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Access to relevant information and knowledge is essen-

tial for all steps of the drug discovery process. However,

keeping track of relevant information in publications

and patents becomes a real challenge for scientists and

managers in industrial research. Computer-aided

information extraction (IE) systems have been devel-

oped to support the work of scientists by extracting

relevant information from scientific publications and

presenting it in an aggregated, condensed form. In this

review, wewill give an overview on current information

extraction strategies in the life sciences with a special

focus on biological entity recognition and more recent

developments towards the identification and extrac-

tion of chemical compound names and structures.
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Introduction

Despite the fact that we hear a lot about rational approaches

in genomics, biochemistry and pharmacology; life sciences

are still by and large descriptive sciences. Most of the scien-

tific results relevant for drug discovery, for example, the link

between interacting proteins, molecular pathways and dis-

eases are described in unstructured scientific text. To make

the vast amount of published information in the life sciences

accessible for intelligent, computer-based services such as

information retrieval, information discovery and clustering,

several groups have started to work on strategies to automa-

tically identify and extract relevant information from scien-
tific publications. In the following, we will review current

approaches in information extraction (IE) in molecular biol-

ogy with a particular focus on their application in genomics

research. Furthermore, we will allude to recent attempts at

extending these approaches beyond the current scope on

biological term recognition towards an application of IE

technologies in chemistry and pharmacology.

Information extraction: state of the art in biomedicine

The majority of IE approaches in the life sciences have

focused on molecular biology and genomics information

so far. An increasing number of reviews on text mining in

the biomedical domain is indicative of the strong interest of

the scientific community in this sort of approach (cf. [1,2]). In

essence, a typical IE system comprises at least some of the

modules listed in Table 1.

Applications of IE technology in the life sciences typically

concentrate on genes and proteins and the relationships

between these entities. The strategies vary from using simple

co-occurrence of names or dictionary entities in abstracts or

in sentences to deployment of natural language processing

(NLP)-based methods of tagging and parsing for the recogni-

tion of protein–protein or protein–gene relations. In the

following, we give some examples of typical applications.

Curation of databases

Database curation is among the applications where IE helps

to reduce the workload for human experts. Recent reports on
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Glossary

F-score: 2 � precision � recall/(precision + recall).

Precision: true positive matches/(true positive matches + false positive

matches).

Recall: true positive matches/(true positive matches + false negative

matches).
the use of Textpresso for the curation of entries in Flybase [3]

or the use of IE for the extraction of gene–disease relation-

ships for BRENDA [4] underline the steadily growing role that

IE plays for high-quality information sources in biology and

genome research. It is more than probable that the work of

most database curators will be supported by IE technology in

the near future.

Interpretation of gene expression data

Protein or gene interaction networks generated by IE systems

have been widely used to explore the context of significantly

regulated genes found in large-scale expression experiments.

Purestatisticalapproaches for the interpretationofgeneexpres-

sion experiments are often highly reliable with respect to the

statisticalanalysisofcorrelation.However, theresultingmodels

are difficult to interpret from a biological point of view. There-

fore, several groups have integrated IE approaches with statis-

tical analysis for a contextual interpretationofgeneexp-ression

data. Jenssen et al. [5] used a simple co-occurrence approach of

gene names similarity of Gene Ontology (GO) annotations for

the interpretation of expression data. Tifin et al. [6] applied a

combinationof text- anddata-mining technology for the inter-

pretationof gene expressiondata and their possible association

with disease relevant terms. Pan et al. [7] deployed text-mining

technology to identifyassociationsof transcription factorswith

biological processes as defined byGeneOntology. Chiang et al.

[8] introduced a system that uses multiple dictionaries for

diseases and gene names to assign biological and medical con-

textto individualgenes.Finally,Albertetal. [9]usedtextmining

to establish a protein-interaction database focusing on the

target protein family of nuclear hormone receptors.

Our own experience using co-occurrence for the genera-

tion of protein and gene interaction networks showed a high
Table 1. Elements of an information extraction (IE) system

� Tokenization is a process of breaking the text up into its constituent units wh

� Part of speech tagging labels the words with different categories based on th

(e.g. verb, noun, preposition, adjective)

� Named entity recognition identifies complex noun phrases as entities and c

directly to fine-grained instances (e.g. to a certain gene entity defined through a

� Co-occurrence analysis identifies relations through the joint occurrence of en

with further statistical frequency analysis

� Syntactic analysis tries to identify the structure of sentences and to associate

(e.g. subject, predicate, object). Whereas a complete analysis (=parsing) of who

methods have been established. They focus on problem-orientated and pragma
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rate of false positive correlations in these networks. Recently,

we integrated grammar-based interaction networks to iden-

tify subnetworks highly relevant according to expression

measurements [10]. P-values quantifying differential expres-

sion were mapped directly onto the extracted interaction

network. Regions of interests within the large knowledge-

based network could easily be identified using this approach

(Fig. 1, for example, network).

