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I t  is probably  one of the  most  fundalnenta l  principles in theoret ica l  physics t ha t  
physical  sys tems are invar ian t  under  l ,orentz  t ransformat ions .  Consequent ly  the  under-  
lying invar iance  group,  i.e. the  I ,orentz  group,  has most  in tensively  been s tudied  by 
physicis ts  (a) and also by ma themat i c i ans  (2). So the  proper t ies  of ttfis group seem to 
be comph:te ly  known.  However .  there  is one aspect  which does not  seem to have  
~ t t rac tcd  a t t en t ion  adequa te ly  unt i l  now, i.e. the  incomplete  knowledge of the discrete  
subgroups of the  Lorentz  group.  There  are two types  of discrete subgroups which have  
been well known to physic is ts  for a long t ime.  In the  first place these are the represent-  
a t ives  of the three (',()sets of the  full  Lorcntz  group 03,1 wi th  , 'espcct to the  iden t i ty  
compmmnt  S0o(3,~). In  physic~tl te rms these are the  space inversion,  the t ime  inversion 
and the  combina t ion  of these two operat ions,  together  wi th  the uni t  e lement .  Secondly 
there  are, the discrete  subgroups of the three-dimensional  ro ta t ion group which are 
the  corncrstolm for the classification of crystal  systems.  All thcsc groups have  a fun- 
dament~l  me;ruing in theoret ica l  physics. So it does not  seem to be unreasonable  to 
ask whe the r  there exis ts  stil l  more discrete subgroups of the Lorcntz  group and how 
to lind them.  

I t  is the  purpose  of this  note  to point  out  tha t  ~ par t ia l  answer to th is  quest ion can 
be obta ined from the theory  of au tonmrphic  funct ions of one complex variable.  The  
b~sic work in this  tield has a l ready been comple ted  ahnost  one hundred  years  ago by 
FRICK~, and KLEI.X (3). Some more recent publ icat ions  in this field are the  books by 
FOlw (~). I,~l~.~E1t (~) and G~LV,~YD et al. (e). For all defini t ions and results used sub- 
s equen | l y  we refe,' the  reade," to these books. 

O) E. P. ~VIGN~:It: Ann .  e~] Math . .  40, 149 (1939}. 
(J) 1. M. (;I.:LFANI), I{. A..~IINl,o.q &n(l Z. YA. ~HAPIRO : l@presentation,~ o/ the  Rotation and Lorentz Groups 
and Thclr  .4plllicatir (Oxford and  Now York,  N. Y., 1963); M. A. NAD1AItK: Linear  Representat ions 
o! the Lorentz Group (London,  1964). These  arc  two s t a n d a r d  references  on th i s  suhject .  I t  is uot  our  
intt*ntion to g ivo  a comple te  l ist  of the  rc lewtnt  l i t e r a tu re  which would prob~bly fill severa l  dozous 
Of pag('s. 

(~) R. ~:'I~I~'g~; and  F. l(LI,:r.~,': Vorle.~ungen il2~er die Theorie der ell iplischen Modul fun~l ionen,  Vol. 1 
(Loil)zig, 1890); Vol. 2 ( Leipzig,  1892). Vorle.r 02~er die Theorie der attlomorphen Funkl ionen ,  Vol. 1 
(Leipzig,  1897); Vol. 2. p~trt 1 (Leipzig,  1901 ); p~rt  2 (Leipzig,  1912). These  books have  been repr in ted  
by the  Johnson  Repr in t  Corpora t ion  (New York,  N. Y., 1966). 
(~) I,. R. Foat~: . tu t , ,morphic  l"unctimls (New York,  N . Y . .  1972). 
(~) .]'. LEH~'ER: ~| ,~]~ort Collr.q~" i~t ..lutomarl~hic I,'unctian.q (New York, N. Y., 1966). 
(6) I..'~[. (;[.:LFAND, .~[. I. (;Ir a, nd I.  I. PYAT":T:~KII-~HAI'IRO: Represenlat iqn 7'ht'orll ~tnd .4utmnorpbic 
l"un,.titms (Phi lad(dphia .  Pa . .  1966). 
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The theory of automorphic fmlctions consists essentially in studying those func- 
t ions of a complex variable z which are invariant  under certain discrete groups of linear 
transformations T : z ~ z '  which have the form z'-= (az+ fl)/@z+ 6). So as a first step 
one has to study the discrete groups of lineax transformations. The second step deals 
with the functions which are invariant  under the respective group, i.e. the corresponding 
automorphic functions. I t  is the first step which is of interest for our present work 
because the coefficients of these transformations are restricted by aft--~,5 = 1. This 

] 

that  the matrix ( :  P~) is  an element of the group SLy. o. There exists a means 
~ C  

homomorphism between this group and the identi ty component SOo(s.~) of the homo- 
geneous Lorentz group. So to any subgroup of SL2. e there corresponds a subgroup 
of SOo(sal. This homomorphism will be exploited to determine several cla~ses of 
discrete subgroups of SOo~.~a~ and to study some elementary properties of them. 

