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It is probably one of the most fundamental principles in theoretical physies that
physical systems are invariant under Lorentz transformations. Consequently the under-
lying invariance group. i.e. the Lorentz group, has most intensively been studied by
physicists (*) and also by mathematicians (2). So the properties of this group scem to
be completely known. However, there is one aspect which does not seem to have
attracted attention adequately until now, i.e. the incomplete knowledge of the discrete
subgroups of the Lorentz group. There are two types of discrete subgroups which have
been well known to physicists for a long time. In the first place these are the represent-
atives of the three cosets of the full Lorentz group O;, with respect to the identity
component S0y, .. In physical terms these are the space inversion. the time inversion
and the combination of these two operations, together with the unit element. Secondly
there are the diserete subgroups of the three-dimensional rotation group which are
the cornerstone for the elassification of erystal systems. All these groups have a fun-
damental meaning in theoretical physics. So it does not seem to be unreasonable to
ask whether there exists still more discrete subgroups of the Lorentz group and how
to tind them.

It is the purpose of this note to point out that a partial answer to this question can
be obtained from the theory of automorphic functions of one complex variable. The
basic work in this field has already been completed almost one hundred years ago by
Fricke and KLEIN (3). Some more recent publications in this field are the books by
Forp (). LenNER (°) and GeLraND et al. (8). [For all definitions and results used sub-
sequently we refer the reader to these books.

(') E. P. WieNERr: Ann. of Math., 40, 149 (1939).

(*) 1.M.GECLFAND, R, AL MINLOR and 7. YA. SHAPIRO: Representations of the Rotution and Lorentz Groups
and Their Applications (Oxford and Now York, N. Y., 1963); M. A. Namark: Linear Representations
of the Lorentz Group (London, 1964). These arc two standard refcrences on this subject. It is not our
intention to give a complete list of the relevant literasture which would probably flll several dozens
of pages.

() R. Frickx and F. Kuers: Vorlesungen iber die Theorie der elliptischen Modulfunktionen, Vol. 1
(Leipzig, 1890); Vol. 2 (Leipzig, 1892). Vorlesungen wber die Theorie der aulomorphen Funktionen, Vol. 1
(Leipzig, 1897); Vol. 2, part 1 (Leipzig, 1901); part 2 (Leipzig, 1912). These books have been reprinted
by the Johnson Reprint Corporation (New York, N. Y., 1966).

(*) L. R. Forp: Automorphic Functions (New York, N.Y.. 1972).

(!} J. LEHNER: A Short Course in Automorphie Funetions (New York, N. Y.. 1966).

(9 I. M. GELFAND, M. [. GRarv and I. 1. PYATETSKII-SHAPIRO: Representation Theory and Aufomorphic
Functions (Philadelphia. Pa., 1968).
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The theory of automorphic functions consists essentially in studying those func-
tions of a complex variable z which are invariant under certain discrete groups of linear
transformations 7':z—2z’ which have the form 2z’-- (xz+ B)/(y2+ J). So as a first step
one has to study the discrete groups of linear transformations. The second step deals
with the functions which are invariant under the respective group, i.e. the corresponding
automorphic functions. It is the first step which is of interest for our present work
because the coeflicients of these transformations are restricted by «f—yd=1. This

means that the matrix (a ﬁ) is an element of the group SL,,. There exists a
'

homomorphism between this group and the identity component 80 ,, of the homo-
geneous Lorentz group. So to any subgroup of SL,, there corresponds a subgroup
of 80qys,;- This homomorphism will be exploited to determine several classes of
discrete subgroups of 80, ,, and to study some elementary properties of them.

There are three major classes of discrete subgroups of SL, .:

1) Elementary groups. They consist of the finite groups and the groups with
one or two limit points.

2) Fuchsian groups. A group is called Fuchsian if its transformations have a
common fixed circle and if each transformation carries the interior of the fixed circle
into itself.

3) Kleinian groups. A group is called Kleinian if it does not belong to one of
the preceding classes.

The knowledge about the Kleinian groups iz very incomplete until now and so we
do not consider them any longer.

The elementary groups are completely known. The finite groups do not contain
any Lorentz transformations. They correspond to the ecrystallographic groups and
are omitted from our discussion. The groups with one limit point consist of the simply
and doubly periodic groups. The former class contains the matrices

o p 1 no
]
y & 0 1

The parameter w= gexp[id], ¢ and 6 real, 0< g < oo, 0< 8 < 25, determines the
group, the integer n the group elements with.n a given group. The corresponding
matrix Le 80, has the elements (7)

1 0 —mnpcosd np cos 6
0 1 —mnpsin 6 ng sin &
@ {Li} =
no cos & ng 8in & 1— 3n2g 3 mtp?
nogcosd npsind — §ntp? 14 3n2p?

