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Abstract

Battery Energy Storage Systems (BESS) are a cornerstone
of the energy transition, as their ability to shift electricity
across time enables both grid stability and the integration
of renewable generation. This paper investigates the
profitability of different market bidding strategies for
BESS in the Central European wholesale power market,
focusing on the day-ahead auction and intraday trading
at EPEX Spot. We employ the rolling intrinsic approach

as a realistic trading strategy for continuous intraday
markets, explicitly incorporating bid-ask spreads to
account for liquidity constraints. Our analysis shows

that multi-market bidding strategies consistently
outperform single-market participation. Furthermore,

we demonstrate that maximum cycle limits significantly
affect profitability, indicating that more flexible strategies
which relax daily cycling constraints while respecting
annual limits can unlock additional value.

1. Introduction

Battery Energy Storage Systems (BESS) are widely recognized
as a cornerstone technology for enabling the energy
transition. Their ability to decouple electricity generation and
consumption in time makes them uniquely suited to address
the intermittency of renewable energy sources such as wind
and solar, thereby enhancing system stability, reliability, and
efficiency. Beyond providing critical flexibility to balance
supply and demand, BESS can support grid resilience, reduce
curtailment of renewable generation, and defer costly
network reinforcements. As decarbonization accelerates and
variable renewables form the backbone of the electricity
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mix in Europe, the economic viability of BESS hinges on

their ability to capture revenues from short-term power
markets where volatility and arbitrage opportunities are most
pronounced.

In recent years, the literature has devoted significant attention
to the valuation of BESS in liberalized electricity markets. Early
studies have focused on isolated markets, most prominently
the day-ahead (DA) auction, where optimization-based bidding
strategies rely on price forecasts and technical constraints to
maximize arbitrage revenues [1, 2, 3]. Parallel strands of work
have examined the continuous intraday (IDC) market (see [4]
and references therein), highlighting its growing importance
due to forecast errors from renewable generation and the
resulting short-term imbalances. A range of methods have been
explored, from mixed-integer linear programming to dynamic
programming and reinforcement learning, with varying levels
of abstraction regarding the complexity of market mechanisms,
see [5] for an overview. However, simplifications — such as
reducing the IDC to a small set of auctions or relying on

index prices — have often underestimated the true potential

of intraday trading. Recent studies show that rolling intrinsic
strategies leveraging fine-grained transaction data more
accurately capture arbitrage opportunities in the IDC market
[6, 7]. Schaurecker [8] further discusses these strategies in the
context of high-frequency trading.

A second important strand of research investigates multi-
market bidding, where BESS owners participate in both DA
and IDC markets. Coordinated strategies that anticipate
intraday conditions at the time of DA bidding have been
shown to increase profitability, particularly for flexible storage
assets [9]. Recent work further emphasizes the practical
importance of designing models and strategies that reflect
real-world trading processes, including liquidity constraints
and bid-ask spreads, to provide actionable insights for
investors, operators, and policymakers [7, 9].




Building on this literature, the present paper investigates the
profitability of different trading strategies for BESS in the
European wholesale power market, focusing on the EPEX
intraday and day-ahead markets. We develop and evaluate
multi-market bidding strategies based on the rolling intrinsic
approach, while explicitly accounting for bid-ask spreads as
a proxy for market liquidity and exploring the robustness

of strategies with respect to the granularity of trading
discretization. In doing so, we provide a systematic analysis of
how operational strategies influence the profitability of BESS
in practice.

The remainder of this paper is structured as follows: The next
section describes the relevant market design and provides
descriptive statistics on liquidity in the intraday market. Section
three introduces the optimization framework, including the
rolling intrinsic strategy and the derivation of bid and ask
prices from transaction data. We present results in Section
four, where we address three key research questions: (i) the
relative performance of different multi-market strategies,

(i) the sensitivity of profitability to liquidity via bid-ask
spreads, and (iii) the robustness of rolling intrinsic trading
with respect to aggregation of transaction data. In the last
section we summarize the main insights and outline promising
directions for further work, including extensions to other
market segments and integration with stochastic forecasting
approaches.