There are three major classes of discrete subgroups of SLy.c: 

1) Elementary groups. They consist of the finite groups and the groups with 
one or two l imit  points. 

2) Fuchsian groups. A group is called Fuehsian if its transformations have a 
common fixed circle and if each transformation c~r ies  the interior of the fixed circle 
into itself. 

3) Kleinian groups. A group is called Kleinian if it does not belong to one of 
the preceding ela~ses. 

The knowledge about the Klcinian groups is very incomplete until now and so we 
do not consider them any longer. 

The elementary groups are completely known. The finite groups do not contain 
any Lorentz transformations. They correspond to the crystallographic groups and 
are omitted from our discussion. The groups with one l imit  point consist of the simply 
and doubly periodic groups. The former class contains the matrices 

(1) 

The parameter  c o = 0 e x p [ i 6 ] ,  ~ and 6 real, 0 < 0 <  oo, 0 < 6 < 2 ~ ,  determines the 
group, the integer n the group elements within a given group. The corresponding 
matr ix L 6  80oc3.1~ has the elements (7) 

% 

1 0 --  n~ cos 6 7t@ cos 6 \ 

) 0 1 - -  no sin 6 n~ sin 6 

n~ cos 6 nQ sin 6 1 - -  } n '  Q' �89 n~ ~2 
l 

nqeos6 nQsin 6 -- � 89  2 1 + �89 

C 2) {Lo} = 

(') A four-vector has the components (xz,Xz,Xz,XD. We use the metric x~+x~+x'-x~ in agreement 
with the book by NAIMARK which is quoted under ref. (s). 
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T h e  d o u b l y  p e r i o d i c  g r o u p s  c o n s i s t  of  t h e  e l e m e n t s  

(3) 
y o 1 

I n  t h i s  ca se  t h e r e  a r c  f o u r  real  p a r d . m e t e r s  d e t e r m i n i n g  t h e  g r o u p ,  i .e .  wk = 0k c x p  [ i6 , ] ,  
k =: 1, 2 ;  t h e y  o b e y  t h e  s a m e  r e s t r i c t i o n s  as  o a n d  6 for  t h e  s i m p l y  p e r i o d i c  g roups .  

A g r o u p  c l e m e n t  is  d e t e r , n i n e d  by  t h e  t w o  i n t e g e r s  n ,  and  n 2. I f  one  de f ines  t h e  func-  
t i o n s  

(4a) 

(4b) 

(4e) 

] = ] ( n ~ ,  wa.) - -  n l o  I cos  ($1 + n2w2 cos  62 , 

g = g(nk,  ~ . )  - , l o l  s in  51- i  n2~o2 s in  62 , 

h h(nk,  w~.) ~ 2 = = �89 [% ~ol -t- n202 " 2nln2 o102 cos  ( 6 1 -  62) ] , 

t h e  c o r r e s p o n d i n g  L o r c n t z  m a t r i x  m a y  be  w r i t t e n  as  

(5) {L,,} -: t l - - 9  g 

g 1 - - h  h 

I ,q - h  z + l d  

F i n a l l y  t h e y  a re  t h e  g r o u p s  w i t h  t w o  l i m i t  p o i n t s .  T h e i r  e l e m e n t s  a rc  t h e  m a t r i c e s  
o f  t h e  f o r m  

(6b) 
0 i K  "/z K ~  2 

{L ,}  --  _ . 
i K - n l  ~ - ](~m12 0 " ] 

T h e  p a r a m e t e r s  K - 0 c x p  [i6] - e x p  [o] e x p  [i~], O, a a n d  6 real ,  0 < 0 < cr - oo < a < c~ 
(o # I, a t - i ) ) ,  0 < 6 < 2m a n d  K 1 - e x p  [2~i/k],  k =- 1 . 2  . . . .  , d e t e r m i n e  t h e  g roup �9  T h e  
i n t e g e r s  u = 0 ,  :[  1, •  . . . .  a n d  m : = 0 . 1 , 2  . . . . .  k -  1 fix a g r o u p  e l e m e n t  w i t h i n  a 
g roup �9  T h e  m a t r i c e s  (6a) f o r m  a g r o u p  by  t h e m s e l v e s  w h i c h  c o n t a i n s  t h e  s u b g r o u p s  
of  e l e m e n t s  w i t h  k :=  1. T h e  m a t r i c e s  of  80o(3.1) c o r r e s p o n d i n g  to t h e  m a t r i c e s  (6) 
o f  SLy.  c are  g i v e n  t h r o u g h  

