition for the approach

to work is that smoothing results in an error which is smooth

separately for each unknown. One advantage of this approach

is that it can easily cope with anisotropies which are different

between the different unknowns. Another advantage is that

unknowns can virtually be distributed arbitrarily across mesh

points. However, this approach will become inefficient, for

instance, if the cross-unknown couplings are too strong.

Point-Based AMG (PAMG): A General Framework. Many

PDE systems of practical importance are too strongly coupled

for VAMG and also UAMG. This is especially the case for oil

reservoir simulation. Clees
14

 developed a flexible framework

for constructing so-called “point-based” AMG approaches to

solve various types of strongly coupled PDE systems. This

framework for PAMG approaches along with (classical)

VAMG and UAMG approaches is integrated in Fraunhofer

SCAI’s (parallel) linear solver library SAMG(p)
15,16

.

In contrast to the unknown-based approach, a point-based

approach operates (i.e. coarsens and/or interpolates) on the

level of points rather than variables as in VAMG and UAMG.

Since we have the solution of PDEs in mind, we think of

points as being real physical grid nodes (in space). However,

from AMG’s point of view, it is sufficient to think of the

nodes of a graph representing the connectivity structure of A.

Regarding a point-based approach, it is only relevant whether

there are (disjoint!) “blocks” of variables (corresponding to

different unknowns) which may be coarsened, maybe also

interpolated, simultaneously.

To be more specific, we assume a reasonable splitting of

variables into points to be given. Let bAv = then be ordered

point-wise, i.e.

















=

































)(

)1(

)(

)1(

),()1,(

),1()1,1(

ppppp

p

nnnnn

n

b

b

v

v

AA

AA

⋮⋮

…

⋮⋱⋮

⋯

 , (8)

where np denotes the number of points, v(k) the vector of

variables corresponding to the k-th point, b(k) the respective

part of the right-hand side, and the matrices A(k,l) reflect the

couplings of the k-th to the l-th point.

In order to coarsen A, a so-called primary matrix P of

dimension np is constructed. Its entries can be seen to result

from a “condensation” of the point-coupling matrices A(k,l) to

scalar values of P in such a way that the resulting P reflects

the couplings between the points reasonably well. A VAMG

coarsening process is applied to P. The resulting hierarchy of

points is then used for all unknowns. Note that this is different

from the unknown-based approach where each unknown is

associated with its own hierarchy.

Many different approaches for constructing P, and

subsequently a suitable interpolation are possible and available

in SAMG. For a brief overview on SAMG’s main

components, see Fig. 1. It should be noted that a reasonable

choice of components strongly depends on the class of

applications at hand.

Results for industrial applications in semiconductor device

simulation are presented in Clees
14

, showing that (different)

suitable PAMG approaches yield efficient solution processes

for three very different and important types of PDE systems,

namely Lamé equations (linear elasticity), reaction-diffusion

and drift-diffusion equations.

AMG Methods for AIM matrices
It is known that classical AMG is an efficient and robust

preconditioner for matrices arising in IMPES and streamline

methods
11,17

, as long as the algebraic manipulations used for

IMPES as well as the integration of well equations do not

destroy the M-matrix property too much. This is because the

discrete pressure equations to be solved then are nearly

elliptic, and AMG has been designed for such matrices.

Since AIM matrices - as FIM matrices - stem from a

discretization and linearization of a strongly coupled PDE

system, AMG methods for scalar PDEs do not work

efficiently for them. At the moment, there are two general

ways for employing AMG in AIM or FIM:

• Use inside a two-stage approach as, for instance, the

commonly used CPR
18

method: a VAMG method with

standard components (in particular, Gauss-Seidel

relaxation) as used for a discrete Poisson equation is

employed as a preconditioner for an IMPES-like

equation. In addition, an incomplete LU factorization
19

,

multi-level ILU
3
 or even a simpler method as LSOR, for

instance
3
, is used as a preconditioner for (the remaining

variables or, typically) the whole system. This two-stage

preconditioner is accelerated by a standard Krylov-

subspace method, for instance BiCGstab
7
 or GMRes

8
, to

Fig. 1: Main components of the linear solver library SAMG
15

.

SPE 105789 5

yield the overall approach, called CPR-VAMG in the

following.

• Use of a coupled AMG solver, i.e. direct application of

AMG to the whole matrix: here, an AMG method

suitable for the discrete PDE systems arising in AIM or

FIM is necessary.

Two-stage approach (CPR-VAMG). Whereas such

approaches are already quite common in FIM, little experience

seems to have been gained for AIM. In general, the efficiency

of CPR (-like)-VAMG methods is limited by three factors:

• the efficiency of the AMG preconditioner for the

IMPES-like equation. AMG is perfectly suited for

anisotropic diffusion equations (with a standard second-

order discretization). However, IMPES-like equations

might substantially deviate from this situation. They are

obtained from the overall system’s matrix by algebraic

manipulations. As an effect, they might not be M-

matrices any more
2,3,4

. In particular, negative

eigenvalues can arise, which usually decrease AMG’s

efficiency drastically. Several attempts have been made

to circumvent these problems (see Klie
2
, for instance).