2. BESS in Central European power markets

In the following we provide a short introduction into
the Central European power market as the main source
of revenues for BESS in that area. For a more detailed
introduction into markets and revenue streams see [10].

The first distinguishing feature in the battery business case is
whether it is placed in-front-of-the-meter or behind-the-meter.
Behind-the-meter batteries are co-located with consumption
and/or generation assets such as PV, their business case
typically being driven by maximizing consumption of locally
produced electricity. We will focus on the in-front-of-the-meter
business case, where BESS are directly participating in power
wholesale markets.

2.1. Market design

Let us introduce the Central European power market in some
detail to set the scene for how BESS capacity is monetized and
what products are traded. There are several market places or
auctions, that are organized on a daily basis. Figure 1 provides
an overview. Throughout this paper we refer to auctions and
market places provided by EPEX Spot. However, note that there
also other exchanges that provide similar markets places. Such
are, for example, NordPool or EXAA.

Reserve Markets: Auctions for Frequency Containment
Reserve (FCR) or Frequency Restauration Reserve (FRR) take
place in the morning the day before delivery. Here, flexible
capacity may be sold to the grid operator, which then utilizes
the capacity to stabilize the grid. In case the BESS capacity

is sold into reserve markets, it is no longer available to other
purposes such as doing time-arbitrage in the intraday market.
The Electricity Balancing Guideline provided by ENTSO-E [11]
provides a detailed introduction to reserve markets.

Reserve markets play a significant role for BESS. They are
particularly suited for FCR with its high requirements on fast
reaction times. As set out in [10], the decision whether to
place BESS capacity into reserve markets or into day-ahead

aFRR Day Ahead Intraday
auction auction auction 2
8:00 1
FCR Intraday Intraday
auction auction 1 auction 3

Gate closures

! Continuous trading (some markets start 14:00, some 15:00)

= coupled market 60 min before delivery
= within DE until 30 min before delivery
= within DE TSO zones 5 min before delivery

Figure 1: Day-ahead and intraday markets as organized by EPEX Spot for Germany.



or intraday power markets for arbitrage, is highly relevant to
maximize revenues. In this paper we concentrate on the latter
to focus on a detailed analysis of intraday trading strategies.

Day-ahead (DAH) auction: The day-ahead auction at 12:00
(example EPEX for Germany) on the day before delivery is the
main vehicle for consumers and generators to optimize their
assets. Being an auction, market participants send in their
bids, the exchange builds an order book and clears the market.
Through Single Day-ahead Coupling (SDAC), the order books
of all Central European exchanges' are combined to create a
single market up to limits given by cross-border transmission
capacities. The pricing mechanism is pay as cleared, meaning
that the same price holds for all successful bids independently
from their bidding price. Clearing is currently done on hourly,
effectively creating hourly products. It is planned to change to a
15 min resolution in October 2025.

Block orders: A challenge for market participants and in
particular for BESS optimization is to generate meaningful bids
for the DAH auction, since prices are available only after the
auction has cleared. In order to design suitable orders, the
operator will have to resort to a forecast to identify promising
time-slots in which to charge and discharge the BESS. Only

if those prove to coincide with the optimal time-slots of the
auction result, the resulting revenue is maximized. However,
suitable power price forecasts are available in the market, and
clearing prices from other, earlier, auctions such as provided by
EXAA can provide good estimates.

EPEX Spot (as other exchanges) provides the possibility to utilize
"Block Order” to bid into the DAH auction. In addition, there
are "Loop Order”, specifically designed for storage assets.
Assuming we have optimized the BESS against a price forecast,
all hours of charging are collected in, say, block A, all hours of
discharging in block B. The Loop Order instructs the exchange
only to accept the complete order consisting of both blocks,

if combined they exceed the required revenue. This way, the
operator can ensure to come out of the auction with obligations
that may be fulfilled physically with the BESS asset. A case
where only discharge bids are accepted, not the charge bids, will
not occur and hence the risk of open positions is eliminated.

