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Abstract. If solutions of a non-linear differential equation may be ob-
tained by specialization of solutions of another equation we say that
the former equation is a genecralized divisor of the latter one. We design
an algorithm which finds first-order quasi-linear generalized divisors of a
second-order quasi-linear ordinary differential equation. If solutions of an
equation contain solutions of a pair of equations we say that the equation
is a common multiple of the pair. We prove that a quasi-linear common
multiple of a pair of quasi-linear equations always cxists and design an
algorithm which yiclds a quasi-linear common multiple.

Keywords: quasi-linear ordinary differential equations, divisor of equa-
tions, multiple of equations.

Introduction

The problem of factoring linear ordinary differential operators L = T o (J was
studied in [1]. Algorithms for this problem were designed in [2], [3] (in (2] a
complexity bound better than for the algorithm from [1] was established}. In [4]
an algorithm is exhibited for factoring a partial linear differential operator in two
variables with a separable symbol. In [53] an algorithm is constructed for finding
all first-order factors of a partial linear differential operator in two variables. A
generalization of factoring for D-modules (in other words, for systems of linear
partial differential operators) was considered in [6]. A particular case of factoring
for D-modules is the Laplace problem [7], [8] (one can find a short exposition of
the Laplace problem in [9]}.

The meaning of factoring for search of solutions is that any solution of operator
@ is a solution of operator L, thus factoring allows one to diminish the order of
operators or its differential dimension.

Much less is known for factoring non-linear (even ordinary) differential equa~
tions. In Section 1, we design an algorithm for finding (first-order) generalized
divisors of a second-order quasi-iinear differential equation.

We note that our definition of generalized divisors is in the framework of
differential ideals [12] rather than the definition of factorization from [10], [11]
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being in terms of a composition of nonlinear ordinary differential polynemials,
A decomposition algorithm is designed in [11].

One can also introduce a different (from [10], [11]) concept of composition
(which yields generalized divisors) as follows. For a differential field K consider
an operator A = Y cicn @ - 4 acting on the algebra K{y} of differential
polynomials in y [12] where the coefficients a; € K{y}, the result of the action
we denote by Axz € K{y} for z € K{y}. Clearly, z is a generalized divisor
of A% z. In Section 1, we show, conversely, that if a quasi-linear z € K{y} is a
generalized divisor of v € K{y} then v = A+ z for an appropriate operator A.

Easy examples demonstrate that the two considered compositions differ from
each other. In the sense of [10], [11] we have 1 = 1oz for an arbitrary =z € K{y},
while 1 cannot be represented as A *y. On the other hand, y -y = y =¥/, while
one cannot represent y -y’ as goy for any g € K{y}.

In Section 2, we define a common multiple of a pair of equations as an equa-
tion satisfed by the solutions of both equations. We prove the existence of a
quasi-linear common muitiple for any pair of quasi-linear differential equations,
design an algorithm for computing a quasi-linear common multiple and bound its
complexity in terms of Grzegorczyk's hierarchy of primitive-recursive functions.

It would be interesting to extend the algorithm from Section 1 to equations of
arbitrary order and from quasi-linear to arbitrary non-linear ordinary equations,
and then possibly to partial differential eguations.

1 A Bound on the Degree and an Algorithm for
Generalized Divisors

We study second-order non-linear ordinary differential equations of the form

y' = fy .y, ) (1)

for a polynomial f € Q[z,y,z]. We assume the coefficients of polynomials to
be algebraic sinee we are interested in algorithms, although for the purpose of
bounds (see below} one can consider coeflicients from an arbitrary feld with
characteristic zero.

Definition 1. We say that a first-order equation

¥ = ply, z) (2)

is a generalized divisor of (1), where p € Qly,z|, if any y satisfying (2) is a
solution of (1).

It suffices to verily the condition in the definition just for generic y [12], 1. e., ¥
satisfying only the differential polynomials from the differential ideal generated
by ¥’ — p{y, z). In particular, v is algebraically independent of » over Q.
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Lemma 1. If (2} is a generclized divisor of (1} then the differential polynomial
Y — fly', y, ) has the form A= (y' — ply, z)) for an operator A = 3‘1’; +ag with
a suitable differential polynomial ag € Qly', v, ],

The converse statement is evidend.

Proof. Dividing with remainder (with respect to 4') the differential polynomial
wi=y" — f(, y, 1) = (' -~ ply, 2)) € Qly', v, 4]

by ¥ — p(y, x), we get a differential polynomial ap € Qly', v, x] such that u =
ao - {y — ply, )} + v for suitable v € Qfy, »]. Any solution y of (2) is a solution
of v, hence v = 0 since y is algebraically independent of .

Remark 1. i) The proof of Lemma 1 provides an algorithm to test whether {2}
is a generalized divisor of (1).

ii) Lemma 1 holds for an arbitrary quasi-linear differential polynomial of the
form ¢y — p, (¥, ...y, z) in place of (2) and for an arbitrary differential
polynomial (not necessary quasi-linear) in place of (1).

