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ABSTRACT
Starting from the well-known factorization of linear ordi-
nary differential equations, we define the generalized Loewy
decomposition for a D-module. To this end, for any mod-
ule I , overmodules J ⊇ I are constructed. They subsume
the conventional factorization as special cases. Furthermore,
the new concept of the module of relative syzygies Syz(I, J)
is introduced. The invariance of this module and its solu-
tion space w.r.t. the set of generators is shown. We design
an algorithm which constructs the Loewy-decomposition for
finite-dimensional and some kinds of general D-modules.
These results are applied for solving various second- and
third-order linear partial differential equations.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]:
Applications

General Terms
Algorithms

Keywords
D-module, Loewy decomposition, Janet basis

Introduction
The concept of factorization of a linear ordinary differen-
tial equation (lode) originally goes back to Beke [1] and
Schlesinger [21]. Loewy [14] extended it and introduced a
unique decomposition of any lode into largest completely
reducible factors, i. e. factors which are the least common
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multiple of irreducible right factors. Similar as in the alge-
braic case, if such a nontrivial decomposition may be found,
the solution procedure is faciliated. Algorithms for factoring
a lode have also been described by Schwarz [23] and, with
improved complexity bounds, by Grigoriev [7]. A survey
may be found in the book by Singer and van der Put [17].

Factoring linear partial differential equations (lpde’s) is
much more difficult. So far there has been no common
agreement on what to understand by factoring lpde’s in gen-
eral. A first attempt to generalize the above theory by Li
et al. [13], see also Tsarev [29], has been restricted to those
lpde’s which have a finite-dimensional solution space. This
is achieved by a fairly straightforward extension of the fac-
torization of lode’s. Recently in [9] the problem of factoring
a single lpde was studied. An algorithm was designed for
factoring so-called separable lpde’s, but the general factor-
ization problem remained open.

Here an algebraic approach is suggested which subsumes
the conventional factorizations and its corresponding decom-
positions as special cases. Any given linear differential equa-
tion is considered as the result of applying a differential op-
erator to a differential indeterminate. This operator or, if
a system of equations is involved, this set of operators, are
considered as generators of a left D-module over an appro-
priate ring of differential operators. Some background on
D-modules may be found e. g. in the book by Sabbah [20]
or the article by Quadrat [18]. In our algebraic approach
decomposing a D-module means finding overmodules which
describe various parts of the solution of the original problem.
There are two possibilites for constructing these overmod-
ules.

- A set of new generators is searched for such that the
original module may be reduced to zero wrt. to them.
This stands for the conventional factorization like fac-
toring linear ode’s [23], factoring linear pde’s with a
finite-dimensional solution space [13], or the factoriza-
tions that have been described in [9].

- It may be possible to construct new generators forming
a Janet base of an overmodule in combination with the
given ones, which are not necessarily of lower order.

In either case, the result is a set of operators generating
an overmodule of the given one. The further proceeding
depends on the result of this construction. It may occur
that several over-modules have been obtained such that their
intersection is identical to the given one. If this is true,



solving the original problem is reduced to solving several,
possibly simpler problems, each of which describes some part
of the desired solution. In Loewy’s terminology [14] such a
module is called completely reducible.

If this case does not apply, for each over-module the mod-
ule of relative syzygies is constructed as defined in Section 2
below. Then the same procedure is applied to it as for the
originally given module. This process terminates until no
further over-modules may be constructed. The result is the
natural generalization of Loewy’s decomposition of ordinary
differential operators.

From this decomposition the solution of the originally
given equation may be obtained iteratively. At first all ho-
mogeneous problems have to be solved. The solutions of the
rightmost factors are already part of the solution of the full
problem. In the next step the solutions of the module of rel-
ative syzygies are taken as inhomogeneity of the respective
rightmost factor. Solving these problems yields additional
parts of the solution of the full problem. This process is
repeated until the last module of relative syzygies has been
reached. If all equations that occur in this decomposition
may be solved, the general solution of the original problem
has been obtained or, if this is not true, at least some part
of it.

In the first part of this article the algebraic background
which is the basis of the above scheme is outlined. In Sec-
tion 1 we show that the space of solutions of a module is
determined by its class of isomorphisms (Proposition 1.1),
up to an equivalence �D which is called D-isomorphism.

In Section 2 we introduce the new concept of the module
of relative syzygies Syz(I, J) of two modules I and J with
I ⊆ J . It extends the one given in [13] for finite-dimensional
modules. It is shown that it is essentially invariant w.r.t.
to the set of generators. We also show that for the space
of solutions of Syz(I, J) there holds VSyz(I,J) �D VI/VJ

(Lemma 2.4), this provides a bijective correspondence be-
tween classes of isomorphisms of the factors I/J and classes
of D-isomorphisms of the solutions spaces VSyz(I,J) (Corol-
lary 2.5). In addition we describe a procedure to calcu-
late the module of relative syzygies. Finally, the relation
aτ (Syz(I, J)) = aτ (I) − aτ (J) (Theorem 2.7) is proved for
the leading coefficients aτ of the Hilbert-Kolchin polyno-
mials; τ is the differential type of the module I , see [11]
and [12].

In Section 3, at first we define a unique Loewy decom-
position of a finite-dimensional module I . The crucial role
here plays the intersection R(I) of all maximal overmodules
of I . Instead of I the modules R(I) and Syz(I,R(I)) with
smaller differential type or smaller typical differential dimen-
sion (see e.g., [11], [12]) are considered in the inductive def-
inition. After that the Loewy decomposition is generalized
to infinite-dimensional modules I of differential type τ > 0.
It relies on the intersection Rτ (I) of the classes of maximal
overmodules of I with differential type τ , considered up to
modules of differential types less than τ . Section 4 deals
with parametric-algebraic families of D-modules. They are
applied in Section 5 for the discussion of algorithms. In
particular the theory outlined in the preceding sections is
applied to certain classes of second- and third-order linear
pde’s with rational function coefficients. An algorithm is
presented that accomplishes its Loewy decomposition when-
ever possible. If it succeeds the solution may be obtained
from it.