However, a solution of this problem is not known.

Moreover, an appropriate integration of well equations in

the overall process (maybe via approximate decoupling

as another stage) is an open issue.

• the efficiency of the incomplete LU factorization (or

LSOR or a multi-level ILU) as a preconditioner for (the

remaining variables or, typically) the whole system. In

general, the optimal choice of the preconditioner for the

second stage is an open question.

• the interplay of both methods being part of the two-stage

preconditioner. Both preconditioners are only weakly

coupled. It is crucial for the efficiency, though not

obvious at all, which stopping criteria shall be used for

the different stages.

Coupled AMG solver for AIM and FIM matrices. Solving

FIM or AIM matrices directly (in one stage) by means of an

AMG-based approach is – besides first simple attempts
14,20

 for

FIM – apparently new. In Stüben, Clees et al.
3,
 first results for

some standard, yet physically rather simple benchmark cases

are presented. We here concentrate on the description and

discussion of an approach which is capable of solving a wide

variety of AIM matrices efficiently and robustly. We make

use of SAMG(p)
15,16

. The main components of the approach

finally chosen, used as a preconditioner for BiCGstab and

called (ILUT-)pc-PAMG, are discussed in the following.

PAMG as the principal strategy. We already indicated that

AIM and FIM matrices cannot be treated with VAMG and are

too strongly coupled for UAMG, unless only simple models

are considered. Since in oil-reservoir simulation finite-volume

discretizations are used, the technical prerequisites for

SAMG’s PAMG approach are fulfilled: points simply

correspond to grid nodes here. This also works for AIM since

SAMG allows for a changing number of variables per point.

With the pressure, the discrete AIM/FIM PDE system contains

an elliptic component which drives – at least to a certain

amount – the long-range couplings of the whole system.

Hence, we now analyze the applicability of PAMG

approaches, in particular based on the pressure unknown, to

AIM/FIM matrices.

ILUT Smoothing. Since AIM/FIM matrices stem from

PDE systems of mixed elliptic-hyperbolic character, one

should choose a smoother which additionally acts as a solver

for the “characteristic saturation directions”, i.e. the (more or

less) hyperbolic part here. Block-Gauss-Seidel, ILU(0) and

block-ILU(0)
b
 do not provide enough robustness since they

only work for some models and do even then not perform

efficiently enough (see also Table 4). Especially, if one tries to

enlarge time steps without loosing efficiency of the linear

solver, one has to use stronger smoothers. A good candidate is

ILUT
5
. Its two parameters are lfil, which is the level of

absolute fill-in, as well as droptol, which is a threshold for

dropping paths belonging to small couplings during

elimination. As other ILU-type approaches, ILUT’s efficiency

strongly depends on the ordering of variables of the matrix

equation. We found that, for instance, the ordering provided

by the simulator used is very appropriate for ILUT.

Pressure-based coarse-level correction with special
treatment of critical matrix rows. Numerical experiments

have shown that both, norm-based and pure pressure-based

PAMG face problems. Norm-based methods, even with strong

block-smoothers do not converge here usually. Pure pressure-

based PAMG, on the other hand, seems to suffer considerably

from more complicated physical situations (especially well

equations). Matrix rows strongly violating diagonal

dominance (also for the pressure-to-pressure-coupling sub-

matrix of A), which can result, for instance, from well

equations, seem to be the main reason. However, these matrix

rows can be marked, and corresponding information can be

submitted to SAMG. If we force SAMG to exclude these rows

from the coarsening process, but include them in smoothing

(on the finest level)
c
 and acceleration, a good convergence is

obtained again.

The coupled AMG preconditioner pc-PAMG proposed in

comparison to a multi-stage preconditioner, as for instance

CPR-VAMG:

• No artificial IMPES-like pressure matrix is constructed.

Hence, we avoid problems with “additional”

indefiniteness and “unphysical” eigenvalues.

• Moreover, extra time/memory needed in CPR-VAMG,

for creating/storing such a matrix is spared.

• A complicated tuning of the interplay between the

different stages of a multi-stage method is omitted.

• A special, global treatment of “special” rows, for

instance coming from well equations, can be integrated

directly. Algebraic (pre-)manipulations can be avoided

also here.

b
 abbreviated below by BGS, ILU, BILU, respectively.

c
 Another possibility would be treating them with a(n overlapping) Schwarz

method or an approximate Schur complement approach. Numerical tests have
shown that this was not necessary for the cases analyzed so far.