Despite the broad spectrum of applications for IE systems,

the use of IE technology is not yet routined in academic and

industrial life science research. Among the reasons for the

slow adoption of IE technology are concerns about the per-

formance and a lack of standards for the comparison of the

different methods. All the IE systems published so far have in

common that they have been evaluated on very small bench-

mark sets, and it remains to be demonstrated how these

systems perform on larger corpora. None of these IE systems

seem to fit all the requirements in the life science domain. As

mentioned above, co-occurrence networks often suffer from

low PRECISION rates. Rule-based systems (cf. [11,12]) as well as

machine learning-based systems (cf. [13,14]) reach higher

precision rates (above 80%) at the expense of comparably

low RECALL rates. As most of the IE tools in the biomedical

domain use algorithms originally developed for the analysis

of newspapers (cf. [15,16]), significant parts of these IE sys-

tems (e.g. part of speech tagging [17] and noun phrase

chunking [18]) need to be adapted to the special requirements

of the biomedical domain. Adaptations such as the integra-

tion of biological lexica and the tuning of tokenization

algorithms are essential to cope with the performance loss

owing to the shift of the application domain. In addition to

the adaptations of existing core technology, new, specific

challenges arise in the life science domain through the use of

large domain-specific terminology, which is often highly

ambiguous. Moreover, the identification and extraction of

representations of chemical compounds (e.g. as IUPAC

names) provides a completely new challenge to IE systems.

In the following, we will emphasize on the state of the art of

different techniques for biomedical named entity recognition

and we will highlight recent developments in the field of IE

for chemistry.
ich are words (e.g. token), sentences or also parts of text

e role the respective word plays in the sentence

lassifies them in high-level categories (e.g. protein or cell-type) or maps them

gene database identifier)

tities in certain text parts (e.g. abstract or sentence) sometimes accompanied

syntactic roles to the different parts of each sentence

le sentence structures is too slow for unrestricted text, shallow parsing

tic solutions (e.g. find protein–protein relations)
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Figure 1. Visualization of expression data with text-mining networks. Proteins in the network are visualized as nodes and interaction between the proteins

as edges. The P-values of expression data from microarray experiments were mapped to the corresponding proteins in the extracted network. The

network was extracted using a shortest path search with maximum step-length of 2 between genes with a defined range of P-values. The degree of red

coloration correlates to the significance of the calculated P-value (beige: no P-value determined).
Named entity recognition of protein and gene names

The unambiguous identification of biological entities or

processes is a fundamental requirement for information

extraction in the biomedical domain. Some of the common

challenges associated with biological name recognition

concern the handling of yet unknown words (e.g. new

gene names), multiple names for the same entity (syno-

nymy) and the identification of entities composed of more

than one word (multiword terms). In addition, identical

names are used to identify different proteins, genes or

other biological entities (polysemy). Also common word

names are often used as gene names. Some examples are

shown in Box 1.
Box 1. Examples of gene names and their synonyms:

� MAPK14 – synonyms: mitogen-activated protein kinase 14; EXIP;

Mxi2; CSBP; Csaids binding protein; MAX-interacting protein 2;

stress-activated protein kinase 2A; p38 mitogen activated protein

kinase; mitogen-activated protein kinase p 38; MAP KINASE 14,

among others.

� HNRPK – synonyms: heterogeneous nuclear ribonucleoprotein K;

CSBP; TUNP; ROK; hnRNP K.

Examples of acronyms and their long forms (extracted from Medline

abstracts):

� CSBP: clinostatic systolic blood pressure; casual systolic blood

pressure; carotid-subclavian bypass.

� ROK: Republic of Korea; rokitamycin.

Examples for common word synonyms:

� WAS, HAT, ICE, AGAR, BRAIN, DREAM, FORM, FOX, among

others.
During the past years, several different methods for named

entity recognition in the biomedical domain have been

developed which can be categorized in two main classes.