1. INVARIANCE OF THE SPACE OF SOLU-
TIONS OF A D-MODULE

Let F be a universal differential field [11] with commut-
ing derivatives d1, . . . , dm and D = F [d1, . . . , dm] be the
ring of partial differential operators. Denote by C ⊂ F its
subfield of constants. Introduce differential indeterminates
y1, . . . , yn over F . By Θ denote the commutative monoid
generated by d1, . . . , dm and by Γ the set of all derivatives
θyi for θ ∈ Θ, 1 ≤ i ≤ n. We fix also an admissible total
ordering ≺ on the derivatives [12]. A background in differ-
ential algebra may be found in [11, 2, 26, 27].

Let I ⊂ Dn be a left D-module. For vectors g = (g1, . . . , gn),
v = (v1, . . . , vn) ∈ F n we denote the inner product gv =
(g, vT ) =

P
givi ∈ F . By VI = {v ∈ F n : Iv = 0} ⊂ F n we

denote the space of solutions of I being a C-vector space. A
priori VI depends on the imbedding I ⊂ Dn. The purpose
of this section is to show that actually VI depends up to an
isomorphism just on the factor Dn/I , considered as well up
to an isomorphism.

Now let I1 ⊂ Dn1 , I2 ⊂ Dn2 . We say that a n1×n2 matrix
A = (aij) with aij ∈ D provides a D-homomorphism from
Dn1/I1 to Dn2/I2 if (Dn1/I1)A ⊂ (Dn2/I2), i.e. I1A ⊂ I2.
Clearly one gets a homomorphism of D-modules.

We call Dn1/I1 and Dn2/I2 to be D-isomorphic if in ad-
dition there exists a n2 × n1 matrix B = (bij) with bij ∈ D
such that (Dn2/I2)B ⊂ Dn1/I1 and

AB|(Dn1/I1) = id, BA|(Dn2/I2) = id. (1)

For the spaces of solutions VI1 ⊂ F n1 , VI2 ⊂ F n2 we say
that a matrix A provides a D-homomorphism if A(VI2)

T ⊂
(VI1)T (more precisely, one should talk about a D-homomor-
phism of the imbeddings VI1 ⊂ F n1 , VI2 ⊂ F n2). In a
similar way, if there exists a n2 × n1 matrix B such that
B(VI1)

T ⊂ (VI2)T and

AB|V T
I1

= id, BA|V T
I2

= id (2)

we call VI1 , VI2 to be D-isomorphic and denote this by
VI1 �D VI2 . The following proposition extends Lemma
2.5 [25] (established for the ordinary case m = 1) to finite-
dimensional modules.

Proposition 1.1. i) A matrix A provides a D-homomor-
phism of Dn1/I1 to Dn2/I2 if and only if it provides D-
homomorphisms of VI2 to VI1 .

ii) Dn1/I1 and Dn2/I2 are D-isomorphic if and only if
VI1 and VI2 are D-isomorphic.

Proof. i) Assume that (Dn1/I1)A ⊂ (Dn2/I2). We need
to verify that A(VI2)

T ⊂ (VI1)
T . The latter is equivalent

to the equality I1A(VI2)
T = 0 which holds because of the

inclusion I1A ⊂ I2.
Conversely, assume that A(VI1)T ⊂ (VI1)T , then as above

I1A(VI2)
T = 0 which implies I1A ⊂ I2 due to the duality in

the differential Zariski topology (see Corollary 1, page 148
in [11], also [26]). Hence (Dn1/I1)A ⊂ (Dn2/I2).

ii) Assume that (1) holds. One has to verify (2), i. e. for
any v ∈ VI1 to show that ABvT = vT . The latter holds if
and only if for any g ∈ Dn1 the equality gABvT = gvT is
true. Equation (1) entails that gABvT = (g + g0)v

T = gvT

for a certain vector g0 ∈ I1.
We mention that D-isomorphism of D-modules implies

isomorphism of the spaces of their solutions in a more gen-
eral setting, see e.g. [16], [18] (while the converse essentially
uses that we deal with a universal differential field).



2. RELATIVE SYZYGIES OFD-MODULES
In Loewy’s original decomposition scheme, the largest com-

pletely reducible right factors are removed by exact division.
In the ring of partial differential operators this is not valid
any more. In addition to the relations following from the
exact division the syzygies of the right factor have to be
taken into account. The proper generalization of the exact
quotient is given by the following

Definition 2.1. (Relative syzygies module) Let I ⊆ J ⊆
Dn be two D-modules, and let J =< g1, . . . , gt >. The rela-
tive syzygies D-module Syz(I, J) of I and J is Syz(I, J) =
{(h1, . . . , ht) ∈ Dt|P

higi ∈ I}.
This definition is more general than the definition of the
quotient of D-modules in [13] because we do not require
g1, . . . , gt to be a Janet basis of J (for a background on
Janet basis see e.g. [11, 12, 22]) and in addition it takes into
account all relations among g1, . . . , gt which put them in I .
We notice that in case when I = 0 the module Syz(0, J)
coincides with the usual syzygies module Syz(J). Our next
goal is to show that Definition 2.1 does not depend on the
choice of generators g1, . . . , gt.

Lemma 2.2. Let I ⊆ I1 ⊆ J be D-modules. Then
Syz(I1, J)/Syz(I, J) � I1/I.

Corollary 2.3. i) Dt/Syz(I, J) � J/I;
ii) Syz(I, J)/Syz(J) � I.

The main goal for introducing the relative syzygies module
is the following statement proved in [13] when g1, . . . , gt is
a Janet basis of J , one can find in [19] another proof.

Lemma 2.4. With the notation above there holds
VSyz(I,J) �D VI/VJ .

The following corollary claims that the space of solutions
VSyz(I,J) of a relative syzygies module depends just on the
factor of D-modules J/I .