6 SPE 105789

• By even forcing all variables not belonging to the (main)

pressure unknown to stay on the finest level, an approach

being a compromise between the pc-PAMG approach

detailed above and CPR-VAMG would result. However,

a main difference being that, due to the Galerkin

operator, cross-unknown couplings are still taken into

account on coarser levels in pc-PAMG approaches.

Further important properties of pc-PAMG(-BiCGstab):

• Due to ILUT smoothing, the approach can be made more

robust also for quite tightly coupled systems as well as

larger time steps.

• We use aggressive coarsening on all levels which

produces very reasonable operator complexities (see also

Table 6) which further contributes to low memory

requirements (see also Table 5).

• The accelerator used, BiCGstab, is free of parameters.

• The ILUT smoother cannot be used with a fixed setting

of its parameters lfil and droptol. Hence, a control

mechanism which performs a “forecast” of suitable

values seems mandatory.

• The overhead (AMG’s setup phase as well as ILUT’s

decomposition phase) of the approach proposed pays off

only if the matrix exceeds a certain magnitude (number

of variables).

• The real multi-level variant needs a certain level of

(discrete) ellipticity since this part is the one accelerated

by the hierarchy.

• Couplings of “essentially hyperbolic” matrices are

strongly driven by characteristic directions. Hence, the

above approach in its one-level variant should be

appropriate.

αααα-SAMG, an Automatic and Adaptive Parameter and
Solver Switching Strategy
The properties of the coupled solver mentioned above are

confirmed by practically relevant test cases, as for instance

(but not restricted to) the ones presented in this paper.

Benchmarks with many different matrices and full simulation

runs for different models have shown that – at least so far –

not one single solver with a fixed set of parameters is able to

solve all matrices efficiently and robustly. This is because the

character of the matrices can change drastically from nearly

elliptic to more and more hyperbolic. A practical way to

circumvent this problem very efficiently and robustly is

sketched now.

ILUT switching. Our numerical experiments have shown that

all matrices can be solved by means of our basic solver

described above, in both its multi-level or one-level variant, if

suitable values for ILUT’s lfil and droptol are chosen. ILUT’s

robustness can be increased by means of a larger lfil and/or

smaller droptol. By decreasing lfil or increasing droptol, ILUT

can be made less memory- or time-consuming, respectively.

However, a careful adjustment of these parameters is

necessary since a forecast of ILUT’s effective performance for

a given matrix without further information or “online testing”,

i.e. testing during the simulation run, is virtually impossible.

Hence, a carefully designed control mechanism should allow

for solving all matrices efficiently. The mechanism we have

developed is integrated in the solver switching outlined in the

following.

Online Solver switching. In order to allow for the

employment of the most efficient solver possible for

differently large matrices, we divide the range of

(theoretically) possible numbers of variables for the

application at hand into so-called “dimension classes (D-

classes)”. A rough upper limit for the maximum number of

variables is given by the maximum number of points times the

maximum number of physical unknowns.

During a simulation run, for each D-class, a history of

convergence factors, timings, AMG memory complexities and

overall solver memory requirement is continuously being

stored and updated. Within a given D-class, comparisons

between different solvers (currently the one-level and multi-

level variant of our basic solver) and ILUT settings are made

from time to time (e.g. for every 50th matrix within its D-

class) in order to define the direction of higher efficiency and

switch the solver and/or ILUT settings appropriately.

Treatment of large matrices. If the overall memory

requirement for a concrete run and matrix reaches the limits of

the machine used, the switching mechanism changes its

default strategy. In particular, it tries to maintain efficiency by

means of a lower lfil combined with a smaller droptol.

Treatment of small matrices and pc-PAMG’s coarsest level

solver. For AIM matrices with up to 100,000 rows, we also

tested a powerful sparse direct solver, namely PARDISO
21,22

.

Our numerical tests have shown that our α-SAMG solver in its

one- or multi-level variant is more efficient here than

PARDISO if, roughly, the number of variables for the original

matrix exceeds only 10,000. A(ny) powerful direct solver can,

however, be used as a coarsest-level solver inside SAMG so

that coarse-level matrices might have up to several thousand

rows. This way, the performance of a good direct solver and

(pc-P)AMG can be combined in an efficient way.

Overall approach (αααα-SAMG). In summary, we propose an

automatic, adaptive ILUT parameter and solver switching

strategy based on a special PAMG method, pc-PAMG,

suitable for handling matrices arising in oil reservoir

simulations based on AIM (and FIM). This approach is called

α-SAMG in the following. The switching is accomplished by

three types of adaptivity:

• For each D-class, the basic solver used is switched

according to results of online solver testing. The results

“automatically” depend not only on the magnitude

(number of variables) of the matrix, but also on the

physical complexity of the underlying model.

