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Summary
We present the parallelization of a commercial streamline simula-
tor to multicore architectures based on the OpenMP programming 
model and its performance on various field examples. This work is 
a continuation of recent work by Gerritsen et al. (2009) in which a 
research streamline simulator was extended to parallel execution.

We identified that the streamline-transport step represents 
approximately 40–80% of the total run time. It is exactly this 
step that is straightforward to parallelize owing to the indepen-
dent solution of each streamline that is at the heart of streamline 
simulation. Because we are working with an existing large serial 
code, we used specialty software to quickly and easily identify 
variables that required particular handling for implementing the 
parallel extension. Minimal rewrite to existing code was required 
to extend the streamline-transport step to OpenMP. As part of 
this work, we also parallelized additional run-time code, includ-
ing the gravity-line solver and some simple routines required for 
constructing the pressure matrix. Overall, the run-time fraction 
of code parallelized ranged from 0.50 to 0.83, depending on the 
transport physics being considered.

We tested our parallel simulator on a variety of large models 
including SPE 10, Forties–a UK oil/water model, Judy Creek–a 
Canadian waterflood/water-alternating-gas (WAG) model, and a 
South American black-oil model. We noted overall speedup fac-
tors from 1.8 to 3.3x for eight threads. In terms of real time, this 
implies that large-scale streamline simulation models as tested here 
can be simulated in less than 4 hours. We found speedup results 
to be reasonable when compared with Amdahl’s ideal scaling law. 
Beyond eight threads, we observed minimal speedups because of 
memory bandwidth limits on our test machine. 

Introduction
Reservoir simulation models are routinely limited in size because 
of run-time and memory constraints. Yet modern reservoir engi-
neering workflows for history matching, uncertainty assessment, 
and optimizing forecast scenarios rely on the ability to run large, 
finely gridded models multiple times. For some of these workflows, 
such as ensemble history matching or ranking/screening multiple 
realizations, it is acceptable to run multiple models in parallel with 
a serial simulator on a computer cluster. However, for the majority 
of practicing engineers, the reality is that desktop hardware is their 
only compute platform, they have a limited number of models to 
work with (usually one or two), and they are doing well-level his-
tory-matching or forecast scenarios one run at a time. 

Recent advances in desktop hardware have made multicore-
CPU shared-memory workstations the preferred computing envi-
ronment for today’s reservoir engineers, with workstations having 
four to 16 cores. Simulators that are parallelized by means of 
OpenMP directives can take advantage of these shared-memory 
systems, speeding up any serial workflow. All major commercial 
finite-difference (FD) simulators are available with a parallel 

compute option, either OpenMP and/or MPI (Collins et al. 2003; 
DeBaun et al. 2005; Shiralkar et al. 2005), to take advantage of 
this hardware. 

Commercial streamline-based simulators (SLSs) have tradi-
tionally been less mature than FD methods because they have 
been introduced only within the last 10 years. SLSs are not read-
ily available for parallel computing, meaning today’s engineers 
cannot take advantage of the latest multicore hardware develop-
ments. However, because SLS is ideally suited for simulating 
large, geologically heterogeneous models, quantifying upscaling 
processes, and/or history matching, a parallel extension is highly 
desirable. Fortunately, the SLS-architecture is inherently parallel-
izable. Recent work on a research streamline simulator presented 
promising results (Gerritsen et al. 2009). Their work focused 
on parallelization of the transport step only in which they quote 
speedups of approximately 6x for eight threads (AMDTM chip) 
and 13.5x for 16 threads (SUNTM chip) for a large, synthetic res-
ervoir model. Gerritsen et al. (2009) addressed issues such as load 
balancing of the streamlines and testing performance on different 
hardware architectures.

The main purpose of this paper is to build on the results of Ger-
ritsen et al. (2009) and show the extension of an existing serial com-
mercial streamline simulator (Streamsim 2008) to a parallel environ-
ment. The challenge we faced was how to migrate the existing serial 
infrastructure to OpenMP while minimizing code-rewrite, and to see 
how this adapted code would perform on real reservoir models. One 
critical difference between this work that of Gerristen at al. is that 
it is not possible to predetermine the work per streamline, meaning 
that there is no effective way to load balance the streamlines. Rather, 
we let the compiler determine the load balancing. 

