
2010 SPE Reservoir Evaluation & Engineering 1

Parallelization of a Commercial
Streamline Simulator and Performance

on Practical Models
R.P. Batycky, SPE, Streamsim Technologies; M. Förster, Fraunhofer’s Scientifi c Computing Institute; M.R. Thiele, SPE,

Streamsim Technologies/Stanford University; and K. Stüben, Fraunhofer’s Scientifi c Computing Institute

Summary
We present the parallelization of a commercial streamline simula-
tor to multicore architectures based on the OpenMP programming
model and its performance on various field examples. This work is
a continuation of recent work by Gerritsen et al. (2009) in which a
research streamline simulator was extended to parallel execution.

We identified that the streamline-transport step represents
approximately 40–80% of the total run time. It is exactly this
step that is straightforward to parallelize owing to the indepen-
dent solution of each streamline that is at the heart of streamline
simulation. Because we are working with an existing large serial
code, we used specialty software to quickly and easily identify
variables that required particular handling for implementing the
parallel extension. Minimal rewrite to existing code was required
to extend the streamline-transport step to OpenMP. As part of
this work, we also parallelized additional run-time code, includ-
ing the gravity-line solver and some simple routines required for
constructing the pressure matrix. Overall, the run-time fraction
of code parallelized ranged from 0.50 to 0.83, depending on the
transport physics being considered.

We tested our parallel simulator on a variety of large models
including SPE 10, Forties–a UK oil/water model, Judy Creek–a
Canadian waterflood/water-alternating-gas (WAG) model, and a
South American black-oil model. We noted overall speedup fac-
tors from 1.8 to 3.3x for eight threads. In terms of real time, this
implies that large-scale streamline simulation models as tested here
can be simulated in less than 4 hours. We found speedup results
to be reasonable when compared with Amdahl’s ideal scaling law.
Beyond eight threads, we observed minimal speedups because of
memory bandwidth limits on our test machine.

Introduction
Reservoir simulation models are routinely limited in size because
of run-time and memory constraints. Yet modern reservoir engi-
neering workflows for history matching, uncertainty assessment,
and optimizing forecast scenarios rely on the ability to run large,
finely gridded models multiple times. For some of these workflows,
such as ensemble history matching or ranking/screening multiple
realizations, it is acceptable to run multiple models in parallel with
a serial simulator on a computer cluster. However, for the majority
of practicing engineers, the reality is that desktop hardware is their
only compute platform, they have a limited number of models to
work with (usually one or two), and they are doing well-level his-
tory-matching or forecast scenarios one run at a time.

Recent advances in desktop hardware have made multicore-
CPU shared-memory workstations the preferred computing envi-
ronment for today’s reservoir engineers, with workstations having
four to 16 cores. Simulators that are parallelized by means of
OpenMP directives can take advantage of these shared-memory
systems, speeding up any serial workflow. All major commercial
finite-difference (FD) simulators are available with a parallel

compute option, either OpenMP and/or MPI (Collins et al. 2003;
DeBaun et al. 2005; Shiralkar et al. 2005), to take advantage of
this hardware.

Commercial streamline-based simulators (SLSs) have tradi-
tionally been less mature than FD methods because they have
been introduced only within the last 10 years. SLSs are not read-
ily available for parallel computing, meaning today’s engineers
cannot take advantage of the latest multicore hardware develop-
ments. However, because SLS is ideally suited for simulating
large, geologically heterogeneous models, quantifying upscaling
processes, and/or history matching, a parallel extension is highly
desirable. Fortunately, the SLS-architecture is inherently parallel-
izable. Recent work on a research streamline simulator presented
promising results (Gerritsen et al. 2009). Their work focused
on parallelization of the transport step only in which they quote
speedups of approximately 6x for eight threads (AMDTM chip)
and 13.5x for 16 threads (SUNTM chip) for a large, synthetic res-
ervoir model. Gerritsen et al. (2009) addressed issues such as load
balancing of the streamlines and testing performance on different
hardware architectures.

The main purpose of this paper is to build on the results of Ger-
ritsen et al. (2009) and show the extension of an existing serial com-
mercial streamline simulator (Streamsim 2008) to a parallel environ-
ment. The challenge we faced was how to migrate the existing serial
infrastructure to OpenMP while minimizing code-rewrite, and to see
how this adapted code would perform on real reservoir models. One
critical difference between this work that of Gerristen at al. is that
it is not possible to predetermine the work per streamline, meaning
that there is no effective way to load balance the streamlines. Rather,
we let the compiler determine the load balancing.

Overview of Streamline Simulation
Here, we briefly review the key steps in streamline simulation and
show why the method is inherently suitable to parallelization. For
a detailed discussion on the mathematics of the streamline method,
see Batycky et al. (1997), Thiele (2005), or Datta-Gupta and King
(2007). For simplicity, we have assumed incompressible flow in
this brief review because fluid compressibility does not change
which regions of the simulator to parallelize. Fluids compress-
ibility does, however, have an impact on parallel performance, as
we will show later.