Corollary 2.5. Let I1 ⊆ J1 ⊆ Dn1 , I2 ⊆ J2 ⊆ Dn2 .
Then J1/I1 � J2/I2 if and only if

VSyz(I1,J1) �D VI1/VJ1 �D VI2/VJ2 �D VSyz(I2,J2).
Proof. Corollary 2.3 implies that J1/I1 � Dq1/Syz(I1, J1)
and J2/I2 � Dq2/Syz(I2, J2). Both D-isomorphisms
VSyz(I1,J1) �D VI1/VJ1 and VSyz(I2,J2) �D VI2/VJ2 follow
from Lemma 2.4. Proposition 1.1 entails that VSyz(I1,J1) �D
VSyz(I2,J2) if and only if Dq1/Syz(I1, J1) � Dq2/Syz(I2, J2)

�
Remark 2.6. Having Janet bases of I =< f1, . . . , fs >

and of J =< g1, . . . , gt > one can construct a Janet basis of
Syz(I, J), e. g. cf. Theorem 5.3.7 in [12], also [13]. Briefly
to remind, for each fj there holds fj =

P
hi,jgi, 1 ≤ j ≤ s

for certain hi,j ∈ D. Furthermore, for each pair (k, j) with
1 ≤ k < j ≤ t we represent the ∆-polynomial of gk and gj

as lc(gj)θ1gk−lc(gk)θ2gj =
P

hijkgi such that the operators
lc(gj)θ1gk and lc(gk)θ2gj have the same leading terms with
the minimal possible leading derivative w.r.t. the applied
term ordering ≺. Then the basis of Syz(I, J) consists of the
vectors (h1,j , . . . , ht,j), 1 ≤ j ≤ s, and of the vectors

(h1jk, . . . , hkjk − lc(gj)θ1, . . . , hjjk − lc(gk)θ2, . . . , htjk) (3)

for 1 ≤ k < j ≤ t. In the special case I = 0, the relative
syzygies module Syz(0, J) reduces to the syzygies module of
J. Then as in Schreyer’s theorem, page 212 of [3], one can
show that the constructed basis of Syz(0, J) which consists
of vectors of the form (3) constitutes a Janet basis.

We mention also that relying on the algorithm from [8]
one can produce a basis of Syz(I, J) starting with arbitrary,
not necessarily Janet bases, of I and J, with double-exponen-
tial complexity.

Let us denote by HI the Hilbert-Kolchin polynomial of I
w.r.t. the usual filtration by order of derivatives, so (Dn)r =
{f ∈ Dn : ord f ≤ r} (cf. page 223 of [12]). The de-
gree deg(HI) of HI is called the differential type of I [11],
page 130 and [12], page 229, and its leading coefficient lc(HI)
is called the typical differential dimension of I ibid. The
differential type denotes the largest number of arguments
occuring in any undetermined function of the general solu-
tion. The typical differential dimension means the number of
functions depending on this maximal number of arguments.

The next theorem can be deduced directly from Theo-
rem 5.2.9 of [12], cf. also Theorem 4.1 in [26].

Theorem 2.7. Let again I ⊆ J ⊆ Dn. Then deg (HJ) ≤
deg (HI), deg (HSyz(I,J)) ≤ deg (HI) and deg (HSyz(I,J)) =
deg (HI − HJ), lc (HSyz(I,J)) = lc (HI − HJ ).

Definition 2.8. (Gauge of a module) Let I be a D-module.
We call the pair (deg(HI), lc(HI)) the gauge of I. We say
that a module I1 is of lower gauge than another one I2 if
the pair (deg(HI1), lc(HI1)) is less than (deg(HI2), lc(HI2))
in the lexicographic ordering. Taking into account Corol-
lary 2.5 one can talk also about the gauges of the correspond-
ing spaces of solutions VI1 and VI2 .

The construction of the relative syzygies allows to reduce
finding a basis of VI to finding a basis of VJ and joining it
with any solution y of the system giy = wi, 1 ≤ i ≤ t for each
element (w1, . . . , wt) of a basis of VSyz(I,J). An algorithm
for solving the inhomogeneous system giy = wi may be ob-
tained by a proper generalization of Lagrange’s variation of
constants, see e. g. the textbook [28], page 193-195 if the
homogeneous system is known to have a finite-dimensional
solution space which will be the case in our applications.
Theorem 2.7 implies that both J and Syz(I, J) have gauges
not greater than the gauge of I . In the applications in the
next section, the gauges of J and Syz(I, J) will be actually
lower than the gauge of I . In case of a finite-dimensional
ideal I this reduction was exploited in [13].

3. LOEWY DECOMPOSITIONS
Let us first study the case of a finite-dimensional mod-

ule I ⊂ Dn of differential type 0. Consider the intersection
R(I) = J(0) = ∩J of all maximal modules J ⊇ I . Any
intersection of maximal modules will be called a complete
intersection. R(I) plays a role similar to the role of the
radical of two-sided ideals in a ring. Note that there exists
a finite number of maximal modules J1, . . . , Jq for which
J1 ∩ · · · ∩ Jq = R(I). Indeed, keep taking J1, J2, . . . while
it is possible to have dimCVJ1∩···∩Ji+1 > dimCVJ1∩···∩Ji

for every i ≥ 1. Since dimCVI < ∞ we arrive finally at
J1, . . . , Jq such that dimCVJ1∩···∩Jq∩J = dimCVJ1∩···∩Jq for
any maximal module J ⊇ I . Then J1 ∩· · · ∩Jq = R(I). Ap-

plying this procedure to the relative syzygies module I(1) =
Syz(I, J(0)), replacing the role of I , which one can com-
pute making use of Remark 2.6, this yields a complete in-
tersection J(1) such that J(1) = R(I(1)) ⊇ I(1). Contin-
uing this way, one obtains successively the complete in-
tersections J(0), J(1), . . . , J(s) and the modules I(1), . . . , I(s)

such that J(l) = R(I(l)) and I(l+1) = Syz(I(l), J(l)) for



0 ≤ l ≤ s− 1, defining I(0) = I . In the last step there holds
J(s) = I(s). We have dimC VI(l) −dimC VI(l+1) = dimC VJ(l)

for 0 ≤ l ≤ s, defining I(s+1) = {0}. Thus, dimC VI =P
0≤l≤s dimC VJ(l) , which provides an upper bound s <

dimC VI on the number of steps of the described proce-
dure. The uniquely defined sequences J(0), J(1), . . . , J(s) and
I(1), . . . , I(s) can be viewed as a Loewy decomposition of I .
To get the spaces of solutions VJ(l) , 0 ≤ l ≤ s of the complete

intersections J(l) = ∩qJ
(l)
q where J

(l)
q are maximal modules,

we apply proposition 3.1 [26] (see also the beginning of the
proof of theorem 4.1 [26], p.483 and [2]) which entails that
VJ(l) =

P
q V

J
(l)
q

.