The first class handles recognition and classification of names

in text (e.g. protein, DNA-molecule, cell type). Entities will be

recognized through special text features (e.g. uppercase, con-

tains numbers, ending -ase) which can be used in rule-based

(e.g. [19–21]) as well as machine learning-based techniques

(e.g. [22,23]). Known names as well as new names can be

recognized without the use of dictionaries. However, entities

identified in text could not be mapped directly to biological

entities in databases. The ability to link information extrac-

tion results to experimental data through mapping of, for

example, gene or protein names to the respective database

entities is essential for contextual data interpretation. This

problem was tackled by the second class of named entity

recognition approaches. Here, dictionaries are used to iden-

tify the corresponding names in the text (cf. [24,25]). The

performance of these systems of course depends on the

comprehensiveness of the dictionaries and the ability to

recognize spelling variants of dictionary names.

In the past 2 years independent assessments for the evalua-

tion of thesemethods have been set up. In the Bio-Entity Task

at JNLPA (for an overview cf. [26]) and the BioCreAtIvE

(http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.

html) assessment task 1a (for an overview cf. [27]), recogni-

tion and classification of names in text (e.g. protein, DNA-

molecule and cell type) were compared by different methods.

The performance rates in these assessments are far below the

rates, which could be achieved in the general newspaper

domain where balanced precision and recall between 93
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and 95% can be reached for the identification of person,

organization and location names. The reasons for this differ-

ence are most probably the higher degree of ambiguity of

domain names in biomedical text corpora and/or annotator

disagreements in the provided corpora.

The ability to recognize gene and protein names and map

them directly to the respective database entries was assessed

in BioCreAtIvE Task 1B where, depending on the organism,

good annotation performance could be achieved (cf. [28] for

an overview). For yeast, most participants in the competition

reachedmore than 90% recall and precision owing to the very

stringent nomenclature that is in use for this organism. For

Drosophila, despite the high amount of ambiguous and com-

mon word gene names, precision and recall values of about

80% were reached. For the mouse dictionary, only slightly

better results than in fly could be achieved. The reasons for

this are most probably ambiguous names of acronyms, which

are used in other context and the fact that many names are

also shared with other organisms (e.g. human).

Specific challenges in chemical entity recognition

In the field of compound names and chemical nomenclature,

we have different issues to consider. In publications dealing

with small molecules and their pharmacological and toxico-

logical effects, we are confronted with a large variety of

syntactical and semantically different compound descrip-

tions. Chemicals can be described in publications by trivial

names (e.g. brand or trade names), by registry numbers (e.g.

database or project identifiers), by systematic naming

schemes (i.e. nomenclatures such as IUPAC [29], formal

descriptions like SMILES [30] or sum formula) and even by

depictions of the chemical structure.

The complexity of the name space that exists for well-

known small molecules is illustrated in the following exam-

ple of 2-(p-isobutylphenyl)propoinic acid, a compound

widely known as Ibuprofen. We count more than 500 syno-
Box 2.

CH3

CH3

H3C
Depiction:

Synonyms: Abbifen, Aches-N-Pain, ACT 3, Actifen . . . Zofen

IUPAC: 2-(p-isobutylphenyl)propoinic acid, p-isobutylhydratropic acid, a-methy

Molecular formula: C13H18O2

SMILES: CC(C)CC1 CC CC C1C(C)C( O)O (others can be created)

CASRN: 15687-27-1 (different salts: 31121-93-4, among others)
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nyms in the literature and in compound databases for Ibu-

profen (PubChem database, http://pubchem.ncbi.nlm.nih.

gov) [31]; and even following the rules of IUPAC nomencla-

ture we can assign three different names to this compound.

The CAS registry assigns a single code to Ibuprofen; however,

different salts of the molecule are represented by different

codes (Box 2).

Only a very limited number of named entity recognition

approaches are described in the literature for the recognition

of chemical entities. Narayanaswamy et al. [16] presented a

rule-based method; however, this approach was tested only

on a very small benchmark set. Other systems used diction-

aries and simple string matching without any evaluation of

recall and precision (e.g. [32]). One potential problem is that

the possible chemical space of small, drug-like molecules is

incredibly huge and, therefore, the dictionaries will become

large and cumbersome. Therefore, we are looking at alter-

native ways of name recognition, for example, through gen-

eralized chemical ‘scaffold’ patterns for IUPAC nomenclature

and SMILES representations. Preliminary tests in our labora-

tory indicate that new tokenization strategies (in comparison

to the newspaper and biological domain) have to be inte-

grated to make this approach feasible.