In SLSs at each timestep, pressure is solved for implicitly while
saturations (or compositions) are solved for explicitly. Stream-
line simulation can be viewed as a dual-grid approach because
the implicit pressure solve is computed on a static cell-based
(Eulerian) grid while saturations are computed on a dynamically
changing flow-based (Lagrangian) grid defined by streamlines.
Thus, there are two mapping steps involved: from the cell-based
grid to the streamlines at the beginning of the timestep and then
from the streamlines back to the cell-based grid at the end of the
timestep (Fig. 1).

The implicit pressure solver is similar to that used in conven-
tional FD methods. An implicit pressure matrix is constructed on
the basis of a multiphase-flow pressure equation and the volume-
balance method outlined by Ács et al. (1985) and Watts (1986).
For incompressible systems with no capillary pressure, the volume-
balance equation summed over all phases (np) reduces to

Copyright © 2010 Society of Petroleum Engineers

This paper (SPE 118684) was accepted for presentation at the SPE Reservoir Simulation
Symposium, The Woodlands, Texas, USA, 2–4 February 2009 and revised for publication.
Original manuscript received for review 3 November 2008. Revised manuscript received for
review 19 June. Paper peer approved 29 July 2009.

SPE_REE_118684_100030.indd 1SPE_REE_118684_100030.indd 1 5/15/10 10:14:37 AM5/15/10 10:14:37 AM

2 2010 SPE Reservoir Evaluation & Engineering

∇ ⋅ ⋅ ∇ + ∇ =
=

∑ K P g Dj j
j

n

j

p

()� � �
1

0, . (1)

where the phase j mobility is given by �j, phase density �j , per-
meability tensor K, depth D, gravitational acceleration g, and P
is the unknown pressure. The result is one unknown pressure per
gridblock, one unknown wellbore pressure for each well on rate
control, and a diagonal sparse matrix with a seven-point stencil
for 3D grids. We solve the sparse matrix by means of an efficient
multigrid method (Stüben 2001). Once pressures are known on the
static Eulerian grid, grid-cell interface velocities are computed on
the basis of Darcy’s law. From the velocity field, streamlines are
traced to construct the flow-based grid.

The mass-balance equation for phase saturations (Sj) on the
underlying 3D grid that is coupled to the preceding pressure equa-
tion is given by

�
∂
∂

+ ⋅∇ + ∇ ⋅ =
S

t
u f Gj

t j j 0, . (2)

where the phase fractional flow is given by,

f
k

j
j

T
j

rj

j

= =
�

�
�

�
; , . (3)

with phase relative permeabilities krj and phase viscosities �j. If we
assume that the phase velocity caused by buoyancy (Gj) is aligned
along the z-axis, then Gj is given by

G K gf Dj z j i i
i

n

j

p

= ⋅ ∇ −
=
∑� � �()

1

, . (4)

where Kz is the vertical permeability.
In streamline simulation, the 3D mass-balance equation can be

recast into a set of 1D equations, each solved along a streamline using
the time-of-flight variable �. This is the key coordinate of interest
along a streamline and is a reflection of the velocity field derived
from the pressure solve. The gravity term, which is not aligned along
streamlines, is accounted for in a separate step by means of operator
splitting. See Thiele (2005) for details on the entire transport step.

The resulting 3D saturation equation in a streamline simulator
is then given by

∂
∂

+
∂
∂

=∑ S

t

fj j

�
0

streamlines

all

 . (5a)

∂
∂

+
∂
∂

=∑ S

t

G

z
j j1

0
�gravity lines

all

. . (5b)

(a) (b)

(c) (d)

Fig. 1—Static properties, well locations, and initial conditions (a) are used to solve the pressure field implicitly (b). The velocity
field is then computed from the pressures, streamlines are traced, the 1D transport equations are solved along each streamline
(c), and the results are mapped back to the static grid (d).

SPE_REE_118684_100030.indd 2SPE_REE_118684_100030.indd 2 5/15/10 10:14:38 AM5/15/10 10:14:38 AM

2010 SPE Reservoir Evaluation & Engineering 3

The solution to Eq. 5 is to first update saturation along all stream-
lines by means of a 1D convective solver, map each 1D result to
the 3D grid, and then update saturation along each gravity line
directly on the 3D grid by means of a 1D gravity solver (operator
splitting). Within a global timestep, each streamline is solved for
independently of other streamlines, and then each gravity line is
solved for independently of other gravity lines. Thus, the original
3D mass-balance equation is reduced to a series of independent 1D
equations, which is why SLS lends itself to parallelization. There
is no reformulation of the underlying mass-balance equations to
extend the method to parallel computation.