Now we proceed to a Loewy decomposition of an infinite-
dimensional module I ⊂ Dn of differential type τ > 0. To
this end, we introduce another concept first.

Definition 3.1. (Gauge-equivalence) We say that two mod-
ules J1, J2 ⊂ Dn are gauge-equivalent if J1, J2 and J1 ∩ J2

are of the same gauge.

If J1 and J2 are gauge-equivalent, then by Theorem 4.1 in
[26] also J1 + J2 is of the same gauge. Gauge equivalence
is an equivalence relation. The equivalence class of gauge-
equivalent modules of a module J is denoted by [J ]. If the
actual value of the differential type of the elements of a class
[J ] equals to τ , any two members of it are called τ -equivalent
(below τ is fixed and |J | means a class of τ -equivalence).

Example 3.2. Let J1 =< ∂x >, J2 =< ∂xx, ∂xy > and
J3 =< ∂y >. Then J1 ∩ J2 = J2, J1 + J2 = J1 all of
which are of gauge (1, 1). Consequently J1 and J2 are gauge-
equivalent. The general solution of zx = 0 is F (y), whereas
zxx = zxy = 0 has general solution Cx + F (y), C being a
constant and F an undetermined function of y. Although
J3 is also of gauge (1,1), it is not gauge-equivalent to J1

because J1 ∩ J3 =< ∂xy > which is of gauge (1,2).

We say that [J1] is subordinated to [J2] if J1 ∩ J2 is τ -
equivalent to J1. One can verify that this relation does
not depend on representatives J1 and J2 of the classes. We
denote this relation by [J1] � [J2]. Then lc(HJ1) ≥ lc(HJ2).
If in addition [J1] �= [J2] (we denote this by [J1] � [J2])
then lc(HJ1) > lc(HJ2). Hence any increasing chain of τ -
equivalence classes stops and one can consider maximal τ -
equivalence classes.

For any τ -equivalence classes [J1], [J2] satisfying [J ] �

[J1], [J ]�[J2] one can uniquely define the class [J1∩J2] such
that [J ]�[J1∩J2]. One can verify that deg(HJ1∩J2) = τ and
the class [J1 ∩ J2] does not depend on the representatives
J1, J2.

Example 3.3. Let J =< ∂xyy > with gauge (1, 3), J1 =<
∂x > and J2 =< ∂y >, both with gauge (1, 1). Because
J ∩ J1 = J ∩ J2 = J there holds [J ] � [J1] and [J ] � [J2].
Furthermore J1 ∩ J2 =< ∂xy >≡ J3 with gauge (1, 2) and
[J ] � [J3]. Because lc(HJ ) = 3, lc(HJ3) = 2 and lc(HJ1) =
lc(HJ2) = 1, both [J1] and [J2] are maximal.

Now take all τ -maximal classes [J ] such that [I ] � [J ].
Since J + I is τ -equivalent to J (again due to Theorem
4.1 [26]) we can assume without loss of generality that the
representatives are chosen in such a way that I ⊆ J . We
choose consecutively such classes [J1], [J2], . . . , [Jp] while it
is possible to have

[J1] � [J1 ∩ J2] � · · · � [J(0) = J1 ∩ J2 ∩ · · · ∩ Jp].

Clearly, p ≤ lc(HI). Then for any maximal class [J ]

for which [I ] � [J ], we obtain [J(0)] � [J ]. Hence for any

finite family [J
′
1], . . . , [J

′
q ] of τ -maximal classes for which

[I ] � [J
′
l ], 1 ≤ l ≤ q, we conclude that [J(0)] � [J

′
1 ∩ · · · ∩ J

′
q ].

Therefore, the class [J(0)] is defined uniquely and in addi-

tion I ⊆ J(0) holds. We say that J(0) = J1 ∩ J2 ∩ · · · ∩ Jp is
completely τ -reducible.

We define a Loewy decomposition of I by induction on
the gauge of I . As a base of induction when the τ -class [I ]
is maximal then I provides a Loewy decomposition of itself.
When [I ] is not maximal one can further apply the described
inductive definition of a Loewy decomposition (thereby, re-

placing the role of I) to the relative syzygies module I(1) =

Syz(I, J(0)) (see Section 2) taking into account that either
deg(HI(1)) < τ or deg(HI(1)) = τ , and in the latter case
lc(HI(1) ) = lc(HI)−lc(HJ(0)) < lc(HJ) due to Theorem 2.7;

in other words, I(1) is of a lower gauge than I . In case when
deg(HI(1)) < τ we have [I ] = [J(0)] again due to Theo-
rem 2.7 and [I ] being completely τ -reducible.

Continuing this way we arrive at a sequence of modules
J(0), J(1), . . . , J(q) with non-decreasing differential types such
that each module J(l), 0 ≤ l ≤ q is completely deg(HJ(l))-
reducible. We notice that this sequence is not necessarily
unique unlike the Loewy decomposition of a finite-dimensional
module. The obtained sequence could be called a general-
ized Loewy decomposition of I . At present we don’t possess
an algorithm to construct it in general.

4. PARAMETRIC-ALGEBRAIC FAMILIES
OF D-MODULES

For the rest of the paper, dealing with the design of al-
gorithms, we assume that the coefficients of the input op-
erators belong to the differential field F0 = Q(X1, . . . , Xm)
with derivatives dk = ∂/∂Xk, 1 ≤ k ≤ m and

D0 = F0[d1, . . . , dm],D = F [d1, . . . , dm]
where F is a universal extension of F0. In the sequel we
suppose that all the considered algebraic (affine) varieties

W ⊂ Q
N

are given in an efficient way, say as in [6]. Namely,
W = ∪Wj where Wj are irreducible over Q components
of W , and the algorithms from [6] represent each Wj (of
dimension s) in two following ways.