From (2) we have

v ap dp

Y ay p+ 9

Substituting this into (1) and rewriting

fy2)= D> fie (3)

0<<i<
where f; € Qly, z], we get
dp c'“)p
a0 p Z f1 . (4)
dy dr oSt

Obscrve that (4) is equivalent to that (2) is a generalized divisor of (1),
Then (4) implies that

S (S} (5)

Hence either deg, p < deg,, fo or fy = %13 Indeed, expand p = Z{KJ PR
for certain polynomials a; £ @{'H] ar 7 0. If & = deg, p > deg, fo then deg{fo —
g‘g) < k, therefore, fy = gg due to (5).

In a similar way, we claim that either deg, p < deg, fo or fo = gﬁ Indeed,
expand p = } gcjcm, bi - y* for certain polynomials b; € Q[z], by, # 0. If S
deg, p > deg,, fo then the coefficient of f; — 9 F& at monomial y™ equals — %=, If

%’f # (1, and thereby y™ is the leading monoml‘ll of fo — 51;; with rcspcc,t to the

expansion in y, we get a contradiction with (5). Thetefore, 52 = 0and fy =
due to (3), which proves the claim.
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So, it remains to consider the case fg = -g% Then (4) entails that

Z fe+1 p!

0<i<i—1

kence pi{f: — E?ﬂ) Arguing as above, we deduce that either deg,p <

deg, fi, deg, p < deg, fior f1 = Bu

We note that in the latter case fi = gﬁ}, fo = £2; hence Yoacictfi PP =0
because of (4), and p is determined uniquely up to an additive constant. More-
over, in this case deg, p < 1+ deg, fo, deg,p < 1 +deg, f1.

Summarizing, we conclude with the following theorem.

Theorem 1. i) If (2) is a g‘enemlz’ed damsor of (1) then either deg,p <
deg, f, deg, p < deg, f or f1 = fo dm, see (8); this determines p up to an
additive constant; in l‘he latter case deg, p < 1 + deg, fo, deg, p < 1-+deg, f1.

i) An algorithm which either constructs a generalized dw:sm" (2} of (1} or
finds out that it does not exist, looks for polynomial p with indeterminate coeffi-
cients from Q satisfying the degree bounds

deg, p < max{deg, f, 1 +deg, fo}, deg,p < max{deg, f, 1+deg, f:}
from item 1), solving (4) as a system of polynomial equations in the indeterminaie

coefficients of p.
Example 1. Consider the equation
Ez=y' +(z+3y)y +¢° +25° =0 : (6)

According to the above theorem deg, F = 1 and deg, E=3 i e, deg_p < 1and
deg, p < 3. The second alternative —}—’ = fg = —zy® — 43, 51 = fo = —x— 3y
does not apply because this system for p is inconsistent. Proccedlng as described
above, two divisors are obtained and the representations

E=(+y")+@+a) +y") and E=( +y +ay-1) +yly' +y* +ay—1)
follow. They yield the two one-parameter solutions

1 exp (
22 fexp ( -

1 o
Y= and y=—+ — T

o+

respectively.

An extension of the definition of a generalized divisor is the definition of a. frst
integral.
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Definition 2. We say that v —p(y, ©) is a first integral of (1) if for any constant
¢ any solution y of equation y' — ply,x) = ¢ is also o solution of (1).

Denote by A(e) a formula obtained from (4) by means of replacing p with p+c.
Arguing as above, we get that y — p{y, ) is a first integral of (1) ill A(c) holds
for any constant ¢. We obtain the same bound on degp as in Theorem i). The
algorithm for finding first integrals applies a quentifier climination procedure to
the following formula of the first-order theory of algebraically elosed fields:

APYeA(e)

where P denotes the vector of indeterminate coefficients of polynomial p. Thus,
the algorithm Ands the constructible set of all vectors P for which YeA(e) holds.
These vectors P provide all first integrals of (1).

2 Computing Common Multiples of Quasi-linear
Differential Equations

Definition 3. We say that a differential equation f = is a common multiple
of equations f1 = O and fo = 0 if solutions of f = O contain solulions of beth
fi =0 and fq=0.

The goal of this Section is to design an algorithm which for a given pair of
quasi-linear ordinary differential equations yields a quasi-linear common multi-
ple. To simplify the notation we assume that the equations arc of first order:
y = p(y,z) and ¥ = g(y, =) where polynomials p, g € Qly, z], although onc can
extend the aigorithm to equations of arbitrary orders almost literally.

Treating ¥ as a generic solution [12] of either of two given equations, one can
assume that y is algebraically independent of x over (.