Computational Effi ciency of a Streamline Simulator. Before
discussing parallelization, we explain the computational effi ciency
of the streamline method in serial mode. For each timestep, Eq. 1
is solved fi rst, Eq. 5a is solved second, and Eq. 5b is solved last.
The total run time for a streamline simulator solving Eq. 1 and Eq
5a-5b can be approximated as,

T

t t

t
≈

+

+

psolve sl-grid

sl-solver

streamlines

all

∑∑ ∑+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟tgl-solver

gravity lines

all

timeesteps

all

∑ (6)

At each timestep, tpsolve is the time required to set up and solve Eq.
1 as well as compute the velocity field. Once the velocity field is
known, tsl-grid is the time required to construct the streamline-based
grid, tsl-solver is the time to solve a 1D transport equation along a
streamline (Eq. 5a), and tgl-solver is the time to solve a 1D transport
equation along a gravity line (Eq. 5b). Note that tsl-grid occurs
because of the dual-grid nature of streamline simulation, where for
each timestep the result of the pressure solution is used to construct
the flow-based grid. During this construction phase, checks such
as proper streamline coverage and adequate well connections with
streamlines are made.

To illustrate the proportion of CPU time required for each
component of Eq. 6, we simulated the SPE 10 fine-grid model
(60×220×85) containing approximately 1.1 million active grid cells
to 2,000 days of water injection (Christie and Blunt 2001) for both
compressible and incompressible pressure/volume/temperature
(PVT). The incompressible model required 25 global timesteps,
while the compressible model required 27 global timesteps. Fig. 2
shows the contribution of each term in Eq. 6 for the two runs,
scaled to the total runtime of the incompressible result. First,
note that for both cases the solution to the multiple 1D equations

along streamlines represents the largest percentage of CPU used,
followed by sl-grid setup, followed by the pressure solve. Also
note that the compressible run is approximately 50% slower than
the equivalent incompressible run, because of increased iterations
required for the pressure solve, a more complex PVT flash cal-
culation, but mainly the more complex 1D transport equation to
solve along each streamline. In general for streamline simulation,
as the complexity of the 1D transport equation along a streamline
increases, tsl-solver increases. Thus, extensions such as dual-porosity
(DiDonato et al. 2003), compositional (Thiele et al. 1997), or poly-
mer displacements (Thiele et al. 2010) primarily have an impact
on tsl-solver. Last, the gravity step represents very little of the overall
work per timestep. This is particularly true for SPE 10 in which
gravity effects are minor, with the 1D gravity solver having to do
few timesteps per gravity line.

Development of a Parallel Streamline
Simulator
To parallelize the simulator, our goal was to include OpenMP
directives within the existing code in the areas identified on the
basis of Fig. 2 and similar timing tests. Key to this implementa-
tion was the easy identification of variables that could be shared
between parallel threads and variables that were deemed critical
(accessed by only one thread at a time). Because it was difficult
to identify critical and shared variables by hand, we used the
ADAPTOR Fortran compilation tool system developed by Brandes
(2003). This tool analyzes the source code to identify all critical
accesses to variables inside desired parallel regions. ADAPTOR
also assisted in deciding how to proceed with each variable by
listing all other read/write accesses throughout the parallel and
serial parts of the code, particularly at the interprocedural level.
With this information gathered, we could easily decide whether a
variable needed special treatment or not.

We also used the profiling capabilities of the ADAPTOR system
with access to the hardware performance counters to show that in a
desired parallel region, memory performance was not a bottleneck
for serial runs. This confirmed that parallelization to eliminate
CPU bottlenecks was worthwhile.

Brief Description of OpenMP. With OpenMP directives, it is
straightforward to included parallel processing of loops within
existing Fortran code. One must fi rst identify the loop to parallelize
and use the SCHEDULE directive to control how the iterations of
the loop are to be divided among the threads. Since all variables are
assumed to be shared—that is, each thread has access to all variables
in the program at all times—one must also defi ne which variables
are PRIVATE. Variables defi ned as PRIVATE are replicated for each
thread and can be accessed only by the thread they are assigned to.
Last, CRITICAL regions may be defi ned within the loop and are
regions that can be accessed only by a single thread at a time.

On the basis of the preceding description, we show in Fig. 3
using Fortran pseudocode, how to extend the streamline solver to
parallel threads with OpenMP.

In the example in Fig. 3, the loop is parallelized over all stream-
lines (nsl). Each free thread is given a unique value of i. Within
the call to tracestreamline() the value i points to a set of starting

0%

20%

40%

60%

80%

100%

120%

140%

160%

Incomp. Comp.

%CPU TIME for SPE 10

gl-solver

sl-solver

sl-grid

p-solver

Other

Fig. 2—Percentage of run time for major code sections for
SPE10 (60×220×85), incompressible vs. compressible. It is
assumed that the entire CPU time for the incompressible run
represents 100% CPU time.

����������		
	������

��������������������
������������
��	
����� !"�#��
���!$#�����
� ��		��%�"&��%&� �!�&�!������������������
� ��		�'�&������'�(&%������������������
���������
���	�
� ��		� ����)*%!�������������������
� ��		� ����)+&���������������������
������
,�����
���	�

,�����

Fig. 3—Pseudocode with OpenMP directives.