(7) {L,3 = ' - -  - cos  n5 + 

0 0 =L c o s h  ~a  s i n h  na 

--  s i u h  n o  eosh  h a l  
0 0 - -  / 
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The signs in this equation are correlated. The upper and Iower signs correspond to 
the matrices (6a) and (6b) respectively. For k =  1 and ~t= 0 the transformations (7) 
represent the simplest cxample of a discrete subgroup of a hyperbolic group, i.e. discrete 
Lorentz boosts in the 3-direction. If only 6 =  0, the group (7) contains in addit ion 
the cyclic group of order ~ in the (1-2)-plane. 

Unlikc the ca,se of the elementary groups, the Fuchsian groups are not completely 
known. Its  most important  representative is the modular group. I t  consists of those 
matrices of SL2, c the elements of which are real integers, i.e. a two-by-two unimodular  
matrix belongs to it if 

(8) (i :)(: :) 
with k, l. m, n : 0, :]: l, • 2 . . . .  and k n - -  lm = 1. This implies that  the corresponding 
element from S0o(3.~) leaves one axis tmchaJlged because it belongs actually to a sub- 
group SOo(2.alcSOo(a.~). This may also be seen from the fact that the elements of the 
form (8) belong to SL2. R which is isomorphic to S0o(2.~). If we definc the four 
quanti t ies p, q, r and s through 

(9a) 

(9b) 

(9c) 

(9d) 

p = �89 ( k  2 - -  l ~ _ m e ~, n 2) , 

q = � 8 9 2 4 7  2 _ m  2_ ~ 2 ) ,  

v -  �89 ~ - l  2 + m  2 - n  ~), 

s = � 8 9  ~ - I  2-~m ~ §  2), 

the matrix of S()o~3.~ corresponding to the clement (8) of SZe. e may be written as 

(10) {L,~} = i 
kn + Z.~ 0 k,~--L,~ km + Ln) 

1 0 0 

kl - -  m n  0 p q 

\ k l  + m n  0 r s 

The structure of the modular group is quite complicated. Unti l  now the lattice of its 
subgroups is only partially known. In fact, the most complete t reatment  of the modular 
group is still the work by FRICKE and KLEIN (3), see especially the first book quoted 
under this reference. In  this paper wc restrict our discussion to the best-known sub- 
groups of the modular group. These are the principal congruence groups of level N. 
They consist of those matrices of the modular group which are congruent to the ident i ty  
modulo N,  i.e. a matrix belongs to it if 

 ll, (: :)=(i i) 
The matrices with this property may be writ ten in thc form \ Nm N n +  1 

with k , l , m , n = 0 ,  =t=l, :J=2 . . . .  and N [ N ( k n - - l m ) + k + n ] = O .  N is a positive in- 
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TABLE II .  -- Some properties o/ the modular group and the principal congruence subgroup o/level 3? 
The quantit ies p, q, r and s are defined by eqs. (9). 

T.wpe of Parameters Parameters 
corresponding determining determining 
subgroup of SL2. e the group a group element 

Modular group none k , l , m , n = O ,  + l ,  ~ 2  . . . .  
kn - Im = 1 

Principal congruence 
group of level 5" 

N = l , 2  . . . .  k . l . m , n = O ,  + l ,  : 4 - 2 ,  . .  

N(kn -- lm) + k -4- n = O 

teger. The corresponding matrix from SOo(3.1~ is given through 

(12) {L,,}= 

/ N  I,v(k. + ira) + k + + l 

! 
X [ N ( k l - - m n ) + l - - n ]  

\ N [ N ( k l + m n ) + l + n ]  

0 N [ N ( k m - - l n ) + m - - l ]  

1 0 

0 N ~ p + N ( k - 4  ~ ) :  1 

0 N~r + N ( k - - n )  

N[N(km-t-  In) '-- m + l ] \  
I 

N2q + ii'(k -- n) ) 

N2s-4- N(k {- n)-~. 1 / 

Onc of tile most interesting properties of the discrete subgroups of SOo(a,~) is the fact 
tha t  each of them generates a characteristic latticc in Minkowski space if its elements 
are applied to three suitably chosen starting vectors. These lattices are invariant  under 
the respective groups and may be regarded as the relativistic generalization of the prisms, 
cubes, tetrahcdrons etc. which axe invaxiant under the discrete subgroups of the proper 
rotation group. 

