
LMG2: Accelerating the SAMG Multigrid-Solver in MODFLOW

Peter Thum
1
, Wayne Hesch

2
, Klaus Stüben

1

1
 Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), peter.thum@scai.fraunhofer.de,

klaus.stueben@scai.fraunhofer.de,St. Augustin, Germany
2
 Schlumberger Water Services, WHesch@slb.com, Waterloo, Ontario, Canada

ABSTRACT

This report documents the new Link-AMG (LMG2) interface that links the USGS-MODFLOW-2000,2005
groundwater flow model to an Algebraic Multigrid Solver, SAMG. SAMG is a very mature program that is
used for the efficient solution of linear systems of equations in many commercial simulation codes. The
LMG2 interface provides some distinct advantages compared to former LMG versions. The main
advantages are an enhanced memory management, the ability to re-use setup data as well as parallel
computing support for an efficient use on state-of-the-art multi-core machines. LMG2 outperforms PCG
and GMG especially for large grids and highly variable conductivity fields. For the applications in this
paper we demonstrate that LMG2 is up to 100 times faster than PCG and up to twice as fast as and even
faster than GMG on state of the art multi-core machines.

INTRODUCTION

In recent years, computing hardware has grown exponentially (memory and hard drive capacity, number
of processors, speed, and introduction of the 64-bit platform), while at the same time becoming more
affordable. This has allowed groundwater modelers to build bigger, more realistic groundwater models,
with higher resolution, leading to increasing grid sizes and simulation run times.

Commonly used classical linear solvers are not scalable; their runtime rises exponentially with the size of
the model. Carefully designed algebraic multigrid methods anticipate this effect, they promise optimality
and robustness, and can easily be plugged into existing simulation software. For instance, SAMG has
been introduced as the primary numerical solver module in FEFLOW 6 and has been linked into
MODFLOW-2000 or MODFLOW-2005 as an alternative solver. This is done via the so-called Link-AMG
(LMG) interface.

The “original” LMG interface was introduced by the USGS in 2001 in connection with the academic
forerunner of SAMG, namely, the very first algebraic multigrid code, AMG1R5. The new interface, LMG2,
which links SAMG with MODFLOW-2000 and -2005, has been drastically improved and its applicability
has been widely extended. The following describes the novelties in LMG2 and demonstrates its
performance for a representative collection of models.

LMG AND ALGEBRAIC MULTIGRID METHODS

Algebraic Multigrid methods, and as such SAMG, proceed in two phases for solving a linear system of
equations: first, an expensive setup phase in which all hierarchical components are set up, and secondly
a cycling phase in which the linear system is solved iteratively, further details can be found in [Stüben et
al]. The new LMG2 interface is able to analyze the solver behavior for previous linear systems and
(automatically) exploits this information to minimize overall runtime. This is possible due to the fact that
subsequent linear systems in non-linear and/or transient simulations typically change only slightly
regarding their algebraic properties. This way LMG2 enables SAMG to reuse parts or all of previous
expensive setup phases whenever possible which significantly reduces overall run times.

This automatic optimization process is the most important advantage of LMG2. In addition, it implements
an enhanced memory management and is OpenMP parallel, leading to additional performance gains on
state-of-the-art multi-core computers. Finally, in contrast to previous LMG versions, LMG2 now uses
exactly the same residual-based stopping criteria as the alternative MODFLOW solvers, PCG and GMG.

In the past, differences in these stopping criteria made it difficult to compare different solvers realistically.
Note that the damping strategies did not change.

NUMERICAL EXPERIMENTS

Benchmark tests were performed for 18 different models, two of them were only suited for MODFLOW-
2000. The models represent common groundwater models and cover all possible variations, i.e. small/big
time steps, steady state, high/low anisotropies, big/small size, linear and nonlinear. The brief
characterization of the models can be found in Table 1.