By contrast, we deal with trivial names where only the use

of dictionaries allows mapping of the chemical structure. For

the recognition of trivial names we tested the ProMiner

system, which was assessed on benchmark sets for protein

and gene entity recognition in different organisms (see

named entity recognition of protein and gene names) and

performed verywell in the BioCreAtIvE [33] competition. The

ProMiner system [34] possesses a semi-automatic dictionary

generationmodule. Compound names have been taken from

the chemical part of MeSH (http://www.nlm.nih.gov/mesh/

meshhome.html) and ChEBI (http://www.ebi.ac.uk/chebi/)

to construct a simple chemical dictionary. Trivial names were

merged with the help of the CAS registry number and incor-
O

OH

l1-4-(2-methylpropyl)benzeneacetic acid

http://www.temis-group.com/
http://www.temis-group.com/
http://www.scai.fhg.de/
http://www.scai.fhg.de/
http://www.biowisdom.com/
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porated in a base thesaurus. Based on such dictionary, a string

match procedure is used for name detection in the text. In a

first approach, this procedure led to about 80% precision for

randomized integration of the trivial names in a biomedical

corpus [35].

For effective recognition of chemical names, trivial names

as well as IUPAC and SMILES nomenclature, dictionary-based

approaches and pattern-based recognition have to be com-

bined in further developments.

Information extraction from images

Images representing chemical structure information can be

found in nearly all electronic sources of chemical informa-

tion (e.g. journals, patents and web interfaces of chemical

databases). Nowadays these images are generated with special

drawing programs [36], either automatically from computer-

readable file formats (i.e. collections of molecules) or by the

chemist through a graphical user interface. Although these

programs can produce and store the information again in a

computer-readable format, the information is published as a

bitmap image. As a consequence, the structure information

can no longer be used as input to chemical analysis software

packages.

To make chemical information contained in drawings of

chemical structures accessible for computer programs, a few

projects have been started to convert bitmap images of mole-

cules back into machine-readable form. In general, there are

two different strategies for the recognition of patterns in

images. Statistical pattern recognition [37] uses the so-called

features from the image representation (e.g. color frequen-

cies, pixel patterns). Supervised learning algorithms can be

trained on the feature vectors to recognize patterns in test sets

of images. The other is the structural pattern recognition [38].

This strategy uses abstract data types such as strings, trees and

graphs instead of numerical types. These concepts can describe

relationships between objects (e.g. geometric, spatial) and

allow the hierarchical composition of substructures. To be

recognized, objects are compared with model objects using

matching algorithms (e.g. string alignment, graph match-

ing). Both strategies can be combined with each other. Three

projects on chemical structure reconstruction have been

described in the literature: the Kekulé and the CLiDE project

and our own approach called compound structure recon-

struction (CSR):
� K
ekulé [39]: the workflow of the Kekulé project consists of

vectorization of TIFF images. Optical character recognition

(OCR) techniques and neural networks are used to identify

special symbols such as chiral bonds and text representa-

tions.
� C
LiDE [40]: the CLiDE project uses segmentation algo-

rithms for monochrome bitmaps to identify connected

components. These components are grouped into graph
primitives. There are special primitives for the chemical

context (e.g. superatoms and bond types).
� C
SR [41]: we use image readers and vectorization software

in combination with classic OCR, machine learning, graph

matching and a chemical structure editor. Our prototype

executes a workflow comprising image preprocessing,

graph matching and molecule reconstruction. We use a

template database of common scaffolds in drug-like mole-

cules and compare them with the extracted graph from

the image. In the last step, the information on the atom

types from the OCR process is merged with the molecular

skeleton.

Similar to the situation with textual IE in chemical litera-

ture, we aremissing a test corpus consisting of images and the

associated structural information. We, therefore, assembled

our own test corpus consisting of a diverse set of molecules

and their depictions (T. Fey, Master’s thesis, Fachhochschule

Bonn-Rhein-Sieg, 2004). The resulting test corpus comprises

structures of the top 100 ‘blockbusters’ (most sold drugs) from

the year 2002 (RxList LLC, http://www.rxlist.com).

In a first benchmark test with CLiDE and CSR, we found

that the same problems pose major challenges for both

systems: recognition of chiral bonds (there aremany different

ways to draw them), overlapping entities (e.g. bridged ring

systems) and OCR (misleading text as bonds and vice versa).

However, the ability of CSR to learn fromhuman interference

will help in overcoming these problems.

Commercial implication of information extraction

solutions in drug discovery

The current information landscape is characterized by two

extremes, unstructured data in textual documents and struc-

tured data stored in database records. Access to information is

mediated through search engines and database systems,

respectively. Both approaches, although are helpful and

essential and therefore widely deployed, do have inherent

limitations. The major limitations of the information retrie-

val (IR) systems are: the need to know what to look for, the

lack of semantics, that is, missing concept searches and

finally the fact that the search results in a list of documents

containing facts but not a presentation of aggregated facts

themselves. Database systems are limited by the low flexibil-

ity and fixed granularity of the information provided; the lack

of context and the difficulties in integrating information

from other sources such as proprietary documents or data-

bases from other vendors.