Overview of Streamline Simulation
Here, we briefly review the key steps in streamline simulation and 
show why the method is inherently suitable to parallelization. For 
a detailed discussion on the mathematics of the streamline method, 
see Batycky et al. (1997), Thiele (2005), or Datta-Gupta and King 
(2007). For simplicity, we have assumed incompressible flow in 
this brief review because fluid compressibility does not change 
which regions of the simulator to parallelize. Fluids compress-
ibility does, however, have an impact on parallel performance, as 
we will show later.

In SLSs at each timestep, pressure is solved for implicitly while 
saturations (or compositions) are solved for explicitly. Stream-
line simulation can be viewed as a dual-grid approach because 
the implicit pressure solve is computed on a static cell-based 
(Eulerian) grid while saturations are computed on a dynamically 
changing flow-based (Lagrangian) grid defined by streamlines. 
Thus, there are two mapping steps involved: from the cell-based 
grid to the streamlines at the beginning of the timestep and then 
from the streamlines back to the cell-based grid at the end of the 
timestep (Fig. 1).

The implicit pressure solver is similar to that used in conven-
tional FD methods. An implicit pressure matrix is constructed on 
the basis of a multiphase-flow pressure equation and the volume-
balance method outlined by Ács et al. (1985) and Watts (1986). 
For incompressible systems with no capillary pressure, the volume-
balance equation summed over all phases (np) reduces to
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where the phase j mobility is given by �j, phase density �j , per-
meability tensor K, depth D, gravitational acceleration g, and P 
is the unknown pressure. The result is one unknown pressure per 
gridblock, one unknown wellbore pressure for each well on rate 
control, and a diagonal sparse matrix with a seven-point stencil 
for 3D grids. We solve the sparse matrix by means of an efficient 
multigrid method (Stüben 2001). Once pressures are known on the 
static Eulerian grid, grid-cell interface velocities are computed on 
the basis of Darcy’s law. From the velocity field, streamlines are 
traced to construct the flow-based grid.

The mass-balance equation for phase saturations (Sj) on the 
underlying 3D grid that is coupled to the preceding pressure equa-
tion is given by
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with phase relative permeabilities krj and phase viscosities �j. If we 
assume that the phase velocity caused by buoyancy (Gj) is aligned 
along the z-axis, then Gj is given by
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where Kz is the vertical permeability. 
In streamline simulation, the 3D mass-balance equation can be 

recast into a set of 1D equations, each solved along a streamline using 
the time-of-flight variable �. This is the key coordinate of interest 
along a streamline and is a reflection of the velocity field derived 
from the pressure solve. The gravity term, which is not aligned along 
streamlines, is accounted for in a separate step by means of operator 
splitting. See Thiele (2005) for details on the entire transport step. 

The resulting 3D saturation equation in a streamline simulator 
is then given by
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Fig. 1—Static properties, well locations, and initial conditions (a) are used to solve the pressure field implicitly (b). The velocity 
field is then computed from the pressures, streamlines are traced, the 1D transport equations are solved along each streamline 
(c), and the results are mapped back to the static grid (d).
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The solution to Eq. 5 is to first update saturation along all stream-
lines by means of a 1D convective solver, map each 1D result to 
the 3D grid, and then update saturation along each gravity line 
directly on the 3D grid by means of a 1D gravity solver (operator 
splitting). Within a global timestep, each streamline is solved for 
independently of other streamlines, and then each gravity line is 
solved for independently of other gravity lines. Thus, the original 
3D mass-balance equation is reduced to a series of independent 1D 
equations, which is why SLS lends itself to parallelization. There 
is no reformulation of the underlying mass-balance equations to 
extend the method to parallel computation.

