
FAST HARDWARE INDEPENDENT
SOFTWARE DEVELOPMENT
LAMA is a framework for developing

hardware-independent, high performance

code for heterogeneous computing

systems. It facilitates the development

of fast and scalable software that can be

deployed on nearly every type of system,

from embedded devices to highly parallel

supercomputers, with a single code base.

By using LAMA for their application,

software developers benefit from higher

productivity in the implementation phase

and stay up to date with the latest

 hardware innovations, both leading to

shorter time-to-market.

Overview

LAMA is a multi-layer framework (Fig. 1)

offering multiple modules for fast

 heterogeneous software development.

It targets multi-core CPUs, NVIDIA®

GPUs and Intel® Xeon® Phi™’s – for

single-node or multi-node usage, i.e.

any kind of a distributed homogeneous

or heterogeneous environment. LAMA’s

 flexible plug-in architecture allows a

 seamless integration of tomorrow´s

CPU´s and accelerator hardware

 architectures, thus reducing maintenance

costs. The modular and extensible

software design supports the developer

on several levels, regardless of whether

writing his own portable code with the

 Heterogeneous Computing Development

Kit or using functionality from the higher

level packages, the user always gains high

 productivity and maximum performance.

LAMA is written in C++ and the latest

version 3.0 uses the new modern C++11

features that allow writing codes more

securely and more efficiently. LAMA is

licensed for free under LGPL (GNU Lesser

General Public License v3), so derivative

work must also be redistributed under

LGPL, but applications using the LAMA

library don’t have to be.

Fraunhofer Institute for Algorithms

and Scientific Computing SCAI

Schloss Birlinghoven 1

53757 Sankt Augustin

Germany

Contact:

Dr. Thomas Soddemann

Phone +49 2241 14-4076

thomas.soddemann@

scai.fraunhofer.de

www.scai.fraunhofer.de / hpc

Website:

Find more information about LAMA on

www.libama.org

F R A U N H O F E R I N S T I T U T E F O R A L G O R I T H M S A N D S C I E N T I F I C C O M P U T I N G S C A I

Ju
ne

 2
01

8

Heterogeneous Computing

Development Kit

The Heterogeneous Computing

 Development Kit as LAMA’s base

module provides the management of

 heterogeneous memory and compute

kernels. It facilitates three issues:

• A consistent data usage on

 heterogeneous devices is achieved

by dedicated read and write accesses

within the memory management.

• Decisions about the execution context

in the application are separated from

implementing the kernels by the kernel

management.

• Asynchronous execution of these

kernels, memory transfer and

 communication is handled by the

tasking layer.

This combination leads to a clean software

development, accomplishing a good main-

tainability on the user’s side with minimal

runtime overhead.

Kernel Layer

The Kernel Layer provides hardware

independent routines for multiple purposes:

basic functionality on arrays, dense and

sparse BLAS operations as well as sparse

conversion routines encapsulating MKL

(BLAS), cuBLAS and cuSPARSE or own

optimized kernels. Different sparse matrix

formats are available for the application in

various use cases and target architectures.

1 LAMA’s multi-layer software stack 2 Performance Comparison between MPI and LAMA version of

SOFI3D for a 600 x 600 x 600 grid.

User Applications

Heterogeneous Computing Development Kit

Matrices, Vectors, Grids + Distributions

Math + Utility Kernels

Linear Solvers, Preconditioners

Linear Least Square
with Constraints

Eigensolvers Non-Linear
Solvers

Automatic Partitioning

Distributed Memory Kernels

1 # Nodes (CPU: 2 x E5 2680 CPU or GPU: 2 x NVIDIA Tesla K80)

SOFI3D (600 x 600 x 600), MPI version vs LAMA version

4
0

200

400

600

800

1000

1200

8 16 32 64

R
u

n
ti

m
e

 [
s] MPI, CPU

LAMA, CPU

LAMA, GPU

2

This layer also manages different mappings

of data to processor arrays and implements

typical data parallel communication

patterns that scale on cluster nodes. The

kernels take direct advantage of any

support for faster communication between

device memory (e.g. CUDA-aware MPI).

Linear Algebra Layer

The Linear Algebra Layer facilitates the

development of numerical algorithms

for various application domains using

vectors (sparse or dense), matrices (sparse

or dense) or multi-dimensional grids

distributed among the available processors.

Operations can be written in textbook

syntax where symbolic expression handling

at runtime avoids temporaries as far as

possible. Due to the underlying layers, all

the operations here abstract from the used

matrix / vector formats and distributions,

and so hide implementation details of the

target architecture, memory management

and communication.

Application Layers

Based on the data structures of the Linear

Algebra Layer, LAMA offers various iterative

solvers using splitting methods (e.g.Jacobi,

Richardson) or Krylov subspace methods

(e.g. CG, GMRES, MINRES). They can be

used either directly or preconditioned,

with default or user-definable stopping

criteria. Sparse matrix reordering and

automatic partitioning can be applied to

improve load balancing and to reduce

the communication volume. Different

implementations for eigensolvers, linear

least square methods with constraints and

non-linear solvers benefit from the LAMA

approach and the available functionality.

The integration of a custom-built solver is

straightforward.

Case Study

SOFI3D is a seismic modelling code

developed at the Geophysical Institute,

KIT, Karlsruhe. The existing MPI version has

been re-implemented with LAMA using

explicit matrix-vector formalism. While the

MPI version was difficult to maintain, the

developers can now focus on geophysical

problems and do not have to deal any

more with implementation details and HPC

issues. For a strong scaling benchmark, a

3D problem size with 600 grid points in

each dimension has been selected. On the

JURECA HPC system (Jülich Supercomputer

Center) this benchmark shows nearly same

 performance for both versions on CPU

nodes (2 x Intel Xeon E5 2680 v3 Haswell à

12 cores @ 2.5 GHz). In contrary to the MPI

version, the LAMA version runs without

modifications also on GPU nodes (2 x

 NVIDIA Tesla K80), see Fig. 2.