IE systems are ideal tools to complement the current

approaches. Such systems transform unstructured textual

data into structured information while keeping the context

available. This mainly results in two types of applications: a

dynamic text analysis system and a topic-driven extraction

system (Fig. 2).
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� http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html
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� http://www.biowisdom.com/

� http://www.simbiosys.ca/clide/index.html

� http://www.insightful.com/

� http://www.clearforest.com/index.asp

Figure 2. Role of commercial text-mining applications: closing the gap between documents and database information. Generalized role of text mining in

commercial application. Indexing of text documents allows for rapid searching and retrieval of relevant documents; however, the result of such search is still

a list of documents that need to be read to find relevant information. By contrast, databases store relevant information in a fixed format with the lack of

context and the difficulty to integrate data. Text mining, however, renders the user flexible and allows to define and to extract relevant information defined

by a scientific or management task.
Text analysis recently raised a lot of interest, particularly in

the field of patent analysis. This is related to a new analysis

paradigm of textual data, which allows not only a much

easier way to search for information but also to explore the

information hidden in patent documents. Such an analysis

includes as a first layer, the extraction and normalization of

biomedical entities which enables a larger group of end-users

to identify relevant patents using their day-to-day tools such

as chemical substructure searches. Furthermore, as the

extracted information is stored, the content of patent docu-

ments can directly be explored, that is hidden information is

directly accessible (e.g. show all targets for a given indication

area) and patents can, therefore, be used to generate new

research ideas. By adding semantic relationship analysis as a

second component, highly relevant information such as

bioactivity data or disease–compound interactions are

directly accessible from the literature. Finally, clustering

and categorization within different dimensions (e.g. disease

versus targets) enables an in depth analysis of the patent

scope of interest. In summary, the application of IE technol-

ogies introduces a new and powerful analysis methodology

for textual data, eases search and exploration and thus,makes

crucial business information accessible to a larger group of

end-users.

The topic-driven analysis focuses on the extraction of well-

defined key business information. With its high data volume

and frequent updates, competitive and scientific intelligence
222 www.drugdiscoverytoday.com
are formidable examples areas. IE systems systematically

extract and categorize in the background the information

from the data stream according to user needs. Examples are

the extraction of competitive (financial, restructuring, law

cases, licensing, partnership, co-development) [42] or scien-

tific information (protein–protein interactions, protein–

ligand interactions, epidemiological information and side

effects) (Atlanta Pharma, TEMIS group and iAS interactive

systems, press release, unpublished). Thus, the approach

supports innovation, knowledge sharing and enables the user

to keep pace with the growing information.

In addition to the approaches outlined above, there is a

strong impact of text mining on knowledge integration and

navigation. Entity recognition is a substantial step towards

semantic integration of data coming from different sources.

This approach has actually been followed by some larger

corporation such as Novartis [43] (Atlanta Pharma, TEMIS

http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html
http://www.temis-group.com/
http://www.scai.fhg.de/
http://www.biowisdom.com/
http://www.simbiosys.ca/clide/index.html
http://www.insightful.com/
http://www.clearforest.com/index.asp
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group and iAS interactive systems, press release, unpub-

lished), similar efforts are going on at GSK based on ontol-

ogies developed at BioWisdom, Cambridge, UK. The

extracted concepts have been used to greatly extend the

functionality of corporate search engines, enabling searches

of the type ‘show me all proteins that have been described in

the context of Alzheimer’s Disease’.

Conclusions

IE approaches are about to become an evident and integrated

part of knowledge management in the life sciences industry.

The initial main focus of academic research on gene and

protein name recognition has been complemented by

approaches addressing the requirements of the pharmaceu-

tical and biotechnology industry on chemical entity recogni-

tion. Current IE prototypes are capable of extracting chemical

and pharmacological information from text and chemical

structure information can be reconstructed from depictions

with acceptable precision. Therefore, we expect IE technol-

ogies to develop into a corner stone of IT solutions supporting

drug discovery in the near future.
Outstanding issues

� Improvement of precision and recall for chemical entity recognition.

� Efficient mapping of chemical entities from text to structure

representations.

� Generation of large biological, pharmacological and toxicological

literature test corpora for training and benchmarking purposes.

� Integration of chemical entity recognition from text with chemical

structure reconstruction from images.
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