Computational Effi ciency of a Streamline Simulator. Before 
discussing parallelization, we explain the computational effi ciency 
of the streamline method in serial mode. For each timestep, Eq. 1 
is solved fi rst, Eq. 5a is solved second, and Eq. 5b is solved last. 
The total run time for a streamline simulator solving Eq. 1 and Eq 
5a-5b can be approximated as,
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At each timestep, tpsolve is the time required to set up and solve Eq. 
1 as well as compute the velocity field. Once the velocity field is 
known, tsl-grid is the time required to construct the streamline-based 
grid, tsl-solver is the time to solve a 1D transport equation along a 
streamline (Eq. 5a), and tgl-solver is the time to solve a 1D transport 
equation along a gravity line (Eq. 5b). Note that tsl-grid occurs 
because of the dual-grid nature of streamline simulation, where for 
each timestep the result of the pressure solution is used to construct 
the flow-based grid. During this construction phase, checks such 
as proper streamline coverage and adequate well connections with 
streamlines are made.

To illustrate the proportion of CPU time required for each 
component of Eq. 6, we simulated the SPE 10 fine-grid model 
(60×220×85) containing approximately 1.1 million active grid cells 
to 2,000 days of water injection (Christie and Blunt 2001) for both 
compressible and incompressible pressure/volume/temperature 
(PVT). The incompressible model required 25 global timesteps, 
while the compressible model required 27 global timesteps. Fig. 2 
shows the contribution of each term in Eq. 6 for the two runs, 
scaled to the total runtime of the incompressible result. First, 
note that for both cases the solution to the multiple 1D equations 

along streamlines represents the largest percentage of CPU used, 
followed by sl-grid setup, followed by the pressure solve. Also 
note that the compressible run is approximately 50% slower than 
the equivalent incompressible run, because of increased iterations 
required for the pressure solve, a more complex PVT flash cal-
culation, but mainly the more complex 1D transport equation to 
solve along each streamline. In general for streamline simulation, 
as the complexity of the 1D transport equation along a streamline 
increases, tsl-solver increases. Thus, extensions such as dual-porosity 
(DiDonato et al. 2003), compositional (Thiele et al. 1997), or poly-
mer displacements (Thiele et al. 2010) primarily have an impact 
on tsl-solver. Last, the gravity step represents very little of the overall 
work per timestep. This is particularly true for SPE 10 in which 
gravity effects are minor, with the 1D gravity solver having to do 
few timesteps per gravity line. 

Development of a Parallel Streamline 
Simulator
To parallelize the simulator, our goal was to include OpenMP 
directives within the existing code in the areas identified on the 
basis of Fig. 2 and similar timing tests. Key to this implementa-
tion was the easy identification of variables that could be shared 
between parallel threads and variables that were deemed critical 
(accessed by only one thread at a time). Because it was difficult 
to identify critical and shared variables by hand, we used the 
ADAPTOR Fortran compilation tool system developed by Brandes 
(2003). This tool analyzes the source code to identify all critical 
accesses to variables inside desired parallel regions. ADAPTOR 
also assisted in deciding how to proceed with each variable by 
listing all other read/write accesses throughout the parallel and 
serial parts of the code, particularly at the interprocedural level. 
With this information gathered, we could easily decide whether a 
variable needed special treatment or not.

We also used the profiling capabilities of the ADAPTOR system 
with access to the hardware performance counters to show that in a 
desired parallel region, memory performance was not a bottleneck 
for serial runs. This confirmed that parallelization to eliminate 
CPU bottlenecks was worthwhile. 

Brief Description of OpenMP. With OpenMP directives, it is 
straightforward to included parallel processing of loops within 
existing Fortran code. One must fi rst identify the loop to parallelize 
and use the SCHEDULE directive to control how the iterations of 
the loop are to be divided among the threads. Since all variables are 
assumed to be shared—that is, each thread has access to all variables 
in the program at all times—one must also defi ne which variables 
are PRIVATE. Variables defi ned as PRIVATE are replicated for each 
thread and can be accessed only by the thread they are assigned to. 
Last, CRITICAL regions may be defi ned within the loop and are 
regions that can be accessed only by a single thread at a time. 

On the basis of the preceding description, we show in Fig. 3 
using Fortran pseudocode, how to extend the streamline solver to 
parallel threads with OpenMP.

