ALLTYPES: AN ALGEBRAIC LANGUAGE AND TYPE
SYSTEM

FRITZ SCHWARZ

FhG, Institut SCAI, 53754 Sankt Augustin, Germany
Email: fritz.schwarz@gmd.de

The software system ALLTYPES provides an environment that is particularly
designed for developing software in differential algebra. Its most important features
may be described as follows: A set of about thirty parametrized algebraic types is
defined. Data objects represented by these types may be manipulated by more than
one hundred polymorphic functions. Reusability of code is achieved by genericity
and multiple inheritance. The user may extend the system by defining new types
and polymorphic functions. A language comprisingseven basic language constructs
is defined for implementing mathematical algorithms. The easy manipulation of
types is particularly supported due to a special portion of the language dedicated
to manipulating typed objects, i. e. for performing user-defined or automatic type
coercions. Type inquiries are also included in the language.

1 Organization of Computer Algebra Software

The software described in this article originated from the desire to provide an
environment for implementing high quality computer algebra software. Areas
of application are for example the symmetry analysis of ordinary and partial
differential equations, finding closed form solutions of ordinary differential
equations and Janet base algorithms.

ALLTYPES provides a collection of types especially designed for modeling
mathematical data objects occuring in differential algebra. Its fine-structured
type system requires special tools for manipulating objects of these various
types easily, they are made available in terms of a specialized portion of the
language. Furthermore this language defines a small number of powerful con-
trol constructs that are especially well suited for implementing computer alge-
bra code. It may be written such that each line may be executed individually,
its action may be specified in mathematical terms, and the result may be
checked against this specification.

It turns out that many aspects that arise during the design and the imple-
mentation of computer algebra software may be better understood if they are
considered in the more general context of software engineering. Good refer-
ences for these aspects are the books by Coad and Yourdon !, 3 and Meyer 2.
A recent review by Taivalsaari ¢ is also useful.

A little consideration leads to the conclusion that the ultimate reason for

486



	Seite 1

