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Abstract 
 

In recent years, deflation methods have received increasingly 

particular attention as a means to improving the convergence 

of linear iterative solvers. This is due to the fact that deflation 

operators provide a way to remove the negative effect that 

extreme (usually small) eigenvalues have on the convergence 

of Krylov iterative methods for solving general symmetric and 

non-symmetric systems.  

 

In this work, we use deflation methods to extend the 

capabilities of algebraic multigrid (AMG) for handling highly 

non-symmetric and indefinite problems, such as those arising 

in fully implicit formulations of multiphase flow in porous 

media.  The idea is to ensure that components of the solution 

that remain unresolved by AMG (due to the coupling of 

roughness and indefiniteness introduced by different block 

coefficients) are removed from the problem. This translates to 

a constraint to the AMG iteration matrix spectrum within the 

unit circle to achieve convergence.  This approach interweaves 

AMG (V, W or V-W) cycles with deflation steps that are 

computable either from the underlying Krylov basis produced 

by the GMRES accelerator (Krylov-based deflation) or from 

the reservoir decomposition given by high property contrasts 

(domain-based deflation). This work represents an efficient 

extension to the Generalized Global Basis (GGB) method that 

was recently proposed for the solution of the elastic wave 

equation with geometric multigrid and an out-of-core 

computation of eigenvalues.  

 

Hence, the present approach offers the possibility of applying 

AMG to more general large-scale reservoir settings without 

further modifications to the AMG implementation or algebraic 

manipulation of the linear system (as suggested by two-stage 

preconditioning methods). Promising results are supported by 

a suite of numerical experiments with extreme permeability 

contrasts.  

 

Introduction 
 
Computational modeling of flow and transport in porous 

media generally requires the numerical solution of large, 

sparse systems of equations. In most reservoir simulation 

scenarios, the complexity and size of problems that can be 

solved is highly constrained by the efficiency of the solver. 

This trend has been always present in the oil industry despite 

significant and sustained advances in high-performance 

computing technology. 

 

In response to the increasing need to achieve higher resolution 

and complexity levels (and, therefore, larger and potentially 

higher ill-posed problems) in many scientific and engineering 

applications, solver technology has made important advances 

in seeking to exploit algebraic and physical relations that may 

be hidden in matrix coefficients. As a result, new algorithms 

based on Krylov recycling methods (e.g., deflation, 

augmented, Krylov-secant methods, etc; see Fig. 1)1-6, 

algebraic multigrid/multilevel methods
7-11

 and multiscale 

solvers12-13 have lately been driving the interest of many 

industrial and academic communities.  

 

    
Fig. 1: A family of Krylov recycling methods.  

 

Among the family of Krylov recycling methods, deflation has 

emerged as an alternative to extend the capability of current 

preconditioner methods. The key point is that deflation 

methods provide means to remove the negative effect that 

extreme (usually small) eigenvalues have on the convergence 

of Krylov iterative methods3. Nevertheless, we should point 

out that deflation methods are not strictly confined to the 
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setting of Krylov subspace iterative methods. They can also be 

defined in terms of the spatial discretization domain in which 

the flow and transport equations are defined
2
.  Moreover, 

important connections can be established with domain 

decomposition methods. Recent results have shown that 

deflation has greater potentials to further reduce the matrix 

condition number than coarse grid correction14 and balancing 

domain decomposition methods
15

.  

 

On the other hand, Algebraic Multigrid (AMG) methods
7-9

 

have been conceived to remedy several of the limitations that 

geometric multigrid methods show for the definition of 

smoothing, prolongation (restriction) operators over very 

complex geometries. The main advantage of AMG methods is 

that they operate directly on the matrix and, therefore, require 

no information about the physical grid or the underlying 

differential equation.  This feature has attracted many 

researchers to extend the convergence theory and develop 

portable AMG software that may be used effectively in a wide 

range of scientific and engineering applications 
8
.     