(") A four-vector has the components (z,, Zs, &3, z,). We use the metric ) +x3 +z} — x3 in agreement
with the book by NAIMARK which is quoted under ref. ().
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The doubly periodic groups consist of the elements

«
3) (
Y

B 1 nyw,+ 7L3w2)
(5) (0 1

In this case there are four real parameters determining the group, i.e. wy, — g; exp [16,],
k=:1,2; they ohey the same restrictions as ¢ and & for the simply periodic groups.

<

A group clement is determined by the two integers n, and n,. If one defines the func-

tions
(4a)
(4b)

(4c)

f = f(ne, o) — ny0,c08 6, + ny0, cos 6, ,
g —= g(Ny, w;) — 1y 0y 8IN §; - My, 8iD b, ,

b= h(ne, wr) = $ (0308 - my0; -+ 20ymy0, 0, €08 (8, — 6,)]

the corresponding Lorentz matrix may be written as

(3)

{Lii}_'

10 —f /
01 —g g
f g 1—h &
f

g —hk 14k

Finally they arc the groups with two limit points. Their elements are the matrices

of the form

K2 K 0
(6a) {L} = ,
0 E-n/2 Kl—mlz
1] 1Hn2 1(’1”12
oo |
TK -0l ](1—m/2 )

The parameters K — g exp [id] — exp[a]exp[id], 0. ¢ and 6 real. 0< pg<oo, — co< g < 0
(¢#1.0#0), 0<d< 27 and K, — exp [27i/k], k ~ 1. 2. ..., determine the group. The

integers n =0, 41, =2,...

and m:=0.1,2,....,k—1 fix a group element within a

group. The matrices (6¢) form a group by themselves which contains the subgroups
of elements with %= 1. The matrices of SO, corresponding to the matrices (6)

of SL,  are given through

cos (rné ;

sin (né !

0

(7 L} =

0

2am . 2mm
— ) g sin{nd | —— 0
k k
2am 5+ 2zm 0
— ) =cos|n —
k) = k
4 coshmn
0 + ’
L sinh no

0

0

sinh no

cosh no
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The signs in this equation are correlated. The upper and lower signs correspond to
the matrices (6a) and (6b) respectively. For k=1 and 6= 0 the transformations (7)
represent the simplest example of a discrete subgroup of a hyperbolic group, i.e. discrete
Lorentz boosts in the 3-direction. If only 6= 0, the group (7) contains in addition
the cyclic group of order % in the (1-2)-plane.

Unlike the case of the elementary groups, the Fuchsian groups are not completely
known. Its most important representative is the modular group. It consists of those
matrices of SI,, , the elements of which are real integers, i.e. a two-by-two unimodular
matrix belongs to it if

o B k1
RN

y é m n
with k,l.m, n=0, +1, £2,... and kn—Im = 1. Thisimplies that the corresponding
element from SOg,, leaves one axis unchanged because it belongs actually to a sub-
group 804, 1,C 80Oys,y)- This may also be seen from the fact that the elements of the

form (8) belong to 8L, , which is isomorphic to 80,,. If we define the four
quantities p, ¢, » and s through

(9a) p=3E—12—m 4 n?),
(99) g =3+ 12—m?- m?),
(9¢) e (R — 121 mP—n3),
(9d) s = } (k2 12 mEi m?),

the matrix of SO, corresponding to the eclement (8) of SL,, may be written as

kn+Im 0 km—Iin km+lin

0 1 0 0

(10) {Lij} =
kKl —mn O P q
kKl +mn 0 r 8

The structure of the modular group is quite complicated. Until now the lattice of its
subgroups is only partially known. In fact, the most complete treatment of the modular
group is still the work by Fricke and KLEIX (3), see especially the first book quoted
under this reference. In this paper we restrict our discussion to the best-known sub-
groups of the modular group. These are the principal congruence groups of level N.
They consist of those matrices of the modular group which are congruent to the identity
modulo ¥, 4.e. a matrix belongs to it if

k l 1 0
(11) ( ) = ( ) (mod X .
m n 0 1

. Nk+1 N
The matrices with this property may be written in the form

Nm Nn+1
with k,I,m,m=0, +1, +2,... and N[N{kn—1Im)+ k+n]=0. N is a positive in-
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TaBLE II. — Some properties of the modular group and the principal congruence subgroup of level N
The quantities p, ¢, r and & are defined by eqe. (9).