SPE_REE_118684_100030.indd 3SPE_REE_118684_100030.indd 3 5/15/10 10:14:42 AM5/15/10 10:14:42 AM

4 2010 SPE Reservoir Evaluation & Engineering

coordinates to trace the ith streamline from. The streamline is
then traced and stored in sl_path along with the fluid saturations
(sl_sats) from the underlying grid. These PRIVATE variables are
then passed to the streamline solver where sl_sats are updated to
the new time level by solving Eq. 5a. Once the transport step is
completed, a thread will wait until it has sole access to the CRITICAL
section that maps the new saturations back to the underlying grid
and wells. To achieve ideal speedups for a large number of threads,
it is important that the run time of the CRITICAL section of the
loop be small compared to the work in the parallel section. Finally,
because of the SCHEDULE(dynamic,1) construct, once a thread
is free it will be assigned the next value of i. Thus, the work per
thread is balanced dynamically, with each thread getting a new
streamline once it has completed its current streamline.

Gravity-Line Solver. Although the gravity-line solver represented
a small fraction of the total run time, this was the fi rst section that
was parallelized because it required no rewriting of the existing
code. Furthermore, this region required parallelization of PVT
routines, which would also be used for the more-complicated
streamline-solver parallel region. Parallelization was at the level of
a single gravity line per thread. Most importantly, the gravity-line
solver had no critical variables to be concerned with because there
is only one gravity line passing through any cell on the 3D grid.

Streamline Solver. As discussed, the solution of the transport
equations along streamlines is intrinsically parallelizable—each
streamline transport step is independent of all other streamlines—
and represents the majority of CPU time during a simulation. Some
code modifi cations were required to break loop order dependence
because the code was originally written for serial implementation
only. Once completed, we parallelized the loop that cycles over all
the existing streamlines to be passed to the 1D solver at the level
of a single streamline per thread. OpenMP critical directives were
added to the routine that maps the results of each streamline solu-
tion back to the Eulerian grid and to the routine that maps the 1D
injection/production information to the associated wells. Although
these two routines cause each thread to wait before starting another
streamline solution, the CPU requirements here are a tiny frac-
tion compared with those of the 1D streamline solver (SL-solver)
requirements, meaning that we do not expect these critical sections
to cause signifi cant performance bottlenecks.

Pressure Solver. The pressure solver was parallelized in three
distinct places. First, we parallelized the fl ash of all gridblocks to
update all fl ow properties on the basis of the last pressure solution.
Second, the construction of the sparse matrix was parallelized. And
third, the calculation of the velocity fi eld on the basis of the new
pressure solution was parallelized. All three of these components
were parallelized and represent approximately 2% of the total
CPU time of a run.

The SAMG multigrid solver, which represents the largest frac-
tion of tpsolve, was provided as both a serial and an OpenMP version.
However, because SAMG itself has both parallel and serial regions,
it is difficult to separate timing of each region. To simplify our
analysis and show how the SLS scaled, we used the serial version
of SAMG for all our results.

Results
The hardware used for all simulations was an AMDTM OpteronTM
8-CPU 8384 quad-core 2.7-Ghz system with 128 GB of memory,
running Linux-64 RH4TM. Although this specific hardware is more
representative of that found in high-end computer laboratories,
quad-core and dual quad-core workstations are readily available
to today’s engineers.

We used the Intel 10.1 64-bit compiler. All loops were load
balanced using the dynamic scheduling directive of the compiler,
meaning that the compiler gives each thread a new task from the
list of remaining tasks, once a thread’s current task is finished.
Depending on which loop was parallelized, a single task rep-
resented a single streamline, a gravity line, or a grid cell. This

differes from the work of Gerritsen et al. (2009), in which they
were able to predetermine how to optimally load balance each
thread since they were solving linear transport problems along
each streamline. Here, the vast majority of transport problems we
solve are nonlinear, meaning we cannot predetermine how much
work each streamline will require and thus use a compiler load-
balancing option.

For all timing results, we had dedicated access to the hardware
and performed each multithread run one at a time. To time perfor-
mance, we used OMP_WALL_CLOCK timing directives around
select parallel regions as well as the entire code.

We compared our speedup (SU) results with ideal speedup scal-
ing, as defined by Amdahl’s law (Amdahl 1967) as

SU s p N= +1 / (/), . (7)

where the number of threads is N, the fraction of parallel code is
p, and the serial portion is s=1−p. For comparison with Amdahl’s
law, we first computed the fraction p of run time code that was
parallelized by timing performance of the parallel regions vs. total
run time for a one-thread run for each simulation model. This value
of p was then used in Amdahl’s law to compare performance of
multithread runs. As we show below, Amdahl’s law implies that
the maximum possible value of SU is limited by the value of s,
regardless of the number of threads used. In other words, as the
number of threads increases, the run time is eventually limited by
the serial portion of code.