 

Despite important advances of AMG from theoretical and 

computational perspectives, there are still many unresolved 

issues. The convergence of (traditional) AMG tends to 

deteriorate when the matrix operator departs from fulfilling 

the M-matrix condition. This condition may be violated 

whenever the matrix loses diagonal dominance or becomes 

highly indefinite or nonsymmetric.  In such cases, components 

of the solution associated with small eigenvalues remain 

untouched and thus delay convergence towards the solution.  

 

In reservoir simulation, there are many sources where the M-

matrix property may be affected (particularly in pressure block 

systems): (a) highly heterogeneous media (i.e., high 

permeability and porosity contrasts); (b) complex geometries 

(e.g., fractures, pinch outs); (c) anisotropic and full tensor 

permeabilities; (d) drastic changes in well operations; and (e) 

appearance and disappearance of phases/components, to name 

a few. In fully implicit formulations, these situations may have 

more severe implications as the systems are coupled and 

coefficients inherit a major degree of nonlinearity with respect 

to the primary variables. We should point out that these 

difficulties are not exclusive to AMG; they are also shared by 

all multigrid methods. 

 

The previous discussion suggests that in the event that AMG 

smoothers and coarse grid corrections are insufficient to 

remove slow modes from the solution it may be convenient to 

isolate or extract these modes from the original problem by 

some alternative method. In other words, AMG may benefit 

from transforming the original stiff problem into a less-stiff 

one without incurring major computational costs. Clearly, 

deflation aims at that objective.   

   

There have been some previous attempts to improve multigrid 

algorithms based on spectral information using Rayleigh 

quotients
16

. A more powerful idea was recently exploited by 

Waismann et al.17-18 for extending geometric multigrid to deal 

with highly indefinite problems. The basic idea is to construct 

an intermediate coarse grid problem (between V, W or V-W 

cycles) spanned by slowly converging eigenmodes of the 

multilevel iteration. These slow eigenmodes correspond to the 

largest eigenvalues of the iteration matrix that generally lie 

nearby or outside the unit disc. They coined the method as the 

Generalized Global Basis (GGB); it relies on an out-of-core 

computation of eigenvalues/eigenvectors from the multilevel 

iteration matrix using the ARPACK library software for large-

scale eigenvalue computations
19

.  Their approach was used as 

a preconditioner for either GMRES or QMR accelerators20. 

Figure 2 illustrates the functionality of this method. 

 
Fig. 2: The GBB approach

17
.  

 
In this work, we introduce the GBB ideas with some important 

modifications: (1) eigenvalue computations are performed in 

an in-core fashion from the Arnoldi factorization generated by  

GMRES (or from the Lanczos factorization in the case of 

symmetric positive definite systems); (2)  the coarse-grid 

construction for slow eigenmodes is replaced by a deflation 

operator that is applied after all multilevel cycles are carried 

out; (3) eigenvalues are computed based on the smallest 

eigenvalues of the preconditioned system which in turn, are 

equivalent to computing the largest eigenvalues from the 

multilevel iteration matrix; and (4) AMG is used instead of a 

geometric multigrid method. 

   

We claim that the present approach is more efficient than the 

GBB method since it exploits the underlying Krylov 

information produced within one cycle of GMRES. 

Additionally, the construction and application of the deflation 

operator represent a marginal overhead in the overall cost in 

the preconditioning procedure. Promising results are supported 

by a suite of numerical experiments ranging from synthetic to 

large-scale and realistic reservoir data sets.  

    
Krylov Basis Preliminaries 
 

To introduce notation, let us assume that we are required to 

solve the generic linear system  

                               ,Ax b=                                    (1) 

where
1

 and  ,  
N N N

A x b
× ×∈ ∈ℝ ℝ . Here, the matrix A is 

generally nonsymmetric, indefinite matrix as it may arise from 

a fully implicit formulation. Nevertheless, we remark that the 

approach described below can be efficiently carried out for 
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symmetric and positive definite systems as well (e.g., pressure 

block systems arising from IMPES formulations). 

