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ABSTRACT: The use of an efficient linear solver is very important to reduce the overall runtime of a flow 
simulation. However, if a linear solver will be very fast e.g. in case of a time dependent model it does not 
have to be efficient in case of a steady-state model. The efficiency of the linear solver may even change 
during a simulation run. Hence, there is the need to develop a solver control which chooses an appropriate 
linear solver for each respective situation. This paper describes the new SAMG solver control available 
with FEFLOW version 5.4. Numerical results are presented for a range of industrially relevant models, 
demonstrating the robustness and efficiency of the new solver control.    

 
 
INTRODUCTION  
 
In today’s groundwater simulation the complexity and size of models has increased reflecting the 
advancement in computer hardware as well as parallel programming techniques and software 
memory management. In hand with this also the simulation time increases. Since the amount of time 
spend for the solution of linear systems within a simulation can be up to 50 per cent of the whole 
simulation run, optimizing the runtime of the linear solver has a major impact on the whole simulation 
time. 
 
This paper describes the improvements of the SAMG solver package. The package is now included 
within FEFLOW without the need of further licensing, and provides a solver switching, which chooses 
the optimal solution strategy automatically. Hence, the new SAMG solver package is now able to 
serve as a “one-for-all” linear solver.   
 
PROBLEM DEFINITION  
 
The SAMG (algebraic multigrid methods for systems) package is a library of subroutines for the highly 
efficient solution of large linear systems of equations with sparse matrices. In particular, it includes 
algebraic multigrid (AMG). AMG is a, so-called, optimal solver, which means that the computational 
cost depends linearly on the number of unknowns. However, AMG cannot be applied to all types of 
systems of partial differential equations. Hence, the performance of AMG methods strongly depends 
on the properties of the linear system to be solved for.  
 
AMG proceeds in two steps. In a first step, so-called, setup hierarchies of variables as well as so –
called transfer operators are imposed. The second step, so-called, cycling then applies these 
information and operators in order to solve the linear system.  
 
In previous versions of the SAMG solver package for FEFLOW already a reuse of AMG's setup phase 
was introduced. The reuse of the setup helped to save a lot of computing time. However, SAMG was 
not the fastest solver for each situation. In particular, transient models with an automatically controlled 
time-stepping by FEFLOW’s adaptive predictor-corrector technique could often be solved very quickly 
with the FEFLOW-PCG solver. On the other hand, as long as nearly steady-state models have to be 
solved for each time step, the SAMG package often turned out to be superior. 
 
Due to the situation dependent performance of the former SAMG solver package, the idea was to 
create an automatic solver control. The control shall switch between different linear solvers and in this 
way find an optimal solving strategy in terms of robustness and computing time for each model. 
Hence, it should turn out to be a “one-for-all” solver and thus simplify the work of the FEFLOW user. 
 
DESCRIPTION OF THE NEW SOLVER CONTROL  
 
The new solver control should be efficient and robust. In particular, the overhead due to finding an 
optimal linear solver for a specific situation should be as small as possible. Hence, we only switch 
between two different linear solvers. The switching is applied between a robust solver which tends to 



0 PRE-ANALYSIS  
   IF (SETUP EXISTS AND SETUP IS OK) GOTO 3 
1 MAIN CONTROL 
2 PERFORM SETUP 
   IF (.NOT.OK) GOTO 1  
3 PERFORM INITIAL ITERATIONS 
   IF (.NOT.OK) GOTO 1 
4 PERFORM REMAINING ITERATIONS 
   IF (.NOT.OK) GOTO 1 
5 POST-ANALYSIS 
6 RETURN  
 

be fast in case of small time steps and a solver which tends to be superior for nearly steady-state 
simulations. 
 
The PCG method was the default solver in previous FEFLOW versions, due that it turned out to be a 
very robust solver. PCG denotes either modified incomplete Cholesky factorization preconditioned 
conjugate gradients (ICCG) in the symmetric case, or incomplete lower-upper factorization (ILU) 
preconditioned biconjugate gradient method ILU-BICGSTAB for unsymmetrical systems.  
 
Due to its robustness and fastness for small time steps, we choose the ILU-BICGSTAB solver as one 
of the solvers to be switched between. The implemented ILU-BICGSTAB solver is the one available 
with SAMG solver library. In comparison to the ILU-BICGSTAB solver of previous FEFLOW versions it 
is fully OpenMP parallel. In hand with this, the new method is superior compared to the old one in 
terms of runtime on state-of-the-art multi-core computers. However, since the employed ILU-
BICGSTAB is an inherently unsymmetrical method, it might be slower than the FEFLOW ICCG for 
symmetrical linear systems. 
 