• The parameters lfil and droptol of the ILUT smoother

employed are changed according to the convergence,

timings and memory requirement history. In particular, it

is checked based on various heuristics whether more or

less robust settings shall be used for the actual and/or

following matrices of the same D-class.

SPE 105789 7

• The underlying pc-PAMG method adapts its coarsening

and interpolation automatically to the coupling structure

reflected by the matrix entries. Special rows (currently

the ones strongly violating diagonal dominance) are

marked and (currently) excluded from coarsening.

Memory consumptions (grid, operator, interpolation

complexities
11

) are continuously being adapted during a

simulation run.

Benchmark Cases

In order to test our solver switching strategy, α-SAMG has

been integrated into the simulator mentioned above. Detailed

results are presented and discussed for eight different

industrial benchmark cases:

• Model M1 is a small compositional simulation model

with 7 hydrocarbon components used in the equation-of-

state computations. The fluid composition changes with

depth, the reservoir fluid exhibits dew points at the top

and bubble points at the grid blocks closer to the water-

oil contact. A gas recycling operation is simulated.

• Model M2 is a two-phase gas water model with about

200 wells and frequent abrupt changes in flow direction.

The process simulated is a gas storage system with many

cycles of gas injection and production.

• Model M3 represents a 3-phase, black-oil model with

about 150 wells. The model contains local grid

refinement and faults. This is a classical history match

simulation model with production processes and typical

well reactions due to excessive water-cut or gas-oil ratio.

• Model M4 represents an undersaturated black-oil

simulation model with faults, local grid refinement and

fractures. There are more than 50 wells (vertical and

horizontal). The model was chosen to investigate solver

performance on dual porosity model, because the natural

fractures in this reservoir are modelled with a dual

porosity approach applied to selected parts of the model.

• Models M5 and M6 represent a fine gridded, single well

simulation model with more than 400 layers. Model M5

simulates the processes with a gas-water formulation,

model M6 uses a 7-component EOS compositional

formulation. The well is an extended-reach type

horizontal well.

• Model M7 is a fairly large simulation model with faults,

local grid refinement in an extended black-oil

formulation, where the water phase consists of a variable

salt concentration. With this model it is possible to trace

movement of reservoir and injected waters with different

salinities.

• Model M8 is a conventional 3-phase black-oil model,

initially undersaturated, but due to production, the

pressure drops below bubble point. The model contains

more than one million active grid blocks and includes

local grid refinement and faults.

General properties of these benchmark cases can be found in

Tables 1 and 2. Here and in the following, “avr.” means

average number, “max.” maximum, “min.” minimum, and

“rel.” relative to the number of functions.

model Type points avr. rows max. rows

M1 compositional 6999 29821 69997

M2 gas-water 26536 28523 36200

M3 black-oil 69933 75488 93712

M4 black-oil 70742 84608 110201

M5 gas-water 265389 265795 269738

M6 compositional 265389 267788 317925

M7 black-oil + salt 678351 683935 699445

M8 black-oil 1103334 1147276 1332839

Table 1: Properties of the benchmark cases.

model fn. avr. doi max. doi rel. max. doi

M1 10 4,26 10,00 100%

M2 3 1,07 1,36 45%

M3 5 1,08 1,34 27%

M4 5 1,20 1,56 31%

M5 3 1,00 1,02 34%

M6 10 1,01 1,20 12%

M7 6 1,01 1,03 17%

M8 5 1,04 1,21 24%

Table 2: Further properties of the benchmark cases. “fn.” means
number of physical functions, “doi” degree of implicitness (equal
to the number of rows divided by the number of points).

Numerical Results
In the following, different aspects are analyzed in order to

judge the efficiency and robustness of α-SAMG and to find

ways to improve the switching mechanisms currently

implemented even further. In particular, we show that α-

SAMG is more efficient than ORILU
23

, an adaptive ILU(k)-

ORTHOMIN solver, originally integrated into the simulator

employed. We discuss timings in comparison with several

relevant solvers and smoothers, memory consumptions of the

total simulation run as well as the linear solver part, and the

ILUT and solver switching behaviour.

General Remarks. The benchmark cases react very

differently during simulation due to their different “physical”

nature. This is not only due to the different magnitudes and the

general application classes (types) they belong to, but also due

to the “physical complexity” as well as the amount of

(effective discrete) ellipticity.

In this respect, models M5 and M6 are extreme since both

are medium-sized and contain only one extended horizontal

well. These models are interesting for testing the solver and

parameter switching since they are (effectively discrete)

hyperbolic. Hence, both can be solved very quickly by means

of even a very cheap one-level method if (and only if) it

correctly “surfs” along the characteristic directions.

The small gas-water model M2 and the small

compositional model M1 are a bit extreme w.r.t. size because

their matrices fit into (a 2 Mbytes sized L2-)cache in single

precision, but not completely in double precision. Since

ORILU is a mixed single and double precision solver, a

“speedup” between 0.5 and 1 for α-SAMG compared to

8 SPE 105789

ORILU would be achieved if both solvers are comparable

despite precision.