First, we represent Wj by means of a generic point, i.e. an
isomorphism Q(t1, . . . , ts)[α] � Q(Wj) where Q(Wj) is the
field of rational functions on Wj . The elements t1, . . . , ts ⊂
{Z1, . . . , ZN} constitute a basis of transcendency of Q(Wj)
over Q which can be taken among the coordinates Z1, . . . , ZN

of the affine space Q
N

. The element α =
P

1≤l≤N αlZl for

suitable integers αl is algebraic over the field Q(t1, . . . , ts)
with a minimal polynomial φ ∈ Q(t1, . . . , ts)[Z]. The al-
gorithms from [6] yield the ingredients of a generic point
explicitly, in other words, t1, . . . , ts; α1, . . . , αN ; φ and the
rational expressions of Zl via t1, . . . , ts, α, i.e. the ratio-
nal functions of the form gl(t1, . . . , ts, Z)/g(t1, . . . , ts), the
polynomials g(t1, . . . , ts), gl(t1, . . . , ts, Z) ∈ Q[t1, . . . , ts, Z]
being such that Zl = gl(t1, . . . , ts, Z)/g(t1, . . . , ts) holds ev-
erywhere on Wj .

Second, the algorithms from [6] yield polynomials h1, . . . ,
hM ∈ Q[Z1, . . . , ZN ] such that Wj coincides with the variety

of all points from Q
N

satisfying h1 = · · · = hM = 0.
The algorithms from [6] allow to produce the union, in-



tersection, complement of varieties, to get the dimension of
Wj , to project a variety (in other words, to eliminate quanti-
fiers), to find all points of Wj if it is finite (zero-dimensional)
or to yield any number of points if Wj is infinite (positive-
dimensional). Moreover, one extends these algorithms from
varieties to constructive sets , i.e. the unions of the sets

of the form W
′ \ W

′′
where W

′
, W

′′
are varieties (in other

terms, constructive sets constitute the boolean algebra gen-
erated by all the varieties).

Definition 4.1. (Parametric-algebraic D-modules) We
say that a family of D-modules J = {J} ⊂ Dn is parametric-

algebraic if there is a constructive set V = ∪Vj ⊂ Q
N

for an
appropriate N such that J = ∪Jj and for any fixed j the fol-
lowing holds. A Janet basis of any J ∈ Jj has fixed leading
derivatives lder(J) = lderj and the parametric derivatives
pder(J) = pderj, see [13]. Moreover, any element of the
Janet basis of J has the form

γ0 +
X

γ∈pderj

Aγ(Z1, . . . , ZN )γ (4)

where γ0 ∈ lderj and Aγ ∈ Q(Z1, . . . , ZN )(X1, . . . , Xm).
When (Z1, . . . , ZN ) ranges over the constructive set Vj,

the set of linear differential operators of the form (4) for
all γ0 ∈ lderj ranges over the Janet basis for all modules J
from Jj . Thus, we have a bijective correspondance between
the points of Vj and the modules, or rather their Janet basis)
from Jj.

We rephrase in our terms the following proposition which
was actually proved in [13].

Proposition 4.2. ([13]). One can design an algorithm
which for any finite-dimensional D-module I ⊂ Dn finds a
parametric-algebraic family of all the factors of I, i.e. the
modules J ⊂ Dn such that I ⊂ J.

Lemma 4.3. One can design an algorithm which for a
pair of parametric-algebraic families I,J of D-modules yields
the parametric-algebraic family of all the pairs (I, J) where
I ∈ I, J ∈ J such that I ⊆ J.

Proof. Let {γ0 +
P

γ∈pderj
Aγ(Z1, . . . , ZN )γ}γ0∈lderj be a

Janet basis of Jj and {λ0+
P

λ∈pders
Bλ(Z1, . . . , ZN)λ}λ0∈lders

be a Janet basis of Is. Then the condition that I ⊆ J for
I ∈ Is, J ∈ Jj can be expressed as the existence for each
λ0 ∈ lders of operators of the form

P
θ Cθ,γ0,λ0θ ∈ D where

θ ≺ θ0 and λ0 = θ0yi for a certain 1 ≤ i ≤ n such that

λ0 +
P

λ∈pders
Bλ(Z1, . . . , ZN )λ =

P
γ0∈lderj

(
P

θ Cθ,γ0,λ0θ)(γ0 +
P

γ∈pderj
Aγ(Z1, . . . , ZN )γ)

(5)
where the external summation in the right-hand side ranges
over the elements of the Janet basis of Jj . One can rewrite
(5) as a system of linear algebraic equations in the un-
knowns Cθ,γ0,λ0 , while the entries of this system are ratio-
nal functions from Q(X1, . . . , Xm) (Z1, . . . , ZN ). One can

find the constructive set U = Uj,s ⊂ Q
N

such that for
(Z1, . . . , ZN ) ∈ U this linear system is solvable. Combin-
ing this for all pairs l, s completes the proof. �

Corollary 4.4. For a finite-dimensional D-module I ⊂
Dn one can find a parametric-algebraic family Imax of all
maximal D-modules J which contain I.
Proof. Among the family of all the factors J of I produced
in proposition 4.2 one can relying on Lemma 4.3 distinguish
all J0 such that if J0 ⊆ J then J0 = J holds. �

5. CONSTRUCTING LOEWY-DECOMPO-
SITIONS. ALGORITHMS

Now we are able to construct the Loewy decomposition
for any finite-dimensional D-module I ⊂ Dn

0 . According to
Corollary 4.4 we determine the intersection R(I) of all maxi-
mal modules from Imax. To this end we conduct the internal
recursion on dimC VR(I). Assume that a complete intersec-
tion J0 of several maximal modules from Imax has already
been constructed. Applying Lemma 4.3 we test whether
there exists a maximal module J ∈ Imax which does not
contain J0. Then we replace J0 by the complete intersec-
tion J ∩ J0 and continue the internal recursion. Finally, we
arrive at R(I) and, by external recursion, proceed to the rel-
ative syzygies module Syz(I,R(I)), provided that the latter
is not zero, else halt. Thus, we have shown the following

Corollary 5.1. For a finite-dimensional D-module I ⊂
Dn

0 one can construct its Loewy decomposition.

This construction is the basis in [13] for decomposing finite-
dimensional modules. An algorithm has been given there
which applies these steps. An implementation may be found
in the ALLTYPES system [24].