Due to the fastness in the case of nearly steady-state simulations and its robustness even for very 
unstructured grids, we chose SAMG's multigrid method as our second linear solver for the new solver 
control. To be more specific, we chose AMG-BICGSTAB. This method is an algebraic multigrid 
preconditioned stabilized biconjugate gradient Krylov method using standard interpolation and Gauss-
Seidel smoothing. It is of linear complexity. Hence, especially for very big models this solver should 
turn out to be highly efficient. Moreover, this method is also OpenMP parallel. 
 

 
Figure 1: Sketch of the SAMG solver control algorithm 
 
In order to ensure an efficient solving approach, the automatic solver control decides upon various 
criteria if the AMG or the PCG method shall be used. 
The criteria are: 

 Memory restrictions of the computing architecture 
 Errors of the linear solvers 
 Runtime 
 Convergence Rate - The convergence rate is defined to be: r=(R_out/R_in)^(1/i),  where 

R_out denotes the output residual, R_in the input residual, and i the number of linear 
iterations 
 

These criteria are considered in the main control, post- and pre-analysis, see Figure 1. 
 
Figure 1 shows a sketch of the control algorithm. Initially, the solver control performs a pre-analysis to 
decide upon the various properties of the linear system which of the two employed solvers shall be 
activated. The second step proceeds as follows. If we do not have an appropriate setup, the main 
control routine will be called. Otherwise, we start with the performance of the initial iterations (3).  
 
The main control keeps track of the performance of the integrated linear solvers. If necessary, it 
switches to a different solver. If the main control switches the solver a new setup will be performed. 
During the setup all components required by the linear solver are set up. To be more specific, 
considering PCG the factorization of the matrix is computed, in terms of AMG its setup phase 



respectively. The set up components might also be reused for the following linear systems to be 
solved for. 
 
If an appropriate setup is available, the control will start the initial iterations. After performing these 
iterations, the situation is analyzed by the solving control. If the convergence rate turns out to be 
sufficiently well and no other exceptions occur we will proceed with the remaining iterations. In case of 
an unsatisfying performance or error during the initial iterations, we return to the main control routine. 
At the end of the solver control routine, the post-analysis recapitulates the overall performance and 
develops guidelines for further linear solver runs. 
 
The two solvers integrated into the new SAMG solver control shall complement one another perfectly. 
Due to the splitting of the cycling phase into two subsets and the analysis after the initial iterations, an 
insufficient solving of one of the solvers is detected very fast. Hence, the overhead due to deficient 
attempts is reduced.  
 
Considering a model which is efficiently solvable with one of the solvers, there should be only a small 
overhead. Considering models which change their properties during the simulation, the new solver 
control might even be faster than one of the solvers solely, since the efficiency of one solver might 
change during the simulation. 
 
NUMERICAL EXPERIMENTS 
 
In this section, we examine the performance of the new SAMG solver control (SSC) on a range of 
industrially relevant test cases. In particular, we compare the Performance of the SSC to the 
performance of the old SAMG solver package, denoted with AMG and the commonly employed 
preconditioned conjugate gradient (PCG) method. 
 
Test cases 
 
TRANSIENT 
This model is an unsteady 3D regional finite-element flow problem. The mesh at a moderate 
resolution consisting of 221,210 pentahedral prismatic elements and 122,485 nodes is locally refined, 
well-formed and the parameter contrast remains moderate (conductivity ranges over five orders of 
magnitude). It can be considered as a typical 3D transient finite-element groundwater model used in 
practical water resources simulations. Of specific interest here are boundary conditions applied to 
rivers and pumping wells that possess a short-term dynamic (e.g., pumping capacity changes each 
day). The time-steps are automatically controlled by FEFLOW’s adaptive predictor-corrector 
technique. 
 
BASIN 
This test refers to a 3D large-scale basin flow model. The 123,726 element pentahedral prismatic 
mesh with a moderate resolution has to incorporate a number of faulty zones, which leads to a vertical 
distortion of the prisms along these locations. The model is transient; fixed time-steps of 1 day are 
used. The parameter contrast is three orders of magnitude. 
 