Repeatability of a Parallel-Run Result. In reservoir simulation,
there are variables whose values are the result of running sums
computed within a loop. In streamline simulation specifi cally, the
gridblock saturations at the new time level are computed as running
sums of all the new streamline saturations associated with the grid-
block. Because of the fi xed precision of fl oating-point calculations,
the fi nal value of the sum is dependent on the order in which the
individual streamline saturations are added to the sum.

For a serial run, the order of the streamline tracing and, thus,
the order of the sum is always the same, meaning simulation results
are repeatable. However, in a multithread environment the sum-
mation of a gridblock’s saturation resides inside a parallel loop,
with the order of the running sum now a function of the number of
threads used and processor load balances. Thus, the overall simula-
tion results change slightly if a given data set is simulated using
two threads vs. four threads, for example. Furthermore, because
of variations in processor load balances between separate runs,
repeating a four-thread flow simulation, for example, will not give
exactly the same results either.

For parallel simulation runs, the dependency of results on the
number of threads means that the exact same problem is not being
computed as a model is tested on various numbers of threads. Thus,
for all results, we confirmed that the overall field production pro-
files for each multithread run were within engineering accuracy to
the one-thread run of each case studied. Nonuniqueness also means
that the value of s (and p) computed for Amdahl’s law for a one-
thread run is an estimate that is subject to small variability.

SPE 10
The fine-scale 60×220×85 SPE 10 model was simulated on 1 to 16
threads for both incompressible and compressible PVT systems.
As expected from Fig. 2, which showed the sl-solver representing
a larger portion of run time code for the compressible run vs. the
incompressible run, we computed p=0.63 for the incompressible
run and p=0.70 for the compressible run. Fig. 4 shows that run-time
speedups compare favorably with ideal scaling.

The overall speedup results can be broken down further into
speedup factors for each parallelized region. Recall that the stream-
line solver (red line) represents the greatest portion of parallelized
code, meaning that how this region scales dictates the overall
speedup shown in Fig. 4. As shown in Fig. 5, results for the stream-
line solver compressible run, which represents approximately 66%
of run time for a one-thread run, had a speedup factor of 11.4x

SPE_REE_118684_100030.indd 4SPE_REE_118684_100030.indd 4 5/15/10 10:14:43 AM5/15/10 10:14:43 AM

2010 SPE Reservoir Evaluation & Engineering 5

on 16 threads. This would explain why overall speedups do not
follow ideal scaling. Also note in Fig. 5 the poor scaling of the
grid flash, construction of the pressure matrix, and the velocity-
field calculation. Fortunately these represent only a small fraction
of the run-time code. Recall that these routines are parallelized
at the gridblock level, meaning that the work per thread is low
and data transfer is high, compared with the work per thread of
the streamline solver. In the Discussion section, we will comment
further on speedup scaling performance.

Field Case 1—Forties, North Sea. The Forties simulation model
shown here was provide by Apache Corporation. The fl ow model

contains almost 1.5 million active cells, 235 wells, and more than
40 years of history over 76 timesteps. A one-thread run required
approximately 6 hours to simulate, of which the parallel code frac-
tion was p=0.52 of the total run time.

Overall speedup factors for 1 to 16 threads, in two threads
increments, are shown in Fig. 6a, where again the drop in speedup
for the 12- and 16-thread runs were caused by increased run time
in the serial sl-grid setup routines. The speedup factor of each
parallel section is shown in Fig. 6b, where we observed scaling of
the sl-solver (12.2x at 16 threads) similar to that for SPE 10. In
terms of actual run time, this model required approximately 3.5
hours or less of CPU time when eight or more threads were used,

Fig. 4—Speedup factor vs. number of threads for SPE 10 incompressible model (black) and compressible model (red). Amdahl’s
law, which represents ideal scaling, is shown as the dashed lines.

Fig. 5—Speedup factors for each parallel region in simulator for SPE 10 compressible model. The percentage numbers in the
legend represent the fraction of run-time code that the parallelized section required for the one-thread run.

SPE_REE_118684_100030.indd 5SPE_REE_118684_100030.indd 5 5/15/10 10:14:43 AM5/15/10 10:14:43 AM

6 2010 SPE Reservoir Evaluation & Engineering

but given the low value of p, there is little improvement beyond
eight threads.

Field Case 2—Judy Creek, Alberta, Canada. The Judy Creek
simulation model shown here is the same as the fi nal history-
matched model discussed by Batycky et al. (2007). The fl ow
model contains approximately 623,000 active cells, 300 wells,
and 46 years of history lumped into 1-year timestep intervals.
Water injection started soon after initial production. For the latest
20-year period, there has been both water injection and miscible
gas injection. The PVT assumed for this fi eld was a three-phase
oil/water/solvent incompressible system with solvent/oil miscibil-
ity modeled using a Todd-Longstaff-type formlation. A one-thread
run required approximately 5.2 hours, of which the parallel code
fraction was p=0.83 of the total run time. This large percentage of
parallel code was expected because of the more complex miscible
model being solved along each streamline, in comparison to the
Forties or SPE 10 compressible models.