Intraday auctions: The DAH auction is the first opportunity
for market participants to balance their portfolios or to optimize
the utilization of their assets. However, as the time of actual
delivery comes closer, weather forecasts (for PV and wind
generation) or forecasts of plant availability or demand are
improved — and supply and demand need to be re-adjusted.

There are three intraday auctions provided by EPEX Spot to
do this, which are designed similarly to the DAH auction. They
provide a good vehicle to place structured orders such as Loop

Orders, however, liquidity is typically much smaller than in the
DAH auction. In 2024, traded volumes on EPEX for Germany
were 291 TWh in the DAH auction, 91 TWh in the continuous
intraday market compared to only 11 TWh in the intraday
auction [12].

Intraday (ID) continuous trading: In ID continuous, power
can be traded until 5 min before delivery. Until 60 min before
delivery, order books are coupled across exchanges and
country borders, below 30 min before delivery, order books are
separated into the four TSO areas in Germany. In contrast to
DAH or ID auctions, orders are not cleared at a specific point
in time — and there is thus no "ID price” as there is as a result
of the DAH auction. Instead, market participants continuously
place orders in the exchanges’ order books, which may or may
not be cleared with other participants’ orders. As noted above,
the traded volume (91 TWh in 2024 on EPEX) is significant

as compared to an overall consumption of 465 TWh net
consumption in Germany [13].

To provide an approximate picture of ID continuous market
results, EPEX and other exchanges provide price indices. In the
case of EPEX, those are ID1, ID3 and IDFull, which represent

a weighted average across all trades in the last 1 or 3 hours
before delivery and across all trades, respectively. TSOs utilize
the AEP index, which averages across the last 500 MW traded
for each 15 min product as a component in the calculation of
the imbalance price [14].

ID price indices

DAH & ID index prices (€/MWh)

trade price (€/MWh)

00h 03n 06h 09h 12h 15h 18h 21h 00h
delivery time

Figure 2: DAH prices, intraday indices and trades on EPEX

Spot. Trades beyond limits on the y-axis cut off for improved
readability. 15 min products only, dot size reflects trade volume.
Note that there are >300.000 ID trades in that timeframe.

Figure 2 shows a sample of these indices together with the
corresponding intraday trades. Note that generally speaking,
the ID1 index is more volatile than the IDFull and ID3 index,
since it encompasses only the trades of the last hour before
delivery. Indices as averages reflect only a small part of activity

1 More specifically Nominated Electricity Market Operators or short NEMOs.



in ID continuous, as indicated by the large range of trade prices
across execution times.

BESS optimization in ID continuous: The very nature of ID
continuous makes battery optimization a challenging task, since
there is no tradeable price curve available across all 15 min
products for the coming hours. It is thus not possible to reduce
BESS optimization to running an optimizer across the price
curve to determine the optimal times to charge and discharge.

A trading strategy is required to come from single trades

and orders for specific products at a specific point in time to
optimize battery dispatch and revenue. In Section 3 of this paper
we utilize a rolling intrinsic hedge approach that can actually be
applied in real-life trading strategies.

Many authors utilize price indices such as the ID1 to approximate
BESS revenues ex-post. The choice of the index, however,
constitutes a strong assumption for revenues, as shown in
Figure 2. The less time before delivery is included, the higher
volatility generally is and the higher approximated revenues. In
addition, bid/offer spreads are not reflected when using indices.
This caveat should be borne in mind when interpreting results
based on index prices. Section 4 presents index-based results
and compares them with the rolling intrinsic approach.