In the example in Fig. 3, the loop is parallelized over all stream-
lines (nsl). Each free thread is given a unique value of i. Within 
the call to tracestreamline( ) the value i points to a set of starting 
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Fig. 3—Pseudocode with OpenMP directives.
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coordinates to trace the ith streamline from. The streamline is 
then traced and stored in sl_path along with the fluid saturations 
(sl_sats) from the underlying grid. These PRIVATE variables are 
then passed to the streamline solver where sl_sats are updated to 
the new time level by solving Eq. 5a. Once the transport step is 
completed, a thread will wait until it has sole access to the CRITICAL 
section that maps the new saturations back to the underlying grid 
and wells. To achieve ideal speedups for a large number of threads, 
it is important that the run time of the CRITICAL section of the 
loop be small compared to the work in the parallel section. Finally, 
because of the SCHEDULE(dynamic,1) construct, once a thread 
is free it will be assigned the next value of i. Thus, the work per 
thread is balanced dynamically, with each thread getting a new 
streamline once it has completed its current streamline.

Gravity-Line Solver. Although the gravity-line solver represented 
a small fraction of the total run time, this was the fi rst section that 
was parallelized because it required no rewriting of the existing 
code. Furthermore, this region required parallelization of PVT 
routines, which would also be used for the more-complicated 
streamline-solver parallel region. Parallelization was at the level of 
a single gravity line per thread. Most importantly, the gravity-line 
solver had no critical variables to be concerned with because there 
is only one gravity line passing through any cell on the 3D grid.

Streamline Solver. As discussed, the solution of the transport 
equations along streamlines is intrinsically parallelizable—each 
streamline transport step is independent of all other streamlines—
and represents the majority of CPU time during a simulation. Some 
code modifi cations were required to break loop order dependence 
because the code was originally written for serial implementation 
only. Once completed, we parallelized the loop that cycles over all 
the existing streamlines to be passed to the 1D solver at the level 
of a single streamline per thread. OpenMP critical directives were 
added to the routine that maps the results of each streamline solu-
tion back to the Eulerian grid and to the routine that maps the 1D 
injection/production information to the associated wells. Although 
these two routines cause each thread to wait before starting another 
streamline solution, the CPU requirements here are a tiny frac-
tion compared with those of the 1D streamline solver (SL-solver) 
requirements, meaning that we do not expect these critical sections 
to cause signifi cant performance bottlenecks.

Pressure Solver. The pressure solver was parallelized in three 
distinct places. First, we parallelized the fl ash of all gridblocks to 
update all fl ow properties on the basis of the last pressure solution. 
Second, the construction of the sparse matrix was parallelized. And 
third, the calculation of the velocity fi eld on the basis of the new 
pressure solution was parallelized. All three of these components 
were parallelized and represent approximately 2% of the total 
CPU time of a run.

The SAMG multigrid solver, which represents the largest frac-
tion of tpsolve, was provided as both a serial and an OpenMP version. 
However, because SAMG itself has both parallel and serial regions, 
it is difficult to separate timing of each region. To simplify our 
analysis and show how the SLS scaled, we used the serial version 
of SAMG for all our results.

Results
The hardware used for all simulations was an AMDTM OpteronTM 
8-CPU 8384 quad-core 2.7-Ghz system with 128 GB of memory, 
running Linux-64 RH4TM. Although this specific hardware is more 
representative of that found in high-end computer laboratories, 
quad-core and dual quad-core workstations are readily available 
to today’s engineers.

We used the Intel 10.1 64-bit compiler. All loops were load 
balanced using the dynamic scheduling directive of the compiler, 
meaning that the compiler gives each thread a new task from the 
list of remaining tasks, once a thread’s current task is finished. 
Depending on which loop was parallelized, a single task rep-
resented a single streamline, a gravity line, or a grid cell. This 

differes from the work of Gerritsen et al. (2009), in which they 
were able to predetermine how to optimally load balance each 
thread since they were solving linear transport problems along 
each streamline. Here, the vast majority of transport problems we 
solve are nonlinear, meaning we cannot predetermine how much 
work each streamline will require and thus use a compiler load-
balancing option.

For all timing results, we had dedicated access to the hardware 
and performed each multithread run one at a time. To time perfor-
mance, we used OMP_WALL_CLOCK timing directives around 
select parallel regions as well as the entire code. 

