
F r a u n h o F e r I n s t I t u t e F o r a l g o r I t h m s a n d s c I e n t I F I c c o m p u t I n g s c a I

(semi-)automatic code
optimization and
 parallelization
Fraunhofer SCAI has a longterm working

experience in massively parallel computing

and the corresponding optimization. The

HPC group at Fraunhofer SCAI is devel-

oping mechanisms to extract the maximal

potential of a given hardware through

(semi-)automatic code transformation and

parallelization techniques. We are working

on tools to optimize a user-given source

code for specific hardware architectures,

either on a source-2-source base or within

an entire compiler toolchain. The objects of

interest for such transformations predomi-

nantly are compute intensive nested loops.

Our tools parallelize the given code (e.g.

by suitable transforming it) and setting the

appropriate pragmas for the compiler or

the runtime library. Our implementations

are partially based on prestigious code

transformators to exploit their full potential.

To accomplish optimized performance for

x86 CPUs through a (semi-) automatic pro-

cess, we developed an adaptive, code- and

hardware-related transformation process

based on cache and SIMD-unit aware

tile-size-selection strategies. With our SICA

extension within PluTo (PluTo-SICA) it is

possible to generate an optimized code for

concurrent execution on SIMD units (e.g.

SSE or AVX) and multiple cores (through

OpenMP). Therefore, the framework auto-

matically inserts corresponding pragmas for

both levels of parallelism into the generated

code. The optimizations implemented

in PLUTO-SICA rely on the polyhedral

model and force an optimized load of data

through the cache hierarchy to provide the

vector units with fast accessible data. Our

approach can thus exploit the full potential

of modern CPUs regarding memory access

behavior and multi-level parallelism.

PLUTO-SICA is the parallelization base of

the ENHANCE project (www.enhance-

project.de) and available OpenSource

under LGPL2 license. We are working on

further automatic optimization strategies

for several parallel architectures like GPU or

IntelMIC as well as for various correspond-

Fraunhofer Institute for

Algorithms and Scientific

computing scaI

Schloss Birlinghoven 1

53757 Sankt Augustin

Contact:

Dr. Thomas Soddemann

Phone +49 2241 14-4076

thomas.soddemann@

scai.fraunhofer.de

www.scai.fraunhofer.de

1 2

1 Data-access hierarchy

2 Optimal parameter region for

 cache-aware code transformation

3+4 Average speedups from

PolyBench for the different bench-

mark input size constellations with

the GNU compiler gcc (3) and the

Intel® compiler icc (4). The bars

show the performance benefit of

a static tiling technique (like the

default PLUTO implementation)

as well as the speedup from our

dynamic and adaptive PLUTO-SICA

approach. The codes were auto-

matically tiled and parallelized.

5 Performance Counter measure-

ments for PLUTO and PLUTO-SICA

and (for comparison) the original

code.

ing memory layouts. Furthermore, we are

working preliminary on optimizations for

FPGA based architecture layouts.

Due to our experiences in the development

of optimizations as well as other projects

(e.g. The Fraunhofer SCAI Library for

Accelerated Math Applications – LAMA)

and industrial assignments, we provide

expertise in the field of parallelization and

optimization.

performance

Our transformation frameworks rely on the

polyhedral model and therefore require to

set up a valid polyhedral representation of

the codes’ hot-spots. This mainly restricts

the prospected code regions to nested

loops with affine array accesses.

To benchmark the performance, there is

a unified benchmark-suite for polyhedral

optimizers, the PolyBench (http://www.

cse.ohio-state.edu/~pouchet/software/

polybench/). Our optimization approach

leads to speedups throughout the different

fields of applications and leverages great

performance by code- and hardware-

specific automatic tiling strategies that

support the cache use and the concurrent

execution on parallel operating calculation

units. Our approach leads to an optimal

and comprehensive vectorization for

many codes. It reduces cache-misses and

increases the vectorization rate.

We achieve notable performance gains

by our transformations for a variety of

codes and inputs and for several compilers

(like the GNU compiler gcc or the Intel®

compiler icc).

Where to get It

Our SIMD- and cache optimization

approach PLUTO-SICA is included in the

polyhedral optimizer PLUTO and therefore

can be downloaded from the official PLUTO

git repository (http://repo.or.cz/w/pluto.git).

how to use It

PLUTO-SICA can be used for source-2-

source optimizations as well as in a library

based version natively within the LLVM

compiler toolchain. You are able (but not

obliged) to specifically mark the region

to be optimized by two simple pragmas

within the code or to use an automatic

 polyhedral-scope detector from Polly in

LLVM. Feel free to contact us for more

details!

Questions and suggestions?

Besides our x86 optimizations, please

ask us for specific purpose solutions. If

your architecture captures unused parallel

potential, we can look for solutions to use

them in a user-friendly way.

Please contact us for any feedback!

IIII LILLL LDLIDLDD LLDEE
0

1

2

3

4

5

6

pp
p
p
p
p
p

 p - - p pp - 222

 RRRRR RR

2RRRR RR

pppppppppppppppp

IIII pIpLL pDpIDppD Lpppp
0

1

2

3

4

5

6

7

pp
p
p
p
p
p

 p - - p pp - 2222

 RRRRR RR

2RRRR RR

3 4

5