For general modules the answer is less complete. In [9]
proper factorizations and the corresponding decompositions
have been considered for second- and third-order operators.
Here this approach is extended to the case where genuine
factors of such operators do not exist.

Most of the research on finding closed-form solutions of
lpde’s has been restricted to second-order equations for an
unknown function z depending on two arguments x and y.
The general linear equation of this kind may be written as

Rzxx + Szxy + Tzyy + Uzx + V zy + Wz = 0 (6)

where R,S, . . . , W are from some function differential field
which is usually called the base field. Under fairly general
constraints for its coefficients it can be shown that it may
be transformed either of the following two forms.

zxy + A1zx + A2zy + A3z = 0, (7)

zxx + A1zx + A2zy + A3z = 0. (8)

In this section it is always assumed that all Ak ∈ Q(x, y).
Any solution scheme is closely related to the question what
type of solutions are searched for. For linear ode’s the an-
swer is well known. The general solution is a linear com-
bination of a fundamental system over the constants. For
pde’s the answer is much more involved. Equations of the
form (7) may allow solutions of either of the two forms

f0(x, y)F (x) + f1(x, y)F ′(x) + . . . + fm(x, y)F (m)(x), (9)

g0(x, y)G(y) + g1(x, y)G′(y) + . . . + gn(x, y)G(n)(y) (10)

where the fk, gk are determined by the given equation, and
F (x) and G(y) are undetermined functions of the respective
argument. The existence of either type of solution, or of
both types, depends on the values of the coefficients Ak. To
decide their existence is already highly nontrivial. Moreover
there may be solutions with integrals involving the unde-
termined elements. An algorithm is described now which
performes these steps for certain pde’s of second or third
order. Equation (7) is written as Dxyz = 0 where

Dxy ≡ ∂xy + A1∂x + A2∂y + A3. (11)



This case has been studied most thorougly in the literature.
It will be discussed first. The principal ideal < Dxy > is
of gauge (1, 2). There may exist operators forming a Janet
base in combination with (11) which are of the form

Dxm ≡ ∂xm + a1∂xm−1 + . . . + am−1∂x + am (12)

or Dyn ≡ ∂yn + b1∂yn−1 + . . . + bn−1∂y + bn (13)

with m and n positive integers. Usually it is a difficult
problem to construct new operators which extend a set of
given ones to form the Janet base of a larger ideal. However,
due to the special structure of the problem, the auxiliary
systems for the unknown coefficients aj and bj in (12) and
(13) may always be solved as is shown next.

Proposition 5.2. Let an operator of the form (11) be
given. The following types of overideals may be constructed.

a) If n ≥ 2 is a natural number, it may be decided whether
there exists an operator (13) such that (11) and (13)
combined form a Janet base. If the answer is affir-
mative, the operator (13) may be constructed explicitly
with coefficients bi ∈ Q(x, y), the ideal < Dxy, Dyn >
is of gauge (1,1).

b) If m ≥ 2 is a natural number, it may be decided whether
there exists an operator (12) such that (11) and (12)
combined form a Janet base. If the answer is affir-
mative, the operator (12) may be constructed explicitly
with coefficients ai ∈ Q(x, y), the ideal < Dxy, Dxm >
is of gauge (1,1).

Proof. The proof will be given for case a). If the operator
(11) is derived repeatedly wrt. y, and the reductum is re-
duced in each step wrt. (11), n − 2 equations of the form

∂xyk + Rk∂x + Pk,k∂yk + Pk,k−1∂yk−1 + . . . + Pk,0 (14)

for 2 ≤ k ≤ n− 1 may be obtained. All coefficients Rk and
Pi,j are differential polynomials in the ring Q{A1, A2, A3}.
There is no reduction wrt. (13) possible. Deriving the last
expression once more wrt. y and reducing the reductum wrt.
both (7) and (13) yields

∂xyn + Rn∂x + (Pn,n−1 − Pn,nb1)∂yn−1

+(Pn,n−2 − Pn,nb2)∂yn−2 + ...

+(Pn,1 − Pn,nbn−1)∂y + Pn,0 − Pn,nbn.

(15)

In the first derivative of (13) wrt. x

∂xyn + b1,x∂yn−1 + b2,x∂yn−2 + . . . + bn−1,x∂y + bn,x

+b1∂xyn−1 + b2∂xyn−2 + . . . + bn−1∂xy + bn∂x

the terms containing derivatives of the form ∂xyk for 1 ≤
k ≤ n − 1 may be reduced wrt. (14) or (7) with the result

∂xyn + (b1,x − Pn−1,n−1b1)∂yn−1

+(b2,x − Pn−1,n−2b1 − Pn−2,n−2b2)∂yn−2

...
...

+(bn−1,x − Pn−1,1b1 − Pn−2,1b2 . . . − P2,1bn−2 − A2bn−1)∂y

+bn,x − Pn−1,0b1 − Pn−2,0b2 − . . . − P2,0bn−2 − A3bn−1

+(bn − Rn−1b1 − Rn−2b2 − . . . − R2bn−2 − A1bn−1)∂x.

If this expression is subtracted from (15), the coefficients of
the derivatives must vanish in order that (7) and (13) form

a Janet base. The resulting system of equations is

b1,x + (Pn,n − Pn−1,n−1)b1 − Pn,n−1 = 0,

b2,x − Pn−1,n−2b1 + (Pn,n − Pn−2,n−2)b2 − Pn,n−2 = 0,
...

...
bn−1,x − Pn−1,1b1 − . . . + (Pn,n − A2)bn−1 − Pn,1 = 0,
bn,x − Pn−1,0b1 − . . . − A3bn−1 + Pn,nbn − Pn,0 = 0,

bn − Rn−1b1 − Rn−2b2 − . . . − R2bn−2 − A1bn−1 = 0.

The last equation may be solved for bn. Substituting it into
the equation with leading term bn,x, and eliminating the first
derivatives bj,x for j = 1, . . . , n−1 by means of the preceding
equations, it may be solved for bn−1. Proceeding in this
way, due to the triangular structure, finally b1 is obtained
from the equation with leading term b2,x. Backsubstituting
these results, all bk are explicitly known. Substituting them
into the first equation, a constraint for the coefficients Ai

expressing the condition for the existence of a Janet base
comprising (7) and (13) is obtained. The proof for case b)
is similar and is therefore omitted. �

Goursat [5], Section 110, describes a method for construct-
ing a linear ode which is in involution with a given second
order equation zxy + azx + bzy + cz = 0. The advantage of
the method given above is that it may be applied to many
other problems, e. g. exactly the same strategy works for
the third-order equations discussed below. It is not obvi-
ous how to generalize Goursat’s scheme to any other case
beyond the second-order equation considered by him.