First, the algorithm locks for a commeon multiple being a guasi-linear second-
order equation 3" = s(y’,y,z) lor a suitable polynomial s(z,y, ) € Q[z,y, z].
Hence

_y_9p O _ g g
s(py,z) =p = 57 P 6z v s(a,yx) =dq 3 1T o

Therefo.re

Bq dg
z =r-(z— = t(z— q-+ =
s(zpzy=r- p)+ay ptge=t-(z—q)+ 3 " B

for appropriate polynomials r, ¢ € Q[z, v, z], whenee

ap dp g dq

('tmr')-(z—q)—:-T"(P'“Q):(EE'P‘*‘EE)_(a—y'Q 81) (7)
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There exist r,t € Q[z, y, z] which fulfil {7) iff

o2, e, dg Oq
(p Q)i(ay P (B;;'“%)’

If the latter relation holds, i. e, r-{p —¢) = (p — ¢)" for a suitable r € Q[y, z],
one can put £ := r to get (7) and take s(z,y,2) :=r-(z—p)+p =r-(z—q)+¢
to obtain a quasi-linear common multiple ¥’ = s(y',y,z). Conversely, when
(7) holds, we substitute in it z = g. Thus, there exisés a quasi-linear common
multiple of the sccond order of a pair of equations ¥’ = p(y, z), ¥’ = gy, z) iff
(p—q)' € (p—4q), where (p — ¢) denotes the ideal generated by p — q.

More generally, following the same argument one can prove that

Lemma 2. There exists a guasi-linear common multiple of the ordern+1 of a
pair of first-order equations y' = p(y, =}, ¥’ = gy, ) iff n-th derivative

p-aep-g -V ... p-q"

More explicitly, if the latter relation holds, i. e., (p—q)™ = Pocicn i P —
q)# for some polynomials v; € Q[y, z], 0 < i < n then for polynomial

Sn(zm ce e 21, ng) = Z e (31.‘;”1 _p(i)) _{,.p(n) = Z - (zi-é-l — q(f)) -+ q(n]
0<i<n a<icn

equation y ") = s, (4™, y, @) is o required quasi-linear common multi-
ple.

For the proof we observe that y*+1 = s, (™, ..., v, ) for a polynomial
sn € Qlzn, ..., 21, ¥, 2] is & common multiple iff

n—1)

=8y, 2) =™, s (@Y, g,y o) = g

Sn(p

Therefore,
Sn(zn“f‘*' cy Z14 Y, IL') - p(n) € <Zﬂ - p(n—-l)’ SRR p):

SplZny o0 21, Yy T} — g™ € {zy — ¢ Y — q).
Subtracting two latter equalities we complete the proof of the lemma.

One can directly extend the lemma to a quasi-linear common multiple of a
pair of quasi-linear equations of an arbitrary order.
Employing Hilbert's Idealbasissatz we obtain

Corollary 1. Any peir of ordinery quasi-linear differenliocl equotions has o
quasi-linear common mulliple.

Moreover, from the explicit bound on the Idealbasissatz [13] we obiain
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Corollary 2. Any pair of ordinary quasi-linear differentic! equations

v =pe Y,y ), v =Y,y )
of order k with polynomials of degrees deg(py), deg(qrn} < d has a quasi-linear
common multiple of order g{d), where g is a primitive-recursive funciion from
the class E¥42 of Grzegorczyk's hierarchy [14], [15].

This provides also a complexity bound of similar order of magnitude of the
algorithm which looks for a quasi-linear common multiple by trying consecutively
increasing orders of a candidate and solving the membership problem to an ideal
{see Lemma 2), say, with the help of Gribner basis.

In particular, in case of first-order equations (& = 1) the function g{d) grows
exponentizlly.

Ezample 2. Let By =y +y? =0 and Ez = ¢’ + y = 0. By Lemma 2 a multiple
of order 2 does not exist; however, there is the following multiple of order 3
involving & parameter C:

Ey =4 4 (C — Oy + (C + 1" + (2C ~ D™ + (20 + Dyy’ + Oy’ + Oy,
For €' =0 it simplifies to

Ey = ym + 43}?}” + yn - 23}’2 + nyr =10.
Applying again Theorem 1 the factors 3’ -+ y*, ¥ +y and %' are obtained.

The next example is interesting because it allows to determine the general
solution of all equations involved. ’
Ezample 3. Let By =o' +y* =0 and Ep = y' = 0 with solutions y = —1= and
y = (, respectively. The multiple of E; and Es yields v + 2y’ = 0 with the
first integral 3" + 4 = C. Tts general solution is y = Cy tan (Co — C1z). It is not
obvious how the latter solution is related to the two solutions involving a single
parameter.

Remark 2. The general solution of the second-order equation in the preceding
example may alsotbe written as y = € tanh (Co + Cy); the two representations
are transformed into each other by multiplying the constants with the complex
unit 7 and representing them in terms of exponentials. From the latter represen-
tation the constant solution may be obtained by taking the limit Cs —+ oo. The
first integral y' 4 y* = C generalizes the divisor B;; its existence simplifies the
solution procedure because it provides already one of the constants involved in
the general solution of the second-order equation.
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