We compared our speedup (SU) results with ideal speedup scal-
ing, as defined by Amdahl’s law (Amdahl 1967) as

SU s p N= +1 / ( / ),   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where the number of threads is N, the fraction of parallel code is 
p, and the serial portion is s=1−p. For comparison with Amdahl’s 
law, we first computed the fraction p of run time code that was 
parallelized by timing performance of the parallel regions vs. total 
run time for a one-thread run for each simulation model. This value 
of p was then used in Amdahl’s law to compare performance of 
multithread runs. As we show below, Amdahl’s law implies that 
the maximum possible value of SU is limited by the value of s, 
regardless of the number of threads used. In other words, as the 
number of threads increases, the run time is eventually limited by 
the serial portion of code.

Repeatability of a Parallel-Run Result. In reservoir simulation, 
there are variables whose values are the result of running sums 
computed within a loop. In streamline simulation specifi cally, the 
gridblock saturations at the new time level are computed as running 
sums of all the new streamline saturations associated with the grid-
block. Because of the fi xed precision of fl oating-point calculations, 
the fi nal value of the sum is dependent on the order in which the 
individual streamline saturations are added to the sum. 

For a serial run, the order of the streamline tracing and, thus, 
the order of the sum is always the same, meaning simulation results 
are repeatable. However, in a multithread environment the sum-
mation of a gridblock’s saturation resides inside a parallel loop, 
with the order of the running sum now a function of the number of 
threads used and processor load balances. Thus, the overall simula-
tion results change slightly if a given data set is simulated using 
two threads vs. four threads, for example. Furthermore, because 
of variations in processor load balances between separate runs, 
repeating a four-thread flow simulation, for example, will not give 
exactly the same results either.

For parallel simulation runs, the dependency of results on the 
number of threads means that the exact same problem is not being 
computed as a model is tested on various numbers of threads. Thus, 
for all results, we confirmed that the overall field production pro-
files for each multithread run were within engineering accuracy to 
the one-thread run of each case studied. Nonuniqueness also means 
that the value of s (and p) computed for Amdahl’s law for a one-
thread run is an estimate that is subject to small variability. 

SPE 10
The fine-scale 60×220×85 SPE 10 model was simulated on 1 to 16 
threads for both incompressible and compressible PVT systems. 
As expected from Fig. 2, which showed the sl-solver representing 
a larger portion of run time code for the compressible run vs. the 
incompressible run, we computed p=0.63 for the incompressible 
run and p=0.70 for the compressible run. Fig. 4 shows that run-time 
speedups compare favorably with ideal scaling. 

The overall speedup results can be broken down further into 
speedup factors for each parallelized region. Recall that the stream-
line solver (red line) represents the greatest portion of parallelized 
code, meaning that how this region scales dictates the overall 
speedup shown in Fig. 4. As shown in Fig. 5, results for the stream-
line solver compressible run, which represents approximately 66% 
of run time for a one-thread run, had a speedup factor of 11.4x 
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on 16 threads. This would explain why overall speedups do not 
follow ideal scaling. Also note in Fig. 5 the poor scaling of the 
grid flash, construction of the pressure matrix, and the velocity-
field calculation. Fortunately these represent only a small fraction 
of the run-time code. Recall that these routines are parallelized 
at the gridblock level, meaning that the work per thread is low 
and data transfer is high, compared with the work per thread of 
the streamline solver. In the Discussion section, we will comment 
further on speedup scaling performance.

Field Case 1—Forties, North Sea. The Forties simulation model 
shown here was provide by Apache Corporation. The fl ow model 

contains almost 1.5 million active cells, 235 wells, and more than 
40 years of history over 76 timesteps. A one-thread run required 
approximately 6 hours to simulate, of which the parallel code frac-
tion was p=0.52 of the total run time. 

Overall speedup factors for 1 to 16 threads, in two threads 
increments, are shown in Fig. 6a, where again the drop in speedup 
for the 12- and 16-thread runs were caused by increased run time 
in the serial sl-grid setup routines. The speedup factor of each 
parallel section is shown in Fig. 6b, where we observed scaling of 
the sl-solver (12.2x at 16 threads) similar to that for SPE 10. In 
terms of actual run time, this model required approximately 3.5 
hours or less of CPU time when eight or more threads were used, 

Fig. 4—Speedup factor vs. number of threads for SPE 10 incompressible model (black) and compressible model (red). Amdahl’s 
law, which represents ideal scaling, is shown as the dashed lines.