 
Suppose that we employ GMRES(s) for solving (1)20. This 

means that each cycle of GMRES consists of s  iterations 

before restarting the procedure with an improved solution. At 

the end of each cycle, if residuals have not met a predefined 

tolerance, GMRES produces the following Arnoldi 

decomposition: 

                     
1 ,

t

s s s s sAV V H hv e+= +                      (2)                                                      

where s s

sH
×∈ℝ  is an upper Hessenberg matrix, N s

sV
×∈ℝ  is 

an orthonormal matrix holding in its columns a basis for the 

Krylov subspace { }1

0 0 0 0
( , ) , , ,

s

s
K A r span r Ar A r

−= …  for a 

given initial residual 
0

r . Here, h  is a scalar representing 
s

v  

and 
1sv +  is a vector orthonormal to .

s
V   

 

Provided the Arnoldi decomposition (2), the following 
reduced minimal residual problem can be solved to 

approximate the solution to (1) for a given initial guess 
0x  

   
( ){ } { }0 0

1

min min

min .

n n

s

x x

s

ty
s

b A x x r Ax

H
e y

he
β

∈ ∈

∈

− − = −

     ⇒ −      

ℝ ℝ

ℝ

     (3) 

 

Thus, 0 *,sx x Vy= +  with *y  representing the solution of (3) 

and 
0

.rβ =  If convergence is not yet achieved then 

0 sx x← and the process is restarted (i.e., a new GMRES cycle 

is performed).   

 

 
Fig. 3: Ritz values (red crosses), harmonic Ritz values (blue 

asterisks) and exact eigenvalues (black circles).  

 

The eigenvalues of 
sH are known as the Ritz values of A and 

they tend to approximate well the extreme eigenvalues of .A  

Additionally, harmonic Ritz values are defined as the Ritz 

values of 1A−  with respect to the space ( )0
, .

s
AK A r The key 

point about harmonic Ritz values is that they turn out to be 

even more accurate approximations to the extreme eigenvalues 

of A  than the Ritz values1,3,21. An example illustrating this 

fact can be seen in Figure 3 for a pressure block system 

obtained from a fully implicit formulation with a 

heterogeneous permeability field (values ranging from 10
-2

 to 

104 md) consisting of 30 30×  gridblocks. We compute 50 

Ritz and harmonic Ritz values from the pressure block. We 

can observe how the harmonic Ritz values represent a better 

approximation to the smallest eigenvalues when compared to 

the Ritz values. A discussion of  the computation of harmonic 

Ritz values and eigenvectors is provided below.  

 

Deflation Preconditioner 

There exists different ways to define deflation, or more 

generally, spectral or adaptive preconditioners
2,6,22-24

. Here, we 

choose to make a presentation based on Frank and Vuik 

work2. Let us define the left and right deflation operators 
1P  

and 
2P  as follows: 

         1 1

1 2;       ,
t t

Z ZP I ZA Z A P I AZA Z
− −= − = −                        (4) 

where ( ) 1
t

Z
A Z AZ

−
= .  These operators are oblique projectors 

onto the orthogonal space spanned by .Z  Clearly, if A  is 

symmetric and invertible, 1 2

t
P P= . Thus, to solve the generic 

system (1) we can proceed to split the solution into two parts: 

( )1 1
 x P x I P x= + − .  

The second component is quite straightforward to compute 

since ( ) 1 1

1
.t t

Z Z
I P x ZA Z Ax ZA Z b− −− = =  The first component 

leads to the solution of the following singular but consistent 

linear system: 

              ( )
1 1 2 1 2 2

ˆ .
i

APP x P AP x P Ax P b= = =           (5)                    

 

It can be shown that if the spectrum of A is  

( ) { }1 2
, , , , ,

l n
A λ λ λ λΛ = … …  and Z holds the eigenvectors 

associated to the smallest eigenvalues, then 

( ) { }2
0,0, 0, , , .

l n
P A λ λΛ = … …   

The previous result implies that the effective condition 

number of the linear system depicted in (4) is smaller than A . 