Overall speedup factors for 1 to 16 threads, in increments of
two threads, are shown in Fig. 7a, while the speedup factor of each
parallel section is shown in Fig. 7b. The overall speedup results
agree well with ideal scaling, with speedups of approximately 3.3x
or better for eight or more threads, representing an actual run time
of approximately 1.6 hours or less. The streamline solver parallel
region, the largest portion of runtime code, showed a speedup of
12.5x for 16 threads.

Field Case 3—Aquifer-Drive Black-Oil Model, South America.
In the preceding two fi eld examples, the SLS method was taking
between 6-month and 1-year timesteps. Those models are ideal
for streamline simulation because the results are weak functions
of pressure and were considered “converged” solutions even at

these large timesteps. However, shorter timesteps may be required
because of well constraints or nonlinearities such as gravity or
compressibility. This means that more execution time is spent in
nonparallelized portions of the code such as the pressure solver and
streamline-grid setup routines, leading to overall lower speedups.

To illustrate the impact of timestep size on performance, we
tested a 970,000-grid-cell black-oil model with more than 25 pro-
ducers, bottom aquifer support, and 24 years of production history.
A single-thread 1-year timestep size model required approximately
2.1 hours and giving p=0.57. We then forced the simulator to take
1-month timesteps, requiring 12.6 hours with a resulting p=0.50.
As expected, p is now lower since a larger portion of time is spent
in the SAMG pressure solver and the streamline-grid setup rou-
tines. In other words, this model represents a worst-case scenario
in terms of fraction of run time code that is not parallelized.

Speedup factors were computed up to 16 threads and are shown
in Fig. 8a, with the maximum speedup limited to approximately
1.8x, given the low value of p. The speedup factor of each parallel
section is shown in Fig. 8b. Note that the maximum speedup scal-
ing of the streamline solver is the lowest of all examples presented,
9.6x on 16 threads.

Discussion
For the preceding field cases, the fraction of run-time code paral-
lelized ranged from 0.50 to 0.83, with the 1D streamline solver
representing the largest portion of parallelized run-time code in all
cases. As expected the streamline solver represented a larger por-
tion of parallel code the more complex the 1D-transport equations
became. For all cases, the scaling of the streamline solver drifted
from ideal scaling as the number of threads increased, particularly
above approximately four threads. To determine why the scaling
showed this drop, we removed the critical regions in the solver

Sp
ee

du
p

Number of Threads(a)

(b) Number of Threads

Sp
ee

du
p

Fig. 6—Overall speedup factor for Field Case 1 vs. number of
threads (a). Speedup factor vs. number of threads for each par-
allel region (b), with the overall run-time percentage that each
region required for the one-thread run listed in the legend.

Sp
ee

du
p

Number of Threads

(b)

(a)

Number of Threads

Sp
ee

du
p

Fig. 7—Overall speedup factor for Field Case 2 vs. number of
threads (a). Speedup factor vs. number of threads for each
parallel region (b), with the overall run-time percentage each
region required for the one-thread run listed in the legend.

SPE_REE_118684_100030.indd 6SPE_REE_118684_100030.indd 6 5/15/10 10:14:44 AM5/15/10 10:14:44 AM

2010 SPE Reservoir Evaluation & Engineering 7

region, yet noted minimal improvement in scaling performance.
We concluded from this experiment that threads waiting for access
to the critical regions were not the cause in the scaling drift. Such
behavior was expected since the routines containing the critical
regions are simple and efficient relative to the overall 1D-solver
requirements for each streamline. As a second test, we checked
scaling performance of the Forties model on similar hardware
but with slower processors (1.8 Ghz). We noted that all parallel
regions scaled better, with the streamline solver showing close to
ideal scaling (approximately 16x on 16 threads). These improved
scaling results suggest that the observed drift in speedup is most
likely related to memory-bandwidth limitations. In other words,
when using a slower processor, each thread requires more time to
complete its task, meaning access to shared memory occurs at a
reduced frequency. In turn, the memory bus is better able to handle
the data flow, threads are not waiting as much for new work. This
would also explain the poor scaling of the sl-solver for the final
example, in which the global timesteps are small, the work per
streamline is reduced, and the communication load is high. This
observation also holds when looking at the scaling of the flash-grid
and velocity-field calculation routines. These routines require little
work per thread, yet require information from memory at a much
higher frequency than the sl-solver region does, with the memory
bus speed being the limiting factor.

Recall from Fig. 2 that the pressure solve requires approximately
20% run time, and that the SAMG solver, which is part of tpsolve,

represents the largest portion of the pressure solve, particularly for
compressible models. For all results shown here, we used the serial
version of SAMG. Although not all of SAMG is parallelized, the
OpenMP version can still give a significant time savings. Tests at
eight threads showed a further savings in CPU time of 1 hour for
Forties (increase in p to 0.74) and 1 hour for Field Case 3 (increase
in p to 0.62), when using the OpenMP version of SAMG.

