Absolute Factoring of Non-holonomic Ideals in the Plane
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ABSTRACT

We study non-holonomic overideals of a left differential ideal
J C F[0z,8y] in two variables where F' is a differentially
closed field of characteristic zero. One can treat the problem
of finding non-holonomic overideals as a generalization of the
problem of factoring a linear partial differential operator.
The main result states that a principal ideal J = (P) gen-
erated by an operator P with a separable symbol symb(P)
has a finite number of maximal non-holonomic overideals;
the symbol is an algebraic polynomial in two variables. This
statement is extended to non-holonomic ideals J with a sep-
arable symbol. As an application we show that in case of a
second-order operator P the ideal (P) has an infinite num-
ber of maximal non-holonomic overideals iff P is essentially
ordinary. In case of a third-order operator P we give suf-
ficient conditions on (P) in order to have a finite number
of maximal non-holonomic overideals. In the Appendix we
study the problem of finding non-holonomic overideals of a
principal ideal generated by a second order operator, the lat-
ter being equivalent to the Laplace problem. The possible
application of some of these results for concrete factorization
problems is pointed out.
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1. FINITENESS OF THE NUMBER OF MAX-
IMAL NON-HOLONOMIC OVER-IDEALS

OF ANIDEAL WITH SEPARABLE SYM-
BOL

Let F' be a differentially closed field (or universal differ-
ential field in terms of [8}], [9]) with derivatives 8; and d,;
let P =3, pi;050] € F[0:,0,] be a partial differential
operator of order n. Considering e.g. the field of rational
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functions Q(z,y) as F is a quite different issue. The symbol
is defined by symb(P) = Y. . piv'w’; it is a homoge-
neous algebraic polynomial of degree n in two variables. The
degree of its Hilbert-Kolchin polynomial ez -+ eg is called its
differential type; its leading coefficient is called the typical
differential dimension [8]. A left ideal I C F[d,,8,] is called
non-holonomic if its differential type equals 1. We study
maximal non-holonomic overideals of a principal ideal {P) C
F[0z,8y]. Obviously there is an infinite number of maximal
holonomic overideals of (P): for any solution u € I of Pu =
0 we get a holonomic overideal (0z —ug /u, Oy —uy/u) D (P).
We assume w.l.o.g. that symb(P) is not divisible by dy; oth-
erwise one can make a suitable transformation of the type
Oz — Oz, Oy — Oy + b0y, b € F. In fact choosing b from the
subfield of constants of F is possible.

Clearly, factoring an operator P can be viewed as finding
principal overideals of (P); we refer to factoring over a uni-
versal field F' as absolute factoring. Overideals of an ideal
in connection with Loewy and primary decompositions were
considered in [6].

Following [4] consider a homogeneous polynomial ideal
symb(I) C Flv,w] and attach a homogeneous polynomial
g = GCD(symb(I)) to I. Lemma 4.1 [4] states that
deg(g) = e. As above one can assume w.l.o.g. that w does
not divide g.

We recall that the Ore ring R = (F[9,])™" F[0s, 8] (see
[1]) consists of fractions of the form 8~ 'r where 8 € F[3,],
r € F[0z, 0], see (3], [4]. We also recall that one can repre-
sent R = F(0g,0y) (F[9y])~", and two fractions are equal,
Brr =ri Bt iff Bri = rf [3], [4). B

For a non-holonomic ideal I denote ideal T = RI C R.
Since the ring R is left-euclidean (as well as right-euclidean)
with respect to 9; over the skew-field (F[9,])™! F[d,], we
conclude that the ideal T is principal. Let T = (r) for suitable
r € Fl0:,0,] C R (cf. [4]). Lemma 4.3 [4] implies that
symb(r) = w™g for a certain integer m > 0 where g is not
divisible by w.

Now we expose a construction introduced in [4]. For a
family of elements fi,...,fx € F and rational numbers
8 €Q,1> 82 >+ > 55 > 0 we consider a D-module
being a vector space over F with a basis {G*)},cq where
the derivatives of

G =Gf1,.. o, fus 82, s8)