We remark that this is one way of doing deflation. Other 

authors have used this eigenvalue information to shift those 

small eigenvalues near to 16,22-23. In this case, we do not need 

to solve the singular system (5), and a term of the form t

ZZA Z  

(i.e., coarse grid corrector) is added to the projectors defined 

in (4). This leads to an invertible system with eigenvalues 

clustered around 1.    

 

To further illustrate ideas, Figure 4 shows the effect that the 

deflation operators depicted in (4) has over the original 

spectrum of .A  Here, the operators 
1P  and 

2P  were 

constructed based on the harmonic Ritz values shown in  
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Figure 3. We can clearly observe how several extreme 

eigenvalues have been removed from the original pressure 

block.    

 

 

 
Fig. 4: Eigenvalues of  2 1P AP  (blue asterisks) and eigenvalues of 

A  (black circles).  

 

 
Computing Eigenvalues 
 

As mentioned above, the Arnoldi decomposition (2) is 

amenable for approximating some of the eigenvectors and 

eigenvalues of A . In particular, we are interested in 

computing an approximation to the eigenvectors associated 

with the small eigenvalues of .A  This is key to constructing a 

deflation preconditioner capable of eliminating those 

eigenvalues that are preventing the iterative solver from 

displaying a faster convergence rate. The overall idea is to 

generate a transformed operator with a lower condition 

number. Based on (2), we can compute the harmonic Ritz 

values, that is, solve the harmonic eigenvalue problem, 

                                 

( ) ( ) ( )20 .
t t t

s s s s s s
AV A I V u H h H e e u uµ µ−− = ⇒ + =             (6)             

The eigenvalue estimation for A  is then given by .sz V u=  

Provided that we are already using a preconditioned GMRES 

method, the harmonic Ritz values tend to be good 

approximations of extreme eigenvalues. In order to compute 

Ritz eigenpairs, we just omit the rank-one term in (6).   

Note that the procedure for computing harmonic Ritz and 

harmonic Ritz eigenpais is relatively inexpensive since, 

generally, .s N≪  In the event of finding an invariant 

subspace, i.e., 0h = , the harmonic Ritz values coincide with 

the Ritz values
21

 (i.e., direct eigenvalues of sH ). Moreover, 

GMRES stagnates whenever h  is large or 
sH has a very small 

singular value.  From now on, we denote Z  as the orthogonal 

rectangular matrix resulting from the orthogonalization of the 

set of  l  eigenvectors ,z  that is, [ ]1 2
, , , .

l
Z z z z= …   

It is important to remark that the selection of desired 
eigenvectors (i.e., those strictly associated with the extreme 

eigenvalues) can be further refined by using implicit shift 
strategies25 and augmenting the Krylov basis3. In this paper, 

we do not pursue further these directions for the sake of 

implementation simplicity.  

 

Algebraic Multigrid (AMG) 
 

The development of algebraic multigrid was driven by the 

attempt to automate and generalize geometric multigrid so that 

it can be directly applied to certain (sparse) matrix equations 
without explicitly referring to geometry and without requiring 

any pre-defined hierarchy. 

 
In recent years, there has been a remarkable increase of 

interest in AMG in both science and applications. This is due 

partially to the increasing geometrical complexity of 
applications which, technically, limited the immediate use of 

alternative fast solvers such as those based on geometric 

multigrid. Another reason is the steadily increasing demand 

for scalable and robust “plug-in” solvers. In reservoir 
simulation, this demand was driven by ever-increasing 

problem sizes, complex structures, heterogeneities, multiphase 

flows, and wells that have highlighted the limits of classical 
one-level solvers. 