CROSS-SECTION 
This model is a cross-sectional 2D problem which has a fully unstructured locally refined triangular 
mesh. The problem models an aquifer-aquitard system with heterogeneous distribution of conductivity 
and storativity. We consider the steady-state simulation with 903,872 elements and 457,800 nodes.   
 
REAL1 
This is a real world model. It makes use of a 2D triangular mesh with 52,547 nodes and 104,456 
elements. The characteristic is that it is a combined groundwater flow and mass transport simulation. 
Therefore, it makes use of two, so-called, states of the linear solver. This means, in particular, that the 
solution strategy for the mass transport and the one of the flow transport are solved fully independent 
of each other. It turned out to be very important to proceed in this way since the systems of partial 
differential equations describing the flow and the transport respectively are very different. This model 
also makes use of FEFLOW’s automatic time-stepping. 
 
REAL2 



We also examine another real word model.  This model is a 3D transient groundwater flow. It uses 
five layers with 108,846 nodes and 178,420 pentahedral prismatic elements. Again, the automatically 
controlled time-stepping by the adaptive predictor-corrector technique is employed. 
 
Numerical Results 
 
In this section, we examine the performance of the new SAMG solver control (SSC) on the basis of 
the models introduced above. The performance of SSC is compared to the old solver package, 
denoted with AMG and the commonly employed FEFLOW preconditioned conjugate gradient (PCG) 
method.  
 
Most of the models considered are flow problems. Due to the discretization, the linear systems which 
arise within the flow simulation are all symmetric. This symmetry is exploited by FEFLOW. In 
particular, the PCG solver for the flow equations only deals with the symmetric part of the linear 
systems.  
 
In contrast, SAMG’s ILU-BICGSTAB solver, as well as SAMG’s AMG-BICGSTAB solver, always deals 
with the full linear system. Hence, if the FEFLOW-PCG solver works perfectly, we will see a relative 
underperformance of the SAMG build-in ILU-BICGSTAB solver of up to 50 percent on a single core. 
Since the SAMG ILU-BICGSTAB solver is OpenMP parallel this will not show up with this impact on 
state-of-the-art multi-core computers.  
 

 
 
Figure 2: Illustration of the control mechanism for TRANSIENT (cutoff) 
 
Figure 2 illustrates the work of the SSC for the REAL2 model. For this model, the ILU-BICGSTAB 
method turns out to be superior. This is most properly caused by the sufficiently small time steps 
introduced by the automatic time stepping employed for this model. The dots in the figure show the 
method used. 1 denotes the ILU-BICGSTAB, 25 the AMG-BICGSTAB solver respectively (right 
scale). The black line shows the runtime of the SSC. It increases if AMG-BICGSTAB is used. This 
increase is detected by the SSC. Hence, the SSC sticks to the ILU-BICGSTAB solver. The figure 
shows that the testing of the AMG-BICGSTAB method is performed several times. This is done in 
order to ensure that the behavior of the solvers does not change during the run. The time between the 
tests will be increased linearly if the other method remains inferior to the current one.  
 



Figure 3 shows a cutoff of the SSC behavior during the flow simulation of the REAL1 model. For the 
part shown in the Figure, the AMG-BICGSTAB method turns out to be superior. The dashed line gives 
information on the number of iterations the setup of the AMG-BICGSTAB method has been reused 
for.  We see that there were only three setups performed within about 330 calls of the SSC during the 
time shown by the figure. The gray line shows the run time for one call to the control routine. We see 
two things: First of all, we find that for longer time steps, indicated by the black line also the run time 
of the control routine rises. As a second thing we figure out that a new setup cost some extra time. 
 
 Another mechanism of the SSC also shows up in Figure 3. Sometimes a new setup has to be done if 
the currently employed solver does not work sufficiently anymore. This is detected by the 
convergence rate comparison. Hence, considering the third performed setup shown in the figure 
which was initiated by the convergence rate comparison, we see a significantly lower run time of the 
following control calls. 