These four models, M1, M2, M5 and M6, thus also show

whether ORILU and the one-level variant of α-SAMG are

comparable in a “fair” way.

The other models are intended to test especially the multi-level

part of α-SAMG. Note, however, that M3, M4, M7, and M8

cannot directly be compared so that a “scalability study” (i.e.

how close is α-SAMG to an O(N) method) based on the

models available is not possible.

Robustness. For most test cases and at several stages, matrix

properties can drastically change from one step to the next. In

such a case, it sometimes happens that pc-PAMG (or the one-

level method) does not converge with the ILUT parameters

chosen. α-SAMG then adapts the settings and performs a

second run (if necessary, this process would be repeated). This

way, all matrix equations arising for all models could be

solved without problems, proving the robustness of α-

SAMG’s concept.

Timings of α-SAMG compared to ORILU. Moreover, α-

SAMG outperforms ORILU for each model (see Table 3). As

discussed above, for the small models M1 and M2 and also the

quite hyperbolic M5 and M6 a performance comparable to

ORILU is very reasonable. In fact, α-SAMG is even slightly

more efficient here. For the medium-sized models, M3 and

M4, the performance of α-SAMG is already reasonably

higher, and for the largest model, M8, with a speedup of more

than 15 very convincing. M4 is due to the dual porosity

feature more involved than the similarly sized M3,

correspondingly α-SAMG performs a bit better for M3. Only

M7 seems to be a bit poor considering its size. However, one

should take into account here that M7 contains another

physical unknown due to the salt component on one hand. On

the other hand, it seems to be more hyperbolic. The discussion

on M7 will be continued in the section on ILUT settings.

model matrices time ORILU time α−SAMG speedup

M1 941 930 928 1.00

M2 8120 5833 4489 1.30

M3 2007 6674 4159 1.60

M4 935 3205 2188 1.46

M5 4454 16822 14123 1.19

M6 3998 77477 65047 1.19

M7 473 14034 11604 1.21

M8 703 391070 25216 15.51

Table 3: Total simulator run times [sec] for ORILU and αααα-SAMG.
The speedup values displayed refer to these total run times. The
speedup of the linear solver part itself is higher.

Comparison to other solvers and different smoothers.
Table 4 endorses the discussion on appropriate smoothers

from above. Other smoothers, namely the parameter-free

methods ILU, BILU and BGS defined above, are not as robust

and efficient as the adaptive ILUT employed in α-SAMG. In

addition, a pure ILU- or BILU-preconditioner does also work

neither robustly nor efficiently (only the ratio for the best out

of these two methods is shown in Table 4).

Comparison to αααα-SAMG’s pure one-level variant (OL-αααα-

SAMG). α-SAMG is at least as fast as OL-α-SAMG, see

Table 4. In three cases, namely M1, M5 and M6, α-SAMG

results - for the reasons (size or hyperbolic behavior)

explained above - in a pure one-level method, see also Table

7. Interestingly, OL-α-SAMG is already slower for the small

M2 than the full α-SAMG. Again, the fact that M4 features

dual porosity is reflected also here to some extend: OL-α-

SAMG performs better for M3 than for M4.

model restr. α-SAMG (B)ILU
ILU-pc-
PAMG

BILU-pc-
PAMG

BGS-pc-
PAMG

M1 ML: 0.61 0.52 0.48 0.21 div

M2 0.87 0.31 0.29 0.45 0.32

M3 0.41 div 0.43 0.23 0.29

M4 0.83 0.25 0.57 0.41 0.53

M5 ML: 0.92 0.58 div 0.46 div

M8 0.45 div div div div

Table 4: Total simulator run times for different preconditioners

divided by respective simulator run time for αααα-SAMG (see Table

1). Accelerator always BiCGstab. “restr. αααα-SAMG” means αααα-SAMG

restricted to OL-αααα-SAMG if αααα-SAMG does not result in a pure one-
level method itself. Exceptions are marked by “ML” (pure multi-

level variant of αααα-SAMG). “div” means unrecoverable solver
problems during the simulator run.

Memory consumptions. Although α-SAMG employs a

hierarchy for all models except of M1, M5, M6, the memory

consumptions of α-SAMG are principally the same or even

less than those of ORILU, as can be seen from Table 5. This is

because of two reasons: the adaptive ILUT strategy slightly

favors memory-cheap variants, i.e. a small lfil, if possible. On

the other hand, the AMG method employs an aggressive

coarsening strategy, so that coarser levels only add a small

amount of memory. For concrete operator-complexities,

memory consumptions of the linear solver part only, and

ILUT parameters, see Table 6.

 total memory [MBytes] avr. memory [Mbytes]

model ORILU α−SAMG factor ORILU α−SAMG factor

M1 210 95 2.21 146 53 2.75

M3 108 99 1.09 102 73 1.40

M4 163 135 1.21 158 100 1.58

M5 261 274 0.95 260 168 1.55

Table 5: Peak memory requirements for the simulator runs;
average requirements including all overhead for each Newton

step; both for ORILU and αααα-SAMG. Values for M6 are nearly
identical to M5. Both M7 and M8 can be run within 2 GBytes RAM.