Conclusions and Future Efforts
We have successfully parallelized an existing commercial SLSs
and tested it on practical reservoir models. The level of modifica-
tions required to parallelize the code was minimal, owing to the
intrinsically parallel nature of the streamline transport step. For
eight threads, a number that any of today’s reasonably priced work-
stations would have, we found wall clock speedup factors in the
range of 1.8 to 3.3x. This means that large streamline simulation
models, as we tested here, are within reach for reservoir engineers
to run in less than 4 hours.

The overall scaling performance was principally determined by
how well the streamline solver parallel region scaled. We observed
speedup factors for this region ranging from approximately 9.6
to 12.5x for our various 16-thread runs. We attribute nonideal
speedup to a memory-bandwidth bottleneck on our test machine.
A slower CPU machine with similar memory-bus speed showed
near-optimal scaling of the streamline solver.

Amdahl’s law shows that the greatest incremental speedups are
at small values of N-threads. As N increases, overall speedup fac-
tors are eventually limited by the fixed computing cost of the serial
regions. Furthermore, we observed that beyond approximately
eight threads, memory bottlenecks limited scaling performance of
the parallel regions. Both observations imply that overall speedups
are limited as N increases, and that it is worthwhile focusing on
performance for reasonable values of N (2<N<8).

Nomenclature
 D = depth, L
 fj = fractional fl ow of phase j, dimensionless
 g = gravitational acceleration, L/t2

 Gj = phase j velocity because of density differences, L/t
 krj = relative permeability of phase j, dimensionless
 K = permeability, L2

 np = number of phases
 N = number of threads
 p = fraction of parallel run time code, dimensionless
 P = pressure, m/Lt2

 s = fraction of serial run time code, dimensionless
 Sj = saturation of phase j, dimensionless
 SU = speedup factor, dimensionless
 t = time
 ut = total velocity of all phases, L/t
 z = vertical grid coordinate, L
 �j = mobility of phase j, Lt/m
 � = porosity, dimensionless
 �j = density of phase j, m/L3

 �j = viscosity of phase j, m/Lt
 � = time of fl ight, t

Acknowledgments
We would like to thank Thomas Brandes of Fraunhofer’s Scientific
Computing Institute for the use and support of his Adaptor com-
pilation tool, Richard Jones of Apache Corporation for allowing
us to use Forties, and Andrew Seto of Pengrowth Corporation for
allowing us to use Judy Creek.

References
3DSL User Manual v4.0. 2009. Calgary: Streamsim Technologies.
Ács, G., Doleschall, S., and Farkas, E. 1985. General Purpose Compositional

Model. SPE J. 25 (4): 543–553. SPE-10515-PA. doi: 10.2118/10515-
PA.

Fig. 8—Overall speedup factor for Field Case 3 vs. number of
threads (a). Speedup factor vs. number of threads for each
parallel region (b), with the overall run-time percentage each
region required for the one-thread run listed in the legend.

Sp
ee

du
p

Number of Threads

Number of Threads(b)

(a)

Sp
ee

du
p

SPE_REE_118684_100030.indd 7SPE_REE_118684_100030.indd 7 5/15/10 10:14:45 AM5/15/10 10:14:45 AM

8 2010 SPE Reservoir Evaluation & Engineering

Amdahl, G. 1967. Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities. In AFIPS Conference Proceed-
ings: 1967 Spring Joint Computing Conference, Vol. 30, 483–485.

Batycky, R.P, Seto, A.C., and Fenwick, D.H. 2007. Assisted History Matching
of a 1.4-Million-Cell Simulation Model for Judy Creek ‘A’ Pool Water-
flood/HCMF Using a Streamline-Based Workflow. Paper SPE 108701
presented at the SPE Annual Technical Conference and Exhibition, Ana-
heim, California, USA, 11–14 November. doi: 10.2118/108701-MS.

Batycky, R.P., Blunt, M.J., and Thiele, M.R. 1997. A 3D Field-Scale
Streamline-Based Reservoir Simulator. SPE Res Eng 12 (4): 246–254.
SPE-36726-PA. doi: 10.2118/36726-PA.

Brandes, T. 2003. Adaptor: Parallel Fortran Compilation System. Fraun-
hofer SCAI, http://www.scai.fraunhofer.de/EP-CACHE/adaptor/www/
adaptor_home.html.

Christie, M.A. and Blunt, M.J. 2001. Tenth SPE Comparative Solution
Project: A Comparison of Upscaling Techniques. SPE Res Eval & Eng
4 (4): 308–317. SPE-72469-PA. doi: 10.2118/72469-PA.