 
 
Figure 3: Illustration of the control for the REAL1 model (only flow) (cutoff) 
 
The REAL2 model shows a considerable out performance of the FEFLOW-PCG solver, see Table 1. 
This out performance is most properly caused by two things. First of all the dynamic time stepping 
employed in the model leads to linear systems which are easily solvable by ICCG and ILU-
BICGSTAB. The second thing is that the FEFLOW-PCG solver employed in this case is the ICCG 
method, which fully exploits the symmetry of the linear system.  The SSC, in contrast, makes use of 
the ILU-BICGSTAB solver which does not exploit the symmetry. Table 1 clearly shows that the 
overhead due to the inefficient handling of the symmetry is 17 per cent while the overall overhead of 
the Solver control is only 19 per cent. This leads to the conclusion that the overhead due to the 
control is only 2 percent. 
  



AMG   PCG ILU-BICGSTAB SSC 
1.81 1.00 1.17 1.19 
 
Table 1: Comparison of the relative run times for REAL2  
 
Table 2 shows the run times for the other models described above. Considering the TRANSIENT 
model we find a clear out performance of the PCG solver compared to AMG. This is again most 
properly due to the dynamic time stepping employed for this model. The overhead for the SAMG 
solver control origins again from two things. For this model the PCG runtime turns out to be superior 
for each time step. Since, the considered linear systems are symmetric; SSC’s ILU-BICGSTAB is 
strongly inferior, like we already figured out for the REAL2 model.  A second, but rather small 
overhead is caused by the fact that the SSC tests the AMG-BICGSTAB methods several times in 
order to ensure its insufficiency for the model. 
 
Model AMG PCG SSC Overhead
TRANSIENT 3489s  1456s 1658s 14%
BASIN 701s * 724s 3%
CROSS-SECTION 24s 101s  24s 0%
REAL1 73230s 8129s 7801s -4%
 
Table 2: Run time comparison; * denotes that this method failed 
 
Considering the BASIN problem, the PCG solver completely failed. It was impossible to get 
convergent solutions. Continuing the simulation in time, after a small number of time-steps, the 
solution became fully instable. In contrast to the PCG, the AMG showed much better computational 
properties. AMG was able to solve the problem. Although the residual error could not be reduced to 
the given error criteria, the simulation could be successfully continued in time with stable and 
sufficiently accurate solutions. The same is true for the SAMG solver control. Therefore, the overhead 
of 3 percent can be fully traced back to the testing of the PCG solver, see Table 2. 
 
The CROSS-SECTION model is a steady-state simulation. Hence, the control routine is called only 
once. The routine decides upon the properties of the matrix to choose the AMG-BICGSTAB solver. 
Therefore, the runtime for AMG and the control routine do not differ, see Table 2. For this model, the 
PCG is clearly not efficient. It was not able to reach the error criterion within the predefined number of 
iterations. 
 
The REAL1 model shows that the control might even be faster than one of the methods solely. For 
the REAL1 model the AMG performs poorly with respect to run time. However, the convergence rates 
are very good. The bad run time of the AMG method can be explained by the overhead which is due 
to the setup and also the symmetry of the system, which is not exploited by AMG. The performance of 
PCG compared to AMG looks on a first sight highly superior. However, taking a closer look to PCG’s 
performance we figure out that the PCG solver sometimes needs many iterations. Hence, AMG is 
superior for certain linear systems of the simulation. Due to the intelligent solver switching of SSC, we 
can exploit this fact. This results in a considerably good runtime.  
 
Conclusion and Outlook 
 
We investigated the performance of the new SAMG solver library, which is available with FEFLOW 
version 5.4. The results indicate the efficiency of the new solver control. In particular, the overhead 
due to the control mechanism showed to be bounded by five percent.  
 
However, due to the use of the unsymmetrical variant of PCG in the SAMG solver control the SAMG-
PCG solver might be up to 50 percent slower than the FEFLOW-PCG solver for flow calculations on a 
single core. On the other hand, the employed solvers in the SAMG solver control are OpenMP 
parallel, which leads to performance gains on state-of-the-art computing architectures. Hence, the 
overall performance on state-of-the-art multi-core machines turned out to be fairly well. 
 
For some models, the control even turned out to be faster than the other solvers considered. This can 
be explained by the properties of linear systems. During a simulation, the systems can drastically 



change and lead to inefficiencies of the currently employed linear solver. In such a situation, the 
control is able to detect the lack of performance and switch to another solver. 
 
A future task is to replace the ILU-BICGSTAB solver in the case of symmetric linear systems by a 
parallelized variant of the incomplete Cholesky factorization. This modification shall result in an 
efficient linear solver for all models. The modification is planned to be released within one of the next 
patches of FEFLOW. 
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