Type of Parameters Parameters

corresponding determining determining

subgroup of SL,, the group & group element

Modular group none k,l,mn=0, &1, +2,...
kn —lm =1 \

Principal congruence N=1,2, .. kilmmn=0, +1, +2,..

group of level N Nn—Im) +k+n=0

teger. The corresponding matrix from SOg,, is given through

(12) {L,}=

N[Nkn+ Im)+ k+n]+1l 0 N[NEm—In)+m—1] N[NEm-+In)+m+1]

1] 1 0 (V]
| NNM—mmy+i—m] 0 Np+ Nk4m) =1 Neg+ N(k—n)
NIN(kl+mn)+14n] 0 Ntr = N(k—mn) Nis 4 Nk + ) 1

One of the most interesting properties of the discrete subgroups of SOg,) is the fact
that each of then generatos a characteristic lattice in Minkowski space if its elements
are applied to three suitably chosen starting vectors. These lattices are invariant under
the respective groups and may be regarded as the relativistic generalization of the prisms,
cubes, tetrahedrons ete. which are invariant under the discrete subgroups of the proper
rotation group.

In tables I and I1 the lattice vectors generated by the elementary and some Fuchsian
groups respectively are given. To get an idea of how these lattices in Minkowski space
may look like, we have cxplicitly calculated them on a computer for two cases. The
result is plotted in fig. 1. The starting vectors for both cascs are (1, 0,0, 0), (0,0,0,1)
and (1.0,0,1). The transformations (10) and (12) for N =2 arc applicd to these
vectors. The (2,-|x|)-plot in fig. 1 is restricted to the range |x|< 5. Clearly the
complete lattice is infinite. Due to the fact that only the absolute value of the space
component is shown, the structure of the lattices is partly lost. Nevertheless we think
that this figure may help to get an idea of their shape.
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oonlained tn it. The starting vectors for the lattices in Minkowski space are the same as before.

Lattice in Minkowski space generated by the respective group

Spacelike Lightlike Timelike
kn+ Im kn -lm + km+ In km + In
0 0 0

kl—mn Ik = 1% — (m -+ n)?) q

kb + mn Sk = D2 (m )2 s

N(N(En-Im)--k-+n]- 1 N(Nk+Dm+n)+k+1:-m+n]+1 N(N(km—~In)=1+m)]

0 0 0

NNEl—mn)+ - m] SNk 1)2—(m+n)2) + Nk+1—m—n) N2g | N(k--n)
N[Nl + mn) + 1= m] s N+ D2+ (m—n)?] F N(k+1+m+n) Ntg - N(k+mn)+1

With the discussion of the modular group we have essentially exhausted the pos-
sibility to determine discrete subgroups of Lorentz transformations by using results
from the theory of automorphic functions.

There remains the question how to continue our investigations. On the one hand
it would be very interesting to determine additional discrete subgroups of SO,y
and possibly prove the completeness of the resulting list of subgroups. As a preliminary
result one could try to obtain the discrete subgroups of 8O, ,,. It might be possible
to find some « deforming process » as it is used for example for determining the irre-
ducible representations of certain Lie algebras. In this way one could take advantage
of the fact that the discrete subgroups of the compact groups SO, and SO, are com-
pletely known (®). Further it would be interesting to extend these results from the
identity component to the full groups which consist of four disconnected picees. So far
we have only discussed the homogencous groups. Clearly there arises the question
a8 to whether there exist also discrete subgroups of the Poincaré group, and if so what
they look like. This amounts to extending the discrete subgroups of the homogeneous
groups by translations along the co-ordinate axes. The general structure of these groups
secms to be known (9).

Above all, however, there remains the central question whether the discrete subgroups
of the Lorentz group have anything to do with physics. One might think of a classi-
fication of the discrete energy states of matter in a similar way as the crystal structures
occurring in nature are classified according to the space groups. For this purpose the
lattices in Minkowski space should be related somehow to the energy-momentum four-
vectors representing elementary particles. Maybe this is not possible. In this case this
work would be only a mathematical exercise. On the other hand it could be that our

(*) J. NEUBUSER, II. WoNDRATSCHEK and R. BiLow: dcta Cryst., A 27, 517, 520, 523 (1971).
(*) E. AscHER and A. JANNER: Helv. Phys. Acla, 38, 551 (1965); Comm. Math. Phys., 11, 138 (1968).
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Fig. 1. - Two examples for the lattices in Minkowski space generated by discrete subgroups of the Lorentz
group. The starting vectors (z,, z,, 24, Z,) are (1, 0,0,0), (0,0,0,1) and (1, 0,0, 1) for the spacelike,

timelike and lightlike lattice respectively. Theo figure i8 restricted to the region || <5.

The complete

lattices contain an infinite number of points. The open circles and the dots together ropresent thelattice
gonerated by tho modular group. The dots alone are generated through the principal congruence group
ot level 2. a) |#|*—x3 =1, b) light-cone, c) |*|*— 2§ =1.

knowledge of the discrete subgroups of the Lorentz group is too poor until now so that
tho connection with physics cannot be secn yet. If this is true it would certainly be
a rewarding task to continue along the lines described above.