2.2. Market Statistics

As previously discussed, the intraday market is considerably
more complex than auction-based trading. Section 4

shows that participation in continuous intraday trading can
substantially increase profits. Thus, the intraday market may
play a key role in the monetization of BESS in wholesale
electricity markets. However, due to its structural complexity
compared to the auction market, a fundamental understanding
of its organization is essential. Therefore, we present and
analyze basic market statistics in this section.

In Figure 3 we illustrate the results for a specific day and
selected 15 min products. Each dot represents a trade that has
been conducted, its size representing the trade’s volume. The
y-axis for each sub-chart shows the trade price, the x-axis the
time before delivery. Note that there continuously are trades
being executed at varying prices. We can clearly see that trading
activity increases with decreasing time to the delivery period.

In IDC, quarters, half-quarters or hours of the corresponding
delivery day are traded. Figure 4 shows traded volume (a) and
the number of trades (b) per product. Note that 30 min are
hardly traded, most volume coming from quarters and hours.
While more volume is traded in hours, the largest share in
terms of the number of trades comes from quarters.?
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Figure 3: lllustration: Trades for 15 min products on 24/03/30.
Single graphs show trades for specific 15 min products, the
x-axis shows the time to delivery in hours, dot size reflects
trade volume.
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Figure 4: Traded volume and number of trades per product in
2024. User defined blocks are not considered.

Figure 5 shows that trading activity (i.e. liquidity) is
concentrated to the last hours before delivery. For battery
optimization, this means that liquidity further away is limited
and there may be a high bid-ask spread. Note that in the last
30 min, order books decompose into delivery zones (“same
delivery area trading” phase in Figure 5(a)). During continuous
trading, exchanges may clear the market when cross-border
capacity is released in automated auctioning (“automatic
auctioning” in the figure, volume being comparably small).
Figure 5(b) shows liquidity in terms of the number of trades
by products traded. We observe that concentration to the last
hours before delivery is more pronounced than for volume,
most likely due to “fine-tuning” of positions using many trades
with smaller volume — typically on quarter products.

2 User defined blocks may also be traded, however, in 2024 corresponding volume was very low.
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Figure 5: Liquidity in ID continuous against time to delivery. Liquidity is concentrated to the last hours before delivery, though

markets open much earlier. Both, for hour and quarter products (b). The effect is more pronounced for the number of trades (b)

than for volume (a). 2024 data.

3. Problem Formulation

In this section we describe the underlying optimization problem
as well as the derived rolling intrinsic approach that serves as
the foundation of the trading strategies.

Optimization Problem:

A battery energy storage system (BESS) can be described by the
following quantities:

= The maximal energy capacity SoC [MWh],

® the charge/discharge efficiencies n*, ",

= the maximum charge/discharge power P [Mw],

= maximum number of charging cycles N per day.?

Let us consider an equidistant time grid {ti}i]\ig with step size
At = t;11 — t;, where At corresponds to the delivery periods
of the traded products (one hour in the day-ahead market and
15 minutes in the intraday market). Let ¢; and d; denote the
charging and discharging power, respectively, applied during
the interval [t;,t;+1). The state of charge (SoC) of the battery
at time ¢; is denoted by SoC;, with initial level SoCy.

The battery operation is subject to the following constraints:
1
SoC; 1 = SoC; + n*ciAt — —_diAt, 0<i<N-1, 1)
n

0<c¢i,di<P,0<i<N, @

Ci-(l—bi)zo, di-bizo,biE{O,l},OSiSN, (3)
N-1 _

D et < Ngii®SoC. @)
i=0

Equation (1) defines the state-of-charge dynamics, accounting
for charging efficiency ™ and discharging efficiency ™.
Constraint (2) limits charging and discharging power to the
rated capacity P . Constraint (3) enforces that the battery
cannot be charged and discharged simultaneously.* Finally, (4)
imposes a limit on the total energy throughput, which serves as
a proxy for restricting the maximum number of cycles.