 

A basic requirement for any multigrid approach, whether 
geometric or algebraic, is an efficient interplay between 

smoothing and coarse-grid correction. Although AMG directly 

mimics geometric multigrid (on a hierarchy of linear systems 

of equations rather than a hierarchy of grids), there is a very 

important conceptual difference between geometric and 

algebraic multigrid, as illustrated in Figure 5. 

 
 

 
 

Fig. 5: Algebraic versus geometric multigrid. 

 

In classical multigrid, predefined grid hierarchies are 

employed and interpolation is defined geometrically, typically 

linearly. Consequently, an efficient interplay between 

smoothing and coarse-grid correction requires the careful 

selection of appropriate smoothing processes such that the 
error after smoothing is necessarily geometrically smooth, 

relative to the coarse grid. In other words, the error after 

smoothing should vary in a geometrically smooth way 
between fine and neighboring coarse grid points so that linear 



105820-MS  5 

interpolation makes sense. While the construction of 

corresponding "robust smoothers" is not difficult in 2D model 

situations, for 3D applications on complex meshes their 
realization tends to become rather cumbersome, if not 

impossible. 

 
The only way to loosen the requirements on the smoother and 

still maintain an efficient interplay with the coarse-grid 

correction is to use more sophisticated coarsening techniques. 

AMG may be regarded as the most radical attempt to maintain 
simple smoothers while still achieving robust convergence. 

Basically, as compared to geometric multigrid, AMG takes the 

opposite point of view. That is, AMG fixes the smoother to 
some simple scheme, such as plain Gauss-Seidel relaxation, 

and attempts to ensure an efficient interplay with the coarse-

grid correction by locally adapting coarser levels and 
(operator-based) interpolations to the smoothing properties of 

the relaxation method. 

 

Note that it is not important whether relaxation really 
smoothes the error in a geometric sense. What is important, 

though, is that the error after relaxation can be characterized 

algebraically to a degree that makes it possible to perform the 
coarsening process automatically. For many classes of 

applications this is possible, the most classical case being 

represented by weakly diagonally dominant M-matrices. In 

such cases, AMG is highly flexible in adjusting itself to the 

problem at hand and is very robust and efficient despite using 

very simple smoothers. 

 
Generally, the guiding principle in automatic coarsening is to 

ensure that the range of interpolation approximately contains 

smooth error, that is, error which is essentially unaffected by 
relaxation. This is the crucial condition for obtaining robust 

coarse-grid correction processes as well as fast and (nearly) h-

independent convergence. However, in practice, AMG's 

coarsening process must necessarily be constructed on the 

basis of compromises between numerical work and 

convergence. Generally, the more effort put into this 

construction, the faster the convergence can be. But, 

unfortunately, the required numerical workload may increase 

even faster. Typically, the benefit of an improved interpolation 

in terms of convergence speed is offset by the expense in 
terms of additional computational work. That is, from a 

practical point of view, a major problem in designing efficient 

AMG algorithms is the tradeoff between convergence and 

numerical workload. Keeping the balance between these 

aspects is the ultimate goal of any practical algorithm.  

 

Often, sufficiently accurate AMG interpolation cannot easily 

be computed based only on algebraic information directly 

contained in the matrix. Typically such cases are indefinite 

problems or problems with near-zero eigenvalues. In the latter 
cases, for instance, the major difficulty is caused by the fact 

that the smaller the eigenvalues of a given problem the more 

accurately the corresponding eigenvectors must be 

interpolated. Unfortunately, unless these eigenvectors are 

close to being constants, the accuracy of interpolation for 

these eigenvectors cannot really be controlled without 

additional information. As a consequence, the insufficient 

quality of AMG interpolation for just a few modes - namely, 

the lowest-energy eigenmodes - may severely limit its overall 

performance. 
 