Case a), n = 1 and case b), m = 1, have been discussed
in detail in [9]. The corresponding ideals are maximal and
principal, because they are generated by ∂y +a1 and ∂x + b1

respectively. The term factorization is applied in these cases
in the proper sense because the obvious analogy to ordinary
differential operators where all ideals are principal. For any
value m > 1 or n > 1 the overideals are Jm =< Dxy , Dxm >
or Jn =< Dxy , Dyn >. For any fixed values m1 < m2,
the corresponding ideals obey Jm2 ⊂ Jm1 , and similary for
values of n. This situation becomes particularly clear from
the following graph.
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1 2 3 . . .m
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The heavy dot at (1, 1) represents the leading derivative ∂xy

of the given equation. If a second equation with leading
derivative ∂xm represented by the circle at (m, 0) exists, the
ideal is enlarged by the corresponding operator. For m = 1
this ideal contains the original operator with leading deriva-
tive ∂xy, i. e. this operator is redundant. This shows clearly
how the conventional factorization corresponding to a first-
order operator is obtained as a special case for any m. A
similar discussion applies to additional equations with lead-
ing derivative ∂xn .

Next the algebraic approach will be applied third to order
equations of the form Dxyyz = 0 where

Dxyy ≡ ∂xyy + A1∂xy + A2∂yy + A3∂x + A4∂y + A5. (16)

The ideal < Dxyy > is of gauge (1, 3). Proper right factors
of differential type 1 and of first or second order may be
obtained by Corollary 4.3 of [9]. For completeness they are
given next without proof.



Proposition 5.3. An operator of the form (16) gener-
ates an ideal < Dxyy > of gauge (1, 3). It may have the
following proper right factors of order two or one.

a) If 2A2,y + A1A2 − A4 �= 0, b1,y − b2
1 + A1b1 − A3 = 0,

b1 = 1
2A2,y + A1A2 − A4

(A2,yy + 2A2,yA1

+A2A1,y − A4,y − A1A4 − A2A3 + A2
1A2)

a right factor ∂xy + b1∂x + b2∂y + b3 exists, b2 = A2,
b3 = A2b1 + A4 − A2,y − A1A2.

b) If 2A2,y + A1A2 − A4 = 0 and A5 − A2,yy −A2,yA1 −
A2A3 = 0, a right factor ∂xy + b1∂x + b2∂y + b3 exists
where b1 is a solution of b1,y −b2

1 +A1b1−A3 = 0, and
b2 = A2, b3 = A2b1 + A2,y.

c) If A4 − 2A2,y − A1A2 = 0 and A5 − A2,yy −A2,yA1 −
A2A3 = 0, a right factor ∂x + b exists with b = A2.

d) If A4 −A1A2 −A1,x �= 0, by − b2 +A1b−A3 = 0 where

b =
A5 − A2A3 − A3,x

A4 − A1A2 − A1,x
, a right factor ∂y + b exists.

e) If A4 − A1A2 − A1,x = 0 and A5 − A2A3 − A3,x = 0,
a right factor ∂y + b exists where b is a solution of
b1,y − b2

1 + A1b − A3 = 0.

The ideals generated in case a) and b) are of gauge (1,2), in
the remaining cases they are of gauge (1,1).

If such a factor does not exist, over-ideals of the form
< Dxyy, Dxm > or < Dxyy, Dyn > may be searched for.

Proposition 5.4. Let an operator of the form (16) be
given. The following types of overideals of differential type
1 may be constructed with coefficients ai, bi ∈ Q(x, y).

a) If n ≥ 2 is a natural number, it may be decided whether
there exists an operator (13) such that (16) and (13)
combined form a Janet base. If the answer is affirma-
tive, the operator (13) may be constructed explicitly.

b) If m ≥ 2 is a natural number, it may be decided whether
there exists an operator (12) such that (16) and (12)
combined form a Janet base. If the answer is affirma-
tive, the operator (12) may be constructed explicitly.

The results obtained up to now are combined to produce the
algorithm DecomposeLpde which returns the most complete
decomposition for any operator of the form (7) or (16).

Algorithm DecomposeLpde(L, d). Given an operator L of
the form (7) or (16) generating I =< L >, its decomposi-
tion into overideals of differential type 1 and with leading
derivative of order not higher than d is returned.
S1 : Proper factorization. Determine right factors f1, f2, . . .

of L as described in Corollary 3.3. If any are found,
collect them as F := {f1, f2, . . .}.

S2 : Extend ideal. If step S1 failed, apply Proposition 5.2
or 5.4 in order to construct operators g1, g2, . . . of the
form (12) or (13) with m ≤ d and n ≤ d, beginning
with m = n = 2 and increasing its value stepwise by
1 until d is reached. If any are found, assign them to
G := {g1, g2, . . .}. If F and G are empty return L.

S3 : Completely reducible? If J := Lclm(F ) =< L > re-
turn F , else if for the elements of G there holds J :=
Lclm(< L, g1 >, < L, g2 >, ...) =< L >, return G.

S4 : Relative syzygies. Determine generators of S := Syz(I, J)
and transform it into a Janet base. If F is not empty
return (S, F ) else return (S, G).

This algorithm has been implemented in ALLTYPES which
may be accessed over website www.alltypes.de [24]. From
this decomposition large classes of solutions of an equation
Lz = 0 may be obtained. In the completely reducible case,
from the operators returned in step S3 solutions may be
constructed as described in [9]. If L is not completely re-
ducible, the result of step S4 is applied as follows. From F
or G a partial solution is obtained similar as in the previous
case. Solving the equations corresponding to S and taking
the result as inhomogeneity for F or G respectively yields an
additional part of the solution. This proceeding may fail if
not all of the equations which occur can be solved. In these
cases only a partial solution is obtained. The following ex-
amples have been treated according to this proceeding. The
first one which is due to Forsyth. It shows how complete re-
ducibility has its straightforward generalization if there are
no proper factors.