MODEL NLAY NROW NCOL # cells NPER Time steps (TS)

A1 7 151 150 158,550 3 30 TS in the first SP, 10 TS in the following SPs

A2 7 151 150 158,550 3 10 TS in each SP

C1 70 120 120 1,008,000 2 First SP is SS. 50 TS in second SP

E1 13 94 101 123,422 18 10 TS in each SP

H1 10 177 106 187,620 1 SS

I1 9 405 405 1,476,225 1 SS

L1 21 500 500 5,250,000 1 SS

R1 7 1032 912 6,588,288 7 1 TS in first SP, 10 TS in the following SPs

S1 7 151 150 158,550 1 SS

S2 7 151 150 158,550 1 SS

T1 60 240 120 1,728,000 1 SS

T2 1 1500 700 1,050,000 1 SS

T3 4 190 194 147,440 49 First SP is SS. 1 TS in the following SPs

T4 15 194 160 465,600 1 SS

T5 3 163 153 74,817 1 SS

T6 40 160 160 1,024.000 1 SS

T7 1 855 1952 1,668.960 1 SS

V1 7 172 152 183,008 201 1 TS in first SP, 10 TS in the following SPs

Table 1. Overview of the test models. NLAY: number of layers; NROW/NCOL: number of
rows/columns; #cells: degrees of freedom of the linear system; NPER: number of stress periods;
SP: stress period; SS: steady state.

Linear Solver

SAMG is compared to the commonly used PCG and GMG solvers. PCG is an ILU-preconditioned CG
solver which is well-suited for small models and/or very small time steps. GMG is favorable for large
models and relatively large time steps. The OpenMP parallel version of PCG, described in [Dong and Li],
is also evaluated, allowing for a comparison between the parallel performance of SAMG and PCG.

Comparison of LMG1 and LMG2

The main features of LMG2 have been described before. In particular, the smart and automatic reuse of
setup data typically reduces CPU time significantly. This can clearly be seen by comparing LMG2 with its
forerunner LMG1 which did not feature the reuse of setup data. The runtime for many models between
LMG1 and LMG2 has improved significantly. Additionally, LMG2 makes use of an improved AMG strategy
which uses less memory than previously.

Figure 1 shows results from LMG2, LMG1, and GMG, using the models documented in [Wilson and Naff].
Note that the CPU time is normalized, i.e. LMG2’s CPU time is set to 100% highlighted by the blue line.
The results were obtained with MODFLOW-2000. With the reuse of setup, LMG2 is able to outperform

GMG’s CPU time for all considered models, with the exception of T5 and T6. Model T6 is a linear steady-
state model, hence only one linear system has
to be solved, and, consequently, LMG2 is not
able to save setup time. However, due to
LMG2's improved memory management, CPU-
time is reduced substantially compared to
LMG1. On the other hand, model T5 is small,
causing the setup time to be over-
proportionally large relative to the actual
solution time. Although LMG2 performs only
one setup for this model, the cost for this setup
is so high that GMG outperforms in this special
situation.

Figure 1. Comparison of CPU times between GMG,
LMG1, and LMG2. LMG2’s CPU time is set to 100
percent.

Comparison of LMG2 to GMG and PCG

In this section, tests are run using MODFLOW-2005. Hence, T4 and T5 are skipped since they use
packages (SEN and OBS) which are no longer available within MODFLOW 2005.

Figure 2: CPU time comparison of LMG2, GMG, and PCG. LMG2’s CPU time is set to 100 percent.

Figure 2 shows that LMG2 is faster than PCG for all models, with the exception V1. This model makes
use of relatively small time steps which usually is very beneficial for PCG. Note that the model E1 did not
converge with PCG.

The CPU times of all solvers for C1 are very similar. C1 also uses small time steps. Hence, PCG should
be far better than the other two solvers. However, the model also has a very small head and residual
closure criteria (i.e. HCLOSE=1e-5, RCLOSE=1e-8). The strong closure criteria lead to over-
proportionally more iterations of the PCG solver than of the other two solvers. Hence, the CPU time of all
solvers is very similar. These results are in line with trends noticed in [Hill and Mehl].

When comparing GMG and LMG2, GMG is better for only three cases: T6, E1, and V1. Model T6 is linear
and steady state. Hence, the setup time is relatively high compared to the overall solution time of the
linear systems. Models E1 and V1 make use of relatively small time steps, which seem to be also
beneficial for GMG’s convergence. When the models feature high conductivity differences and/or
anisotropies, GMG necessarily looses efficiency. This is in contrast to LMG2, which adaptively tunes its
components to such situations. This is clearly visible in the results: While model V1 has no big variance
in the hydrologic conductivities, models T1, T7, S1, S2, H1, A1, and A2 feature strong anisotropies.
Hence, for the latter models, SAMG’s performance is extremely good.