Rather than investing a lot of additional computational work to 

improve AMG's coarsening process, in this paper, we 
investigate the combination of AMG with deflation methods 

to tackle particular modes that are difficult for AMG to handle 

efficiently. All investigations are based on the solver package 

SAMG, developed by Fraunhofer SCAI
26

. 
 

The Deflation AMG Approach 
 
Based on the aforementioned discussion, we can state that the 

addition of deflation preconditioning does not impose a major 

implementation work to AMG solvers that already have a 
Krylov iterative solver as an accelerator. Obviously, this 

Krylov iterative solver must allow factorizing the original 

matrix into a tridiagonal or Hessenberg form to make it 

amenable for eigenvalue computations. This is provided by 
Lanczos and Arnoldi decompositions for positive definite and 

general nonsymmetric/indefinite systems, respectively. After 

the first GMRES cycle, we should be able to reconstruct the 
deflation operators based on the harmonic Ritz or Ritz vectors.  

 

The following algorithm summarizes the implementation of  a 

deflation AMG preconditioner for GMRES:   
 

Deflation_AMG_GMRES(
0 1 2, , , , , , , ,AMGA b x M P P s lε ) 

1. Convergence = false; 

2. While not(Convergence) do  

2.1. ( )1

0 2 0 ;AMGr P b AM x
−= −  

2.2. Apply Arnoldi decomposition and obtain (2) 

2.3. Solve (3) and obtain 0 *,sx x Vy= +  

2.4. If  
0s

b Ax rε− <  then 

2.4.1. Convergence = true; 

2.4.2. * 1 *

1 ;AMG sx PM x x
−= +  

Else 

2.4.3. 0 ;sx x=  

2.4.4. Compute l harmonic Ritz vectors (or Ritz 

vectors) according to (6) and form the 

corresponding eigenvector approximation Z;  

2.4.5. Construct  the deflation operators 
1P  and 

2
P according to (4) for the preconditioned 

system 
1

;AMGAM
−

 

2.4.6. Compute ( )* 1

1
.

t

Z
x I P x ZA Z b

−= − =  

End If 

End While 

 

Several comments are in order: 

 

1. Initially, at the first GMRES cycle, the deflation operators 

may be defined as 1 2 ;P P I= =  however, strategies to 

provide physically insightful eigenvectors have been 

explored by Vuik and collaborators27. The idea is to 
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algebraically define eigenvectors according to regions or 

subdomains sharing the same permeability coefficients (as 

in a domain decomposition approach). The set of resulting 
eigenvectors is the basis for domain-based deflation 

operators.    

2. The AMG preconditioner has been used as a right 
preconditioner, whereas the deflation operators are acting 

from the left side of the equation.   

3. The computation of harmonic Ritz vectors or Ritz vectors 

may imply the use of complex arithmetic for 
nonsymmetric systems. However, due to the relatively 

small size of the associated Hessenberg matrix ,sH this 

computation can be efficiently carried out via Lapack 

library calls
28

.   
4. Since most deflation or spectral preconditioners share the 

same principle for computing harmonic Ritz vectors or 

Ritz vectors, the implementation of other varying and 
adaptive preconditioners can be easily realized using the 

above algorithmic presentation.  

5. As iterations progresses, the Ritz vectors and harmonic 

Ritz vectors tend to be mutually closer as the variable h  

progressively becomes smaller. In this case, the GMRES 
algorithm will be approaching a “happy breakdown”, that 

is, an invariant subspace for A will be generated and the 

computed eigenpairs will be very accurate.   
6. The proposed algorithm does not imply modifications to 

AMG or GMRES if desired. The point is that all the 

required spectral information can be generated after 

calling each cycle of GMRES. Hence, each subsequent 

deflation operator construction may be performed 

alternatively, outside GMRES. 