Since we restrict the analysis to a single day in accordance
with the day-ahead and intraday markets, consistency across
consecutive days is ensured by requiring the terminal SoC to
equal the initial level:

SoCyx = SoCy. ()

Let us assume that for each time point ¢; we have a price p{ to
buy power (ask price) and a price to sell power pi’ (bid price),
pi-’ < pj. We can then determine the optimal dispatch by
solving the problem

max At Zp?di — plc;, s.t. (1)-(5) hold true. (6)
153,01 1

Note that we have to multiply (1) as well as (6) by At to
account for different delivery period lengths according to the
traded product. While the day ahead auction still trades hourly
products® (At = 1), the products for the continuous trading
cover quarter, half and full hourly delivery periods. We will use
the products with quarter hourly delivery (At = 0.25) due to
their higher liquidity compared to the other products.

In both the rolling intrinsic approach and multi-market bidding,
it is necessary to account for an initial state of charge and

3 Maximum cycle constraints are typically imposed by warranty agreements and are specified on an annual basis. However, to ensure that these constraints are not
violated by trading strategies — which are often optimized over short horizons ranging from one to several days — it is practical to reformulate the annual limits as
equivalent daily constraints, enabling more effective and explicit enforcement within the optimization framework.

4 Without this restriction, simultaneous charging and discharging could become mathematically optimal at negative prices and round-trip efficiencies below one.

5 As-of time of writing, it is planned to switch to quarter hourly products in October 2025



discharge already placed on the market, i.e. the current position,
denoted by ¢; and Ji, respectively. These initial conditions
must be incorporated into the formulation of the optimization
problem in (6). Therefore we define the residual quantities c:
and d that must be traded to achieve the new dispatch by

C;(Ci,di; Eiagi) = maXx (Ci — (_Zi,O) + max (Jl — di,O), (7)

df(ci, di; Ei, J,) = max (dl - d,’, O) + max (Ei — Cjy 0) (8)

Rolling Intrinsic:

For the intraday continuous trading we apply a rolling

intrinsic strategy similar to [6]. Here, we define a second

time grid {tT} with time points where we might rebalance
our positions. At each tradlng time point tT updated bid

and ask prices, denoted by p” and p” are observed. The
methodology for deriving these prices from EPEX market data
will be addressed in a subsequent section. Note that whenever
we step over a time point where delivery of a product starts,
we realize delivery and the initial state of charge SoCj that is
used in the next optimization must be modified accordingly.
Moreover, this does also affect the max cycle constraint (4) and
we slightly modify this to account for charging in past time
steps t; < tf to

&+ ¢ < N "SoG, ©)
1

where ¢ denotes the previous, realized total charged volume of
the current day.

For each trading time point t]T this leads to the problem

max At Z p” l(cudzaczadl)

p;jc;(ci’di;éiaji), (10)
Cl7dl! 03 Z t<tT

s.t. (1)-(3), (5) and (9) hold true. The overall algorithm is shown
in 1.

Algorithm 1
Rolling intrinsic algorithm for intraday continuous trading.

SoC + SoCy,
value + 0
c; <0
fork=1,...,M do
Compute ¢;, d;, b; by solving (10) at point tf
Update €, Ji from solution of (10)
value < value + solution of (10)
SoC 32, 4, \<tict, M € — di/n”
end for

Bid-Ask Prices:

To apply the rolling intrinsic strategy, we need to derive p and
pl at each trading time tT and for each product with de||very
start at t; from the EPEX trade data. Let us denote the price of
a trade at time £ for product with delivery start at £; by p; ;. For
tT we define the set of all prices in the preceding time bucket
by Py j:={pislt] ; <t <t]}. We then define the bid price

Py ; by

{Qk( Piy,)if [Pyl > N,
;=

4000 otherwise. (1)

Here, g (P ;) denotes the empirical k-quantile for a fixed
value of 0 < k < |P;,| and IV a threshold parameter to define
the minimum number of trades that must have been made in
the bucket. We apply the logic analogously for the ask prices
and get

{q k(Pig) if |Pij| > N,
Pw

4000 otherwise, (12)

where g_y, is the empirical | P, |-k-quantile. If not stated
otherwise, we set N = 10 analogously to [6, 7] and use the
empirical 20% quantile for bid prices and 80% for ask prices
respectively.