SPE 105789 9

 complex. peak mem. lfil log10(droptol)

model min. max. min. max. avr. max. min. avr.

M1 1.00 1.00 3.0 43.6 12.4 24 -6.2 -3.6

M2 1.00 1.38 7.1 28.7 4.7 16 -4.1 -2.2

M3 1.11 1.24 23.6 45.7 5.0 13 -2.6 -2.1

M4 1.00 1.35 19.4 53.9 4.1 7 -2.7 -2.0

M5 1.00 1.00 68.7 100.4 4.1 6 -2.7 -2.0

M6 1.00 1.00 69.3 131.6 4.0 12 -3.4 -2.0

M7 1.30 1.33 246.4 319.3 4.0 6 -2.7 -2.0

M8 1.15 1.46 432.0 923.3 7.2 16 -6.9 -3.0

Table 6: Characteristic values for runs with αααα-SAMG: Operator
complexities (including finest-level matrix), peak memory
requirements of the linear solver, ILUT parameters lfil and droptol.
Minimum for lfil is always 4, maximum for droptol always 1e-2.

ILUT Parameter and Solver Switching behavior.
Summaries of important statistics on the ILUT parameter

switching as well as the solver switching can be found in

Tables 6 and 7.

More detailed results on the development of the switching

during simulation are presented for the models M4 and M8.

M4 is the largest model, for which both one-level and multi-

level solvers are employed during simulation. M8 is the

largest model in the benchmark set presented, and at the same

time the largest one for which only multi-level solvers are

used by α-SAMG. Detailed information on the series of ILUT

parameters resulting for models M4 and M8 are presented in

Figs. 2 and 3. BiCGstab iterations needed by the solver chosen

for each of the matrices are shown in Figs. 4 and 5.

In all benchmark cases, the average number of BiCGstab

iterations is very reasonable, although for the runs with multi-

level solvers less lfil than the average number of entries per

matrix row is needed. Hence, the resulting smoother is less

memory-expensive than an ILU(0) would theoretically be

(which still would be very reasonable). High peaks of the

iteration numbers are due to the effect described in the section

on robustness above and Table 7.

Continuing the discussion from above for Model M7, one

can see that the ILUT settings employed result in a rather

cheap smoother. Obviously, M7 is not too complicated to be

solved by means of ILU-type preconditioners. This should

explain the fact that α-SAMG is only a bit faster than ORILU

for M7.

Slightly more iterations seem to be necessary for M8, at

least for the settings of the ILUT parameters as resulting from

the current switching mechanism. However, one has to take

into account here first that M8 has been run on a machine with

2 GBytes RAM only: α-SAMG’s control mechanism has to

restrict the maximum lfil here and switches to a droptol which

seems to be smaller than really necessary, just adding

superfluous run time. Second, although the lfil needed is a bit

higher than for the other models, the smoother employed is

still cheaper than ILU(0) in terms of memory consumptions.

Hence, iterations can be slightly higher. Third, the model

contains several faults and grid refinement. Both facts seem to

distort favorable characteristic directions so that the ordering

of the variables, as produced by the simulator, might suffer.

Still, overall, α-SAMG is more than 15 times faster than

ORILU for the large M8 model which demonstrates the high

potential of α-SAMG for even larger models.

Fig. 2: ILUT parameters chosen by αααα-SAMG for M4.

Fig. 3: ILUT parameters chosen by αααα-SAMG for M8.

 all: iters. OL: iters. ML: iters. runs with

model avr. max. avr. max. avr. max. OL ML

M1 30.7 186 30.7 186 0 0 941 0

M2 16.0 106 17.5 100 6.8 106 7008 1112

M3 7.6 28 0 0 7.6 28 0 2007

M4 11.1 52 20.3 52 5.0 12 374 561

M5 7.0 11 7.0 11 0 0 4454 0

M6 5.0 114 5.0 114 0 0 3998 0

M7 6.3 12 0 0 6.3 12 0 473

M8 16.4 155 0 0 16.4 155 0 703

Table 7: Number of BiCGstab iterations per matrix for runs with αααα-
SAMG; number of iterations and runs separated into cases where
ILUT-BiCGstab (OL) or ILUT-pc-PAMG-BiCGstab (ML) are used,
respectively. Note that high peaks for iteration numbers are due
to the fact that sometimes matrices have to be re-run, and
iterations are summed up over all attempts then.