7. In contrast to the GBB approach
17

, there is no need to 
make out-of-core eigenvalues computations from scratch 

and directly from the original matrix operator. The 

underlying Krylov information is basically reused to 
generate the required eigenvector approximations. In this 

sense, the proposed approach has an in-core blend in the 

computation that is not intrusive upon AMG cycling or 

coarsening steps.   

8. Special care must be taken for efficiently carrying out the 

action of the deflation operators. For instance, it is 

recommended to factorize the constrained matrix ZA to 

save computations during the application of  2P  in step 

2.2 and 1P  in step 2.4.6. Also, algebraic operations must 

be performed giving precedence to vector-matrix products 

over matrix products.     

 

Numerical Experiments 
 

In this preliminary set of experiments we consider the 

following two cases: 
 

1. IMPES pressure systems arising from a set of different 

30x30 reservoir meshes with permeability distributions 

varying according to variance and correlation length; and 

2. A fully implicit pressure system arising from a 12x44x17 

upscaled reservoir version of the SPE 10th Comparative 

Project
29

.  

Numerical cases are performed on the parallel reservoir 

simulation framework IPARS30. For all cases we define a 

water injection well at the lower left corner and a production 
well at the opposite corner of the reservoir. All wells are 

bottomhole pressure specified. The first set of IMPES cases 

was based on an oil-water system. The fully-implicit case was 
defined for a black-oil system. Pressure block systems were 

obtained after 100 timesteps and at the first Newton iteration 

for fully implicit formulations. No special treatment was 

performed on time stepping to enforce the generation of ill-
posed linear systems. Instead, we restrict our observations on 

high heterogeneity effects.   

 
We basically distinguish two types of solver approaches: (1) 

AMG with GMRES acceleration (AMG); and (2) deflation 

AMG with GMRES acceleration (DAMG). We consider the 
following default settings for SAMG26 in all cases that were 

analyzed: 

 

• pre- and post-smoothing steps at each level consisting of 
one Gauss-Seidel iteration; 

• V-cycle coarsening/refinement pattern consisting of a 

maximum of 25 levels; and 

• sparse Gaussian elimination at the very coarsest level.  

 

GMRES was run with a tolerance of 10
-12

 and a fixed restart of  

5s=  due to the relative small size of the problems. For each 

DAMG computation the size of the deflation space was set as 

.l s=  We computed only one set of deflation operators per 

problem, thus freezing the deflation operators for subsequent 
GMRES cycles. This allows us to lower the computational 

burden and evaluate the effectiveness of the first spectral 

approximation in retrieving those “hard” modes from AMG 

iterations.  

 
Fig. 6: Matrix condition number as a function of variance and 

correlation length for a 30x30 mesh (colors are in log10 scale). 

 

 
For the first set of experiments, we generate the permeability 

distribution according to the following exponential covariance 

function: 

( ) /
, e .

X Y L
Cov X Y σ

−
=  
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Fig. 7: Convergence results of DAMG (blue asterisks) and  AMG 

(red circles) solvers for 30, 20σ = and 10 (from top to bottom) 

and a fixed correlation length of 10%.  

 

 

 

 

 

 

 

 
 

Fig. 8: Convergence results of deflation DAMG (blue asterisks) 

and  AMG (red circles) solvers for 5,10L= and 30% (from top 

to bottom) and fixed 20.σ =  
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Here, σ represents the variance and L  represents the 

correlation length. Figure 6 illustrates how the condition 

number of an IMPES pressure system behaves with respect to 
these two parameters. The general trend is that the condition 

number increases steeply as both the variance increases and 

the correlation length decreases; that is, when the permeability 
field lacks any particular structure and varies significantly 

between adjacent cells. For the cases considered here the 

permeability may vary by up to 10 orders of magnitude.  

 
Figure 7 compares the behavior of DAMG and AMG for 

different permeability variations and a fixed correlation 

length. It can be observed that the higher the variation the 
greater the effectiveness of DAMG compared to AMG. 