Collins, D.A, Grabenstetter, J.E., and Sammon, P.H. 2003. A Shared-
Memory Parallel Black-Oil Simulator with a Parallel ILU Linear
Solver. Paper SPE 79713 presented at the SPE Reservoir Simulation
Symposium, Houston, 3–5 February. doi: 10.2118/79713-MS.

Datta-Gupta, A. and King, M.J. 2007. Streamline Simulation: Theory and
Practice. Textbook Series, SPE, Richardson, Texas, USA 11.

DeBaun, D., Byer, T., Childs, P., Chen, J., Saaf, F., Wells, M., Liu, J. et al.
2005. An Extensible Architecture for Next Generation Scalable Par-
allel Reservoir Simulation. Paper SPE 93274 presented at the SPE
Reservoir Simulation Symposium, Houston, 31 January–2 February.
doi: 10.2118/93274-MS.

Di Donato, G., Huang, W., and Blunt, M. 2003. Streamline-Based Dual
Porosity Simulation of Fractured Reservoirs. Paper SPE 84036 pre-
sented at the SPE Annual Technical Conference and Exhibition, Denver,
5–8 October. doi: 10.2118/84036-MS.

Gerritsen, M.G., Löf, H., and Thiele, M.R. 2009. Parallel implementations
of streamline simulators. Computational Geosciences 13 (1): 135–149.
doi: 10.1007/s10596-008-9113-y.

Shiralkar, G.S., Fleming, G.C., Watts, J.W., Wong, T.W., Coats, B.K.,
Mossbarger, R., Robbana, E., and Batten, A.H. 2005. Development and
Field Application of a High Performance, Unstructured Simulator with
Parallel Capability. Paper SPE 93080 presented at the SPE Reservoir
Simulation Symposium, The Woodlands, Texas, USA, 31 January–2
February. doi: 10.2118/93080-MS.

Stüben, K. 2001. An Introduction to Algebraic Multigrid. In Multigrid, ed.
U. Trottenberg, C.W. Ooosterlee, and A. Schüller, Appendix, 413–532.
London: Academic Press.

Thiele, M.R. 2005. Streamline Simulation. Keynote address presented at
the 9th International Forum on Reservoir Simulation, Stresa, Italy,
20–24 June.

Thiele, M.R., Batycky, R.P., and Blunt, M.J. 1997. A Streamline-Based
3D Field-Scale Compositional Reservoir Simulator. Paper SPE 38889
presented at the SPE Annual Technical Conference and Exhibition, San
Antonio, Texas, USA, 5–8 October. doi: 10.2118/38889-MS.

Thiele, M.R., Batycky, R.P., Pollitzer, S., and Clemens, T. 2010. Polymer-
Flood Modeling Using Streamlines. SPE Res Eval & Eng 13 (2): 313-
322. SPE-115545-PA. doi: 10.2118/115545-PA.

Watts, J.W. 1986. A Compositional Formulation of the Pressure and Satu-
ration Equations. SPE Res Eng 1 (3): 243–252; Trans., AIME, 281.
SPE-12244-PA. doi: 10.2118/12244-PA.

Rod Batycky is cofounder of Streamsim Technologies. He
holds MSc and PhD degrees in petroleum engineering from
Stanford U.—during his studies, he was awarded the SPE
Cedrick K. Ferguson Medal. Previously, Batycky worked as a
reservoir engineer with Shell Canada, and initially obtained a
BSc degree in chemical engineering from the U. of Calgary.
He is a technical editor for SPE Res Eval & Eng and J. Cdn. Pet.
Tech. Malte Förster is a PhD student at the numerical software
department of Fraunhofer’s Scientific Computing Institute
(FhG-SCAI), where he is a member of the numerical solver
group. He focuses on the development of efficient parallel
software, both MPI- and OpenMP-based. Förster holds an MSc
degree in mathematics from the U. of Cologne. Marco Thiele
is cofounder of Streamsim Technologies and a consulting pro-
fessor at Stanford U. He holds BS and MSc degrees from the U.
of Texas at Austin and a PhD from Stanford U., all in petroleum
engineering. Thiele is a recipient of the 1996 SPE Cedrick K.
Ferguson Medal, serves on the SPE Books Committee and is an
Associate Editor for SPE Res Eval & Eng. Klaus Stüben is deputy
head of the numerical software department of FhG-SCAI, and
is responsible for the scientific development of modern fast
numerical solvers. He is one of the inventors of the algebraic
multigrid (AMG) technique and is heading the development
of the advanced software library, SAMG, which has become
a well-established tool in many industrial simulation systems.
Stüben is currently focusing on the development of efficient
numerical approaches for solving various types of partial dif-
ferential equations, including such diverse areas as fluid flow,
structural mechanics, oil reservoir and ground water simulation,
casting and molding, process and device simulation in solid
state physics, electro-chemistry, and circuit simulation. He holds
MSc and PhD degrees in mathematics from the U. of Cologne.

SPE_REE_118684_100030.indd 8SPE_REE_118684_100030.indd 8 5/15/10 10:14:46 AM5/15/10 10:14:46 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