10 SPE 105789

Fig. 4: Number of iterations of αααα-SAMG for M4. Both, one-level
(depicted by blue dots) and multi-level (red dots) methods are

chosen by αααα-SAMG. A dot on the zero line means that the
respective other solver is used.

Fig. 5: Number of iterations of αααα-SAMG for M8. Only multi-level

methods are chosen by αααα-SAMG.

Conclusions and Outlook
The results presented in this paper clearly indicate the

efficiency and robustness of the new solution method α-

SAMG proposed. For a wide variety of test cases from

different application types – gas-water, black-oil, and

compositional models – as well as different levels of physical

complexity, α-SAMG performs better in terms of overall

computing time as well as memory requirements than the

original adaptive ORILU solver as well as other one-level and

multi-level variants. The performance tends to be the better

the larger and/or more physically involved the model

considered is. For a reasonably complex and large black-oil

model, namely M8, a speedup of more than 15 could already

be achieved keeping memory requirements reasonably low at

the same time. However, if the model is still of mixed elliptic-

hyperbolic type, but features a larger hyperbolic behavior than

M8, as is the case for some models presented, full advantage

of multi-level approaches is expected to be seen for model

sizes beyond 1 million grid points.

Possible further improvement of the switching strategy.

Our strategy α-SAMG already takes D-classes into account.

Special a-priori or online adjustments with respect to physical

properties, such as application type (A-classes, including gas-

water, black-oil, compositional) or physical complexity (P-

classes, among them being concrete well models, dual-

porosity dual-permeability, etc.) and level of ellipticity could

help to further improve efficiency. In addition, further

possibilities for improving the underlying AMG method are

under investigation
3,4

.

A parallel version of the approach proposed. A full MPI-

based parallel version of α-SAMG’s solver switching strategy

is currently under development. In particular, the control

mechanism has to be extended to take into account different

numbers of processors, different characteristics (e.g. w.rt.

communication) of the parallel cluster, and so on.

However, the underlying pc-PAMG solver including a first

parallel version of our ILUT smoother (ILUT with overlap) is

already available in the parallel variant SAMGp
16

 of the linear

solver library SAMG. First promising results are given in

Tables 8 and 9 for two typical matrices from M8, the largest

model analyzed so far. We used lfil=8, droptol=1e-4, an

overlap
d
 of 1 and up to 4 processors. Runs on more processors

do not really make sense here since the matrices only have

about 1.1 million variables (see Table 1).

A detailed analysis and benchmarking of a full parallel

variant of α-SAMG will be published in a subsequent paper.

Table 8: Results of parallel runs with SAMGp for a representative
matrix of M8. “p” is the number of processors, “sp.” the speed-
up, “eff.” the parallel efficiency (equal to “sp.” divided by “p”).

Table 9: Results for another matrix of M8, analogously to Table 8.

Acknowledgements
The authors would like to thank SMT Alps for permission to

use the SURE simulator for the numerical experiments. They

are grateful to Klaus Stüben and Arnold Krechel from

Fraunhofer SCAI for fruitful discussions and support

especially for the parallel tests.

d
 An overlap of 0 or more than 1 would just be slightly more expensive for

these matrices. Also the level of overlap has to be controlled inside a parallel

version of α-SAMG.

 total run time cycling phase only total memory

p time sp. eff. cycles time sp. memory factor

1 82.67 10 75.86 624.17

2 47.79 1.73 0.86 9 39.24 1.93 347.80 1.79

4 33.61 2.46 0.61 10 24.40 3.11 184.64 3.38

 total run time cycling phase only total memory

P time sp. eff. cycles time sp. memory factor

1 94.89 12 88.13 613.94

2 61.18 1.35 0.68 13 52.51 1.68 343.26 1.79

4 41.95 1.97 0.49 13 31.67 2.78 182.12 3.37

SPE 105789 11

Nomenclature

pD = phase molar density

k = permeability

pq = production/injection rate

pS = phase saturation

iV = block volume

pcx = molar fraction of component c in phase p

ijτ = inter-block transmissibility

pλ = phase mobility

pΦ = phase potential

t∆ = time step length

φ = porosity

Subscripts/Superscripts
c = component

ji, = blocks

p = phase

N = number of neighbors

P = number of phases

References
1. Thomas, G.W. and Thurnau, D.H.: “Reservoir Simulation Using

an Adaptive Implicit Method,” SPEJ 23 (Oct. 1983), 759.

2. Klie, H.: Krylov-Secant Methods for Solving Large Scale Systems

of Coupled Nonlinear Parabolic Equations. PhD thesis, Dept. of

Computational and Applied Mathematics, Rice University,

Houston, TX (1996).