Fig. 5—Speedup factors for each parallel region in simulator for SPE 10 compressible model. The percentage numbers in the 
legend represent the fraction of run-time code that the parallelized section required for the one-thread run.
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but given the low value of p, there is little improvement beyond 
eight threads.

Field Case 2—Judy Creek, Alberta, Canada. The Judy Creek 
simulation model shown here is the same as the fi nal history-
matched model discussed by Batycky et al. (2007). The fl ow 
model contains approximately 623,000 active cells, 300 wells, 
and 46 years of history lumped into 1-year timestep intervals. 
Water injection started soon after initial production. For the latest 
20-year period, there has been both water injection and miscible 
gas injection. The PVT assumed for this fi eld was a three-phase 
oil/water/solvent incompressible system with solvent/oil miscibil-
ity modeled using a Todd-Longstaff-type formlation. A one-thread 
run required approximately 5.2 hours, of which the parallel code 
fraction was p=0.83 of the total run time. This large percentage of 
parallel code was expected because of the more complex miscible 
model being solved along each streamline, in comparison to the 
Forties or SPE 10 compressible models. 

Overall speedup factors for 1 to 16 threads, in increments of 
two threads, are shown in Fig. 7a, while the speedup factor of each 
parallel section is shown in Fig. 7b. The overall speedup results 
agree well with ideal scaling, with speedups of approximately 3.3x 
or better for eight or more threads, representing an actual run time 
of approximately 1.6 hours or less. The streamline solver parallel 
region, the largest portion of runtime code, showed a speedup of 
12.5x for 16 threads.

Field Case 3—Aquifer-Drive Black-Oil Model, South America. 
In the preceding two fi eld examples, the SLS method was taking 
between 6-month and 1-year timesteps. Those models are ideal 
for streamline simulation because the results are weak functions 
of pressure and were considered “converged” solutions even at 

these large timesteps. However, shorter timesteps may be required 
because of well constraints or nonlinearities such as gravity or 
compressibility. This means that more execution time is spent in 
nonparallelized portions of the code such as the pressure solver and 
streamline-grid setup routines, leading to overall lower speedups. 

To illustrate the impact of timestep size on performance, we 
tested a 970,000-grid-cell black-oil model with more than 25 pro-
ducers, bottom aquifer support, and 24 years of production history. 
A single-thread 1-year timestep size model required approximately 
2.1 hours and giving p=0.57. We then forced the simulator to take 
1-month timesteps, requiring 12.6 hours with a resulting p=0.50. 
As expected, p is now lower since a larger portion of time is spent 
in the SAMG pressure solver and the streamline-grid setup rou-
tines. In other words, this model represents a worst-case scenario 
in terms of fraction of run time code that is not parallelized. 

Speedup factors were computed up to 16 threads and are shown 
in Fig. 8a, with the maximum speedup limited to approximately 
1.8x, given the low value of p. The speedup factor of each parallel 
section is shown in Fig. 8b. Note that the maximum speedup scal-
ing of the streamline solver is the lowest of all examples presented, 
9.6x on 16 threads.