Generally, we would expect an enormous save CPU time for LMG2 compared to the other solvers for
very big models. The reason for the low speed-up of 1.4 for model R1 is the small time step size used,
which counteracts the model size.

The memory usage of SAMG compared to GMG is significantly higher because all transfer operators,
such as restriction and interpolation, have to be stored. However, with modern machines operating on
several gigabytes of memory, the difference in memory consumption is a minor tradeoff given the
significant improvement in runtime, especially for models with large grids.

Parallel Performance

In this section, we first analyze the parallel performance of LMG and PCG. When investigating parallel
performance one often uses the notion parallel speed-up. Parallel speed-up on p threads is defined as
the ratio of the execution times needed on one thread and on p threads. The higher the parallel speedup
of a program, the better its parallel performance.

Figure 3. Parallel Speedup for the models C1 and R1 of LMG2 and PCG. The ideal (OPT) parallel
speed-up (green) is also drawn.

For demonstration, the test problems C1 and R1 were run up to 8 cores on an Intel Nehalem (2x4 cores,
24 GB Memory) computer. Figure 3 shows the corresponding parallel speed-up for the parallel
MODFLOW solvers LMG2 and PCG. Additionally, a line for the ideal speedup is drawn. Generally, the
memory bandwidth provides a limitation in the achievable speedups. Hence, even if more threads are
used, no significant further improvements in runtime are to be expected. For both PCG and LMG2, the
ideal performance is not reached. The reason for this is inherent to the respective algorithms: PCG as
well as LMG2 are not parallelizable to a full extent. Generally, the parallel performance of LMG2 seems
better than that of PCG, which is seen in Figure 3. Note that the parallel speed-up strongly depends on
the compiler and hardware used. The parallel speed-up of PCG seems to be bounded for the Intel Fortran
Compiler and the Nehalem machine used.

Figure 4 shows a runtime comparison of GMG, PCG and LMG2 on 2 threads. The results demonstrate
that LMG2 outperforms both GMG and PCG for all models but V1. Here again PCG is better for the
reasons already mentioned in the previous section. Note the more cores are used the better is LMG2’s
performance compared to GMG and PCG, due to its significantly better scalability.

Figure 4. CPU time comparison between LMG2 and PCG using two threads and the sequential
GMG . LMG2’s CPU-time on one thread is set to 100 percent.

SUMMARY

The performance of the LMG2 solver compared to the PCG and GMG solvers has been demonstrated for
a large set of problems. LMG2 is faster than PCG and GMG for nearly all considered models. LMG2 is
extraordinarily efficient for large grids and highly variable conductivity fields. The results indicate that
LMG2 is up to 100 times faster than PCG and up to 2 times faster than GMG. Only in the case of very
homogenous conductivity distributions, GMG is able to perform slightly better than LMG2. Only for very
small time steps and low accuracy requirements PCG is better than both GMG and LMG2. There are
plans to extend LMG2 so that it detects situations which are particularly suited for PCG (very small
meshes and/or very small time steps) and automatically switches to a PCG variant. With such a control
mechanism LMG2 should eventually become the solver of choice for all MODFLOW models.

LMG2 is very robust and easy to use. In contrast to LMG2, GMG has to be tuned manually in order to
handle anisotropies correctly; otherwise GMG may run into convergence problems. Furthermore, we have
seen that the parallelization of LMG2 further improves its performance. In particular, LMG2 on 2 threads
causes better run-times than the GMG solver for all problems. The performance gain will increase further
with rising cores.

Future developments for LMG2 include expanding to support USGS MODFLOW-LGR and SEAWAT
engines.

REFERENCES

Dong Y., Li G. A Parallel PCG Solver for MODFLOW. Ground Water 47, no. 6:845-850, 2009.
Stüben, K., Delaney, P., Chmakov, S. Algebraic Multigrid (AMG) for Ground Water Flow and Oil Reservoir

Simulation. “MODFLOW and MORE”, Colorado School of Mines, Golden, Colorado, 2003.
Detwiler L., Mehl S., Rajaram H., and Cheung W. Comparisons of an algebraic multigrid algorithm to two

iterative solvers used for modeling ground water flow and transport. Ground Water, (v. 40, no. 3),
2002.

S.W. Mehl and M.C. Hill. MODFLOW-2000, the u.s. geological survey modular ground-water model-user
guide to the link-amg (lmg) package for solving matrix equations using an algebraic multigrid
solver. Open-File Report, 01-177, 2001.