To solve the optimization problems presented above, we relied
on the EAO software package [15], which builds upon the
source code provided in [16].

4. Results

In this section, we present and analyze the performance of
various multi-market bidding strategies, including the rolling
intrinsic approach, using historical EPEX market data from
June 14, 2024, to July 1, 2025. We use three different battery
configurations as shown in Table 1, where the batteries differ
just by their charge and discharge capabilities, i.e. we have a
one-hour battery (ignoring efficiencies fully charged after one
hour), a two-hour battery and a four-hour battery.

1h-battery 2h-battery 4h-battery
P 2 1 0.5
SoC 2 2 2
SoCy 0.5 0.5 0.5
SoCr 0.5 0.5 0.5
Nboe 1 1 1
" 97% 97% 97%
n 98% 98% 98%

Table 1: Three different battery configurations.



bidding strategy mean median std min max
DA 228.75 216.05 149.20 15.52 1485.61
single-market ID_AUCT 287.09 255.66 255.93 61.08 3924.22
ID_ROLL 296.60 264.20 185.73 63.72 1982.93
DA|ID_AUCT 285.30 267.20 173.94 47.91 1633.71
DA|ID_ROLL 315.83 295.99 185.43 61.24 2027.17

multi-market
ID_AUCT|ID_ROLL 340.93 306.04 309.50 94.47 4957.51
DA|ID_AUCT|ID_ROLL 339.15 312.17 215.18 81.30 2297.83
ID1 337.75 261.28 401.74 31.31 5631.55
1D3 293.48 246.09 264.43 30.06 3815.98

indices

IDFULL 301.84 250.38 284.73 29.20 3707.41
ID_AEP 453.10 299.95 693.66 31.64 7556.81

Table 2: Statistical measures of profit (in €/day) for period 14/6/2024 to 1/7/2025 for 2h-battery (see Table 1).

Our analysis is guided by the following key research
questions:

What is the relative performance of different multi-market
bidding strategies?

To what extent does market liquidity, modeled via bid-ask
spreads in equations (11) and (12), affect the performance of
the rolling intrinsic strategy?

How robust is the rolling intrinsic method to trading bucket
size?

How sensitive are the strategy outcomes to variations in
battery system parameters, such as maximum cycle limits,
charge and discharge power, and the initial and final state of
charge (SoC)?

We evaluate the following strategy configurations:

DA: Battery dispatch optimized using day-ahead auction
spot prices (EPEX auction at 12:00 CET).

ID_AUCT: Optimization based on the EPEX IDA1 intraday
auction prices (auction at 15:00 CET).

ID_AEP: Optimization using the ID AEP price index, as
published on Netztransparenz.de [17].

ID1, ID3, IDFULL. Optimization based on the respective
EPEX intraday trading Indices.

ID_ROLL: Rolling intrinsic optimization using continuous
bid and ask prices as defined in equations (11) and (12),
following the procedure outlined in Algorithm 1.

X|Y: Hybrid strategy where initial dispatch is optimized using
market X, and subsequent redispatch is conducted using
market Y. For example, DA|ID_AUCT refers to an initial
optimization based on DA prices, followed by redispatch
using ID_AUCT prices.

It should be emphasized that the optimizations based on the
indices ID_AEP, ID1, ID3, and IDFULL are reported only as
benchmarking tools. These indices cannot be traded directly,
as they are defined ex post and therefore lack practical
applicability in real-world trading. Nonetheless, we include
them in the analysis because they are frequently used in

the literature as proxies for intraday market prices, and their
comparison provides useful insights into potential value
differences. In contrast, all other strategies presented in this
study correspond to implementable trading approaches that