In tables I and I l the lattice vcctors generated by the elementary and some Fuchsian 
groups respectively are given. To get an idea of how these lattices in Minkowski space 
may look like, we have explicitly calculated them on a computer for two ca.~es. The 
result is plotted in fig. I. The start ing w,etors for both cases are (1, 0, 0, 0), (0, 0, 0, l) 
and ( I . 0 , 0 ,  1). The transformations (10) and (12) for N =  2 are applied to these 
vectors. The (x0-lxl)-plot in Fag. 1 is restricted to the range Ix I < 5. Clearly tile 
complete lattice is infinite. Due to the fact that  only the absolute value of the space 
component is shown, the structure of the lattices is partly lost. Nevertheless wc think 
that  this figure may help to get an idea of their shap('. 
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contained in  it. The starting vectors for the lattices in Minkowski space are the sa.me as before. 

Lattice in Minkowski space generated by the respective group 

Spacelike Lightl ike Timelike 

\ l d - ~  r a n /  \ ~  [(k - l)' : (m -~ n ) ' ] /  

i 
.hr[.hr(kn -~- lm) -i- k -~- n] -:- 1 \ 

) 
.~'[~(kl ~- ran) + l -- m] ~-.u (m:-7~,) 2] {- N ( k ~ - l ~ - m ~ - n ) /  \ N 2 s  '-- :~ (k ~- n) ~- 1 / 

With the discussmn of the modular group we have essentially exhausted the pos- 
sibility to determine discrete subgroups of Lorentz transformations by using results 
from the theory of automorphic functions. 

There remains the question how to continue our investigations. On the one hand 
it would be very interesting to determine additional discrete subgroups of SOot3.1) 
and possibly prove the completeness of the resulting list of subgroups. As a preliminary 
result one could t ry  to obtain the discrete subgroups of S0oc2.1). I t  might be possible 
to find some , deforming process ~ as it is used for example for determining the irre- 
ducible representations of certain Lie algebras. In this way one could take advantage 
of the fact that  the discrete subgroups of the compact groups SO a and SO 4 are com- 
pletely known (B). Further  it would be interesting to extend these results from tho 
identi ty component to the full groups which consist of four disconnected piecem So far 
we have only discussed the homogeneous groups. Clearly there arises the question 
as to whether there exist also discrete subgroups of the Poincar4 group, and if so what 
they look like. This amounts to extcnding the discrete subgroups of the homogeneous 
groups by translations along the co-ordinate axes. The general structure of these groups 
seems to be known (o). 

Above all, however, there remains the central question whether the discrete subgroups 
of the Lorentz group have anything to do with physics. One might think of a classi- 
fication of the discrete energy states of matter  in a similar way as the crystal s~ructures 
occurring in nature are classified according to the space groups. For this purpose tho 
lattices in Minkowski space should be related somehow to the energy-momentum four- 
vectors representing elementary particles. Maybe this is not possible. In this ca~e this 
work would be only a mathematical  exercise. On the other hand it could be that  our 

(*) J. NEUB0SER, ]1. WO~J)RATSC~K and R. BOLOW: Acts Cryst., A27, 517, 520. 523 (1971). 
(') E. ASCKER and A. JA.~HER: Helm Phys. ~lcla, 38, 551 (1965); Comm. Math. Phys., 1], 138 (1968). 
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Fig. 1. - Two examples for the lattices in l~inkowskl space generated by discrete subgroups of the Lorentz 
group. The start ing vcctors (xt, xl, x,, x0) are (1, 0, 0, 0), (0, 0, 0, 1) and (1, 0, 0, 1) for the spacelike, 
timcllke and lightlike lattice respectively. The figure Is restricted to the region ]R]<5. The complete 
lattices contain an iattnite number of points. The open circles and the dots together represent the lattice 
generated by the modxdar group. The dote aloae are generated through the principal congruence group 
of level 2. a) I x l ' - - z t , ~ - - l ,  b) light-cone, c) J x ] ' - ~ = l .  

k n o w l e d g e  of  t h e  d i s c r e t e  s u b g r o u p s  of  t h e  L o r e n t z  g r o u p  is  t oo  p o o r  u n t i l  n o w  so t h a t  

t h e  c o n n e c t i o n  w i t h  p h y s i c s  c a n n o t  be  seen  ye t .  I f  t h i s  is  t r u e  i t  w o u l d  c e r t a i n l y  b6 

a r e w a r d i n g  t a s k  to  c o n t i n u e  a long  t h e  l ines  d e s c r i b e d  a b o v e .  