Example 5.5. (Forsyth 1906) Define

Dxy ≡ ∂xy +
2

x − y
∂x − 2

x − y
∂y − 4

(x − y)2

which generates the principal ideal I =< Dxy > of gauge
(1,2). The equation Dxyz = 0 has been considered in [4],
vol. VI, page 80. In step S1 no first-order factor is obtained.
Step S2 shows that there exist both generators

Dxx ≡ ∂xx − 2
x − y ∂x + 2

(x − y)2
,

Dyy ≡ ∂yy + 2
x − y ∂y + 2

(x − y)2

such that the ideals J1 =< Dxy , Dxx > and J2 =< Dxy, Dyy >,
each of gauge (1,1), are generated by a Janet base. In step
S3 it is found that I = Lclm(J1, J2), i.e. I is completely re-
ducible, the sum ideal is J1 + J2 =< Dxy, Dxx, Dyy >. The
general solution of Dxxz = 0 is C1(x−y)+C2x(x−y), C1,2

are undetermined functions of y. Substitution into Dxyz = 0
yields C1,y + yC2,y − C2 = 0. They may be represented as
C1 = 2F (y) − yF ′(y) and C2 = F ′(y). Consequently the
solution z1 = 2(x− y)F (y)+ (x− y)2F ′(y) is obtained. The
equation Dyyz = 0 has general solution C1(y−x)+C2y(y−
x), C1,2 are undetermined functions of x now. Similar as
above, the solution z2 = 2(y − x)G(x) + (y − x)2G′(x) is
obtained. The general solution of Dxyz = 0 is z1 + z2.

The following example by Imschenetzky has been repro-
duced in many places in the literature.

Example 5.6. (Imschenetzky 1872) The equation (∂xy +
xy∂x − 2y)z = 0 has been considered in [10]. Step S1 shows
again that there are no first-order right factors. According
to step S2, an operator of the form (13) with n ≤ 3 does
not exist. However, for m = 3 there is an operator ∂xxx

such that the ideal < ∂xy + xy∂x − 2y, ∂xxx > of gauge (1,1)
is generated by a Janet base. The equation zxxx = 0 has
the general solution C1 + C2x + C3x

2 where the Ci, i =
1, 2, 3 are constants wrt. x. Substituting it into the above
equation and equating the coefficients of x to zero leads to

the system C2,y − 2yC1 = 0, C3,y − 1
2yC2 = 0. The Ci may

be represented as C1 = 1
y2 F ′′ − 1

y3 F ′, C2 = 2
yF ′, C3 =

F , F is an undetermined function of y, F ′ ≡ dF/dy. It

yields the solution z1 = x2F (y)+
2xy2 − 1

y3 F ′(y)+ 1
y2 F ′′(y)

of the given equation. In step S4, from the ideals I =<



∂xy + xy∂x − 2y > and J =< ∂xy + xy∂x − 2y, ∂xxx >
the relative syzygy module Syz(I, J) =< (1, 0), (∂xx,−∂y −
xy) >=< (1, 0), (0, ∂y +xy) > of gauge (1,1) is constructed.

Its solution (0, G(x)s(x, y)) with s(x, y) = exp (−1
2xy2) and

G(x) an undetermined function of x yields the solution

z2 = 1
2

R
G(x)s(x, y)x2dx

−x
R

G(x)s(x, y)xdx + 1
2x2

R
G(x)s(x, y)dx

of the original equation, its general solution is z1 + z2.

The last example is a third-order equation which allows a
single over-ideal generated by ∂xxx.

Example 5.7. Let the third-order operator

Dxyy ≡ ∂xyy + (x + y)∂xy + (x + y)∂x − 2∂y − 2

be given. It generates the principal ideal I =< Dxyy > of
gauge (1,3). Step S1 does not yield any right factors of
order one or two. In step S2 an operator of the form (13)
and n ≤ 5, or an operator of the form (12) for m ≤ 2 is not
found. However, for m = 3 there is an operator Dxxx ≡ ∂xxx

such that the ideal J =< Dxyy, Dxxx > of gauge (1,1) is
generated by a Janet base. The equations Dxyyz = 0 and
Dxxxz = 0 yield the solution

z1 = [(x+y)2−2(x+y)+2]F (y)+2(x+y−1)F ′(y)+F ′′(y)

where F is an undetermined function of y. In step S4, I
and J yield the relative syzygy module of gauge (1,2)

Syz(I, J) =< (1, 0), (∂xx,−∂yy − (x + y)∂y − x − y) >

=< (1, 0), (0, ∂yy + (x + y)∂y + x + y) > .

Its solution is G(x)s(x, y)+H(x)s(x,y)
R

e−y dy
s(x, y)

, where

s(x, y) = exp (−1
2(x + y − 2)2 − y) and G, H are undeter-

mined functions of x. According to the discussion in the
Introduction one finally obtains

z2 = 1
2

R
G(x)s(x, y)x2dx

−x
R

G(x)s(x, y)xdx + 1
2x2

R
G(x)s(x, y)dx

and for z3 an identical expression with G(x) replaced by

H(x) and s(x, y) by s(x, y)
R

e−y dy
s(x, y)

. The general so-

lution of the given equation Dxyyz = 0 is z1 + z2 + z3.

6. CONCLUSION
The results presented in this article allow decomposing

partial differential operators of the form (7) or (16) into com-
ponents of lower gauge. If such a decomposition is found,
it may be applied to determine the general solution of the
corresponding pde, or at least some parts of it.

It is highly desirable to develop a similar scheme to large
classes of modules of partial differential operators. The pos-
sible types of overmodules can always be determined. The
hard part is to identify those for which generators may be
constructed algorithmically. An important field of applica-
tion is the symmetry analysis of nonlinear pde’s, because
the determining equations of these symmetries are linear
homogeneous pde’s [22]. Another problem is to find an up-
per bound for the order d in algorithm DecomposeLpde. It
would mean that full classes of over-modules could be ex-
cluded. On the other hand, a negative answer would be an
evidence that this problem could be undecidable
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