3. Stüben, K., Clees, T., Klie, H., Lou, B. and Wheeler, M.F.:

“Algebraic Multigrid Methods (AMG) for the Efficient Solution

of Fully Implicit Formulations in Reservoir Simulation,” paper

SPE 105832 presented at the 2007 SPE Reservoir Simulation

Symposium, Houston, TX, Feb. 28–30.

4. M., Klie, H., Wheeler, M.F., Clees, T. and Stüben, K.: “Deflation

AMG Solvers for Highly Ill-Conditioned Reservoir Simulation

Problems,” paper SPE 105820 presented at the 2007 SPE

Reservoir Simulation Symposium, Houston, TX, Feb. 28–30.
5. Saad, Y.: “ILUT: A dual threshold incomplete ILU

factorization,” Numer. Lin. Alg. Appl. 1 (1994), 387.

6. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed.,

SIAM Society for Industrial & Applied Mathematics (2003),

http://www-users.cs.umn.edu/~saad/books.html.

7. Van der Vorst, H.A.: „Bi-CGSTAB: A fast and smoothly

converging variant of Bi-CG for the solution of non-symmetric

linear systems,” SIAM J. Sci. Stat. Comp. 13 (1992), 631.

8. Saad, Y. and Schultz, M.H.: “GMRes: a generalized minimal

residual algorithm for solving nonsymmetric linear systems,”

SIAM J. Sci. Stat. Comp. 7 (1986), 856.

9. Vinesome, P.K.W.: “Orthomin, an Iterative Method for Solving

Sparse Banded Sets of Simultaneous Linear Equations,” paper

SPE 5729 presented at the 4th SPE Symposium on Reservoir

Simulation, Los Angeles, CA. Feb. 19-20, 1976.

10. Stüben, K.: “A review of algebraic multigrid,” J. Comp. Appl.

Math. 128 (2001), 281.

11. Stüben, K.: “An Introduction to Algebraic Multigrid,” in

Multigrid12, 413.

12. Trottenberg, U., Oosterlee, C.W. and Schüller, T.: Multigrid,

Academic Press, London, UK (2001).

13. Vanek, P., Mandel, J. and Brezina, M.: “Algebraic Multigrid by

Smoothed Aggregation for Second and Fourth Order Problems,”

Computing 56 (1996), 179.

14. Clees, T.: AMG Strategies for PDE Systems with Applications in

Industrial Semiconductor Simulation, Ph.D. thesis, University of

Cologne, Nov. 2004; Shaker, Aachen, Germany (2005).

15. Stüben, K. and Clees, T.: SAMG User’s Manual, Release 22c,

Fraunhofer SCAI, Sankt Augustin, Germany (June 2005),

http://www.scai.fraunhofer.de/samg.html.

16. Krechel, A. and Stüben, K.: SAMGp User’s Manual, Release 21z,

Fraunhofer SCAI, Sankt Augustin, Germany (Oct. 2005),

http://www.scai.fraunhofer.de/samg.html.

17. Stüben K., Delaney P. and Chmakov, S. “Algebraic Multigrid

(AMG) for Ground Water Flow and Oil Reservoir Simulation,”

Proceedings of the Conference “MODFLOW and More 2003:

Understanding through Modeling”, International Ground Water

Modeling Center (IGWMC), Colorado School of Mines, Golden,

Colorado, Sept 17-19, 2003.

18. Wallis, J.R., Kendall, R.P. and Little, T.E.: “Constrained

Residual Acceleration of Conjugate Residual Methods,” paper

SPE 13563 presented at the 8th SPE Symposium on Reservoir

Simulation, Dallas, TX, Feb. 10-13, 1985.

19. Cao, H., Tchelepi, H.A., Wallis, J. and Yardumian, H.: “Parallel

Scalable Unstructured CPR-Type Linear Solver for Reservoir

Simulation,” paper 96809 presented at the 2005 SPE Annual

Technical Conference and Exhibition, Dallas, TX, 9-12 Oct.

20. Papadopoulos, A. and Tchelepi, H.: “Block smoothed

aggregation AMG preconditioning for oil reservoir simulation

systems,” Computing Laboratory Numerical Analysis Report

03/04 (2003), Oxford University, Oxford, UK.

21. Schenk, O. and Gärtner, K.: “Solving Unsymmetric Sparse

Systems of Linear Equations with PARDISO,” Journal of Future

Generation Computer Systems 20 (2004), 475.

22. Schenk, O. and Gärtner, K.: “On fast factorization pivoting

methods for symmetric indefinite systems,” Elec. Trans. Numer.

Anal. 23 (2006), 158.

23. Brand, C. W. and Ganzer, L.: „Iterative Solvers for Dynamically

Implicit Reservoir Flow Equations on Irregular Grids,“ paper

presented at the 5th European Conference on the Mathematics of

Oil Recovery (ECMOR), Leoben, Austria. Sep. 3-6, 1996.