Discussion
For the preceding field cases, the fraction of run-time code paral-
lelized ranged from 0.50 to 0.83, with the 1D streamline solver 
representing the largest portion of parallelized run-time code in all 
cases. As expected the streamline solver represented a larger por-
tion of parallel code the more complex the 1D-transport equations 
became. For all cases, the scaling of the streamline solver drifted 
from ideal scaling as the number of threads increased, particularly 
above approximately four threads. To determine why the scaling 
showed this drop, we removed the critical regions in the solver 
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Fig. 6—Overall speedup factor for Field Case 1 vs. number of 
threads (a). Speedup factor vs. number of threads for each par-
allel region (b), with the overall run-time percentage that each 
region required for the one-thread run listed in the legend.
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Fig. 7—Overall speedup factor for Field Case 2 vs. number of 
threads (a). Speedup factor vs. number of threads for each 
parallel region (b), with the overall run-time percentage each 
region required for the one-thread run listed in the legend.
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region, yet noted minimal improvement in scaling performance. 
We concluded from this experiment that threads waiting for access 
to the critical regions were not the cause in the scaling drift. Such 
behavior was expected since the routines containing the critical 
regions are simple and efficient relative to the overall 1D-solver 
requirements for each streamline. As a second test, we checked 
scaling performance of the Forties model on similar hardware 
but with slower processors (1.8 Ghz). We noted that all parallel 
regions scaled better, with the streamline solver showing close to 
ideal scaling (approximately 16x on 16 threads). These improved 
scaling results suggest that the observed drift in speedup is most 
likely related to memory-bandwidth limitations. In other words, 
when using a slower processor, each thread requires more time to 
complete its task, meaning access to shared memory occurs at a 
reduced frequency. In turn, the memory bus is better able to handle 
the data flow, threads are not waiting as much for new work. This 
would also explain the poor scaling of the sl-solver for the final 
example, in which the global timesteps are small, the work per 
streamline is reduced, and the communication load is high. This 
observation also holds when looking at the scaling of the flash-grid 
and velocity-field calculation routines. These routines require little 
work per thread, yet require information from memory at a much 
higher frequency than the sl-solver region does, with the memory 
bus speed being the limiting factor. 

Recall from Fig. 2 that the pressure solve requires approximately 
20% run time, and that the SAMG solver, which is part of tpsolve, 

represents the largest portion of the pressure solve, particularly for 
compressible models. For all results shown here, we used the serial 
version of SAMG. Although not all of SAMG is parallelized, the 
OpenMP version can still give a significant time savings. Tests at 
eight threads showed a further savings in CPU time of 1 hour for 
Forties (increase in p to 0.74) and 1 hour for Field Case 3 (increase 
in p to 0.62), when using the OpenMP version of SAMG. 

Conclusions and Future Efforts
We have successfully parallelized an existing commercial SLSs 
and tested it on practical reservoir models. The level of modifica-
tions required to parallelize the code was minimal, owing to the 
intrinsically parallel nature of the streamline transport step. For 
eight threads, a number that any of today’s reasonably priced work-
stations would have, we found wall clock speedup factors in the 
range of 1.8 to 3.3x. This means that large streamline simulation 
models, as we tested here, are within reach for reservoir engineers 
to run in less than 4 hours.

The overall scaling performance was principally determined by 
how well the streamline solver parallel region scaled. We observed 
speedup factors for this region ranging from approximately 9.6 
to 12.5x for our various 16-thread runs. We attribute nonideal 
speedup to a memory-bandwidth bottleneck on our test machine. 
A slower CPU machine with similar memory-bus speed showed 
near-optimal scaling of the streamline solver.

Amdahl’s law shows that the greatest incremental speedups are 
at small values of N-threads. As N increases, overall speedup fac-
tors are eventually limited by the fixed computing cost of the serial 
regions. Furthermore, we observed that beyond approximately 
eight threads, memory bottlenecks limited scaling performance of 
the parallel regions. Both observations imply that overall speedups 
are limited as N increases, and that it is worthwhile focusing on 
performance for reasonable values of N (2<N<8). 

Nomenclature
 D  = depth, L
 fj = fractional fl ow of phase j, dimensionless
 g = gravitational acceleration, L/t2

 Gj  = phase j velocity because of density differences, L/t
 krj = relative permeability of phase j, dimensionless
 K  = permeability, L2

 np = number of phases
 N = number of threads
 p = fraction of parallel run time code, dimensionless
 P = pressure, m/Lt2

 s = fraction of serial run time code, dimensionless
 Sj = saturation of phase j, dimensionless
 SU = speedup factor, dimensionless
 t = time
 ut = total velocity of all phases, L/t
 z = vertical grid coordinate, L
 �j = mobility of phase j, Lt/m
 � = porosity, dimensionless
 �j = density of phase j, m/L3

 �j = viscosity of phase j, m/Lt 
 � = time of fl ight, t
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