Nevertheless, it should be noted that for 30σ =  the deflation 

process was unable to maintain the rate of convergence at very 

low residuals. This is an indication that there may be some bad 

nodes that were not captured by the deflation operators and 

refreshing the basis may be a reasonably thing to do.   

 
Figure 8 performs a similar comparison in terms of the 

permeability correlation length. As expected, the greater the 

correlation length the greater the number of adjacent cells with 
similar values and, therefore, the better conditioned the 

associated linear system. DAMG seems to be less prone to 

stagnation and oscillations as the spatial correlation decreases. 

It is worth to add, that AMG does, in overall, a good job 

decreasing the relative residuals. GMRES may be having 

difficulties to deal with slight variations on how AMG 

satisfies its own tolerances for remaining hard modes (see top 
graph of Figure 8). DAMG seems to be approaching the 

solution fast enough to avoid this oscillatory behavior.  

 
Fig. 8: Convergence results of DAMG (blue asterisks) and  AMG 
(red circles) solvers for the  upscaled version 12x44x17 of the 

SPE 10th Comparative Project. 

 
The fully implicit case results are depicted in Figure 9. Due to 

the larger size and lost of symmetry, the problem imposes 

major difficulties to both AMG and DAMG. Yet, there is 
slight advantage for DAMG over AMG for the first 150 

GMRES iterations. However, the deflation vectors may be 

reaching an exhausted point that does not allow for 

discovering other bad modes from the problem. Note how 

AMG recovers after 140 iterations and end up surpassing the 

DAMG. This may reveal that the deflation vectors should 

have been refreshed some cycles before in order to quickly 

reach low residual values. 
 

Conclusions and Further Remarks 
 

This work establishes how deflation preconditioning strategies 

may be used to complement the preconditioning strength of 

AMG methods. The basic principle is to rely on Krylov 

iterative methods that maintain an orthogonal basis for the 
underlying Krylov subspace. We show that this information 

can be useful to construct deflation operators for subsequent 

restart cycles. Nevertheless, the proposed deflation strategy 
may also accommodate domain-based approaches. The 

proposed DAMG algorithm has the potential to remove 

components of the solution associated with these undesired 
eigenvalues and thereby provide more robustness to AMG.  

 

We can draw the following conclusions: 

 
1. Deflation AMG preconditioners are an attractive 

alternative to extend convergence capabilities of plain 

AMG preconditioning strategies.  
 

2. The additional effort of implementing DAMG solvers is 

relatively low if the Krylov basis is available is some 

factorized form. 

 

3. The proposed strategies may be primarily convenient in 

situations where matrix symmetry and positive 
definiteness are lost. These situations typically arise in 

fully implicit formulations for coupled pressure and 

saturation/concentration operators involving abrupt flow 
changes due to high permeability/porosity heterogeneities.  

 

Despite the encouraging results, further testing is certainly 

required to formalize more solid conclusions.  Many lessons 

were obtained during the implementation that needs to be 

further evaluated and related to a wider range of physical 

situations.  The challenge here is to identify what physical and 

algebraic scenarios may lead to a small number of negative 

eigenvalues and, preferably, have them arranged in a clustered 

fashion that could be amenable for deflation processes. There 
has been evidence that pressure systems resulting in fully 

implicit systems can generate very small and even negative 

eigenvalues as a consequence of negative well production 

contributions to main diagonal terms. This topic is ongoing 

research of the authors in conjunction with two-stage 

preconditioning strategies31.   

 

Indefinite and highly nonsymmetric operators are prone to 

appear when disparate physical processes are coupled to 

increase the predictive capabilities of current reservoir models. 
The proposed deflation and AMG methodology should be 

evaluated in multiphysics settings such as compositional flow, 

thermal, fracture models, geomechanics, surface networks and 

sophisticated well models.  As indicated in the text, there are 

many ways to compute spectral preconditioners that may 

beneficial to evaluate with AMG approaches in the near 

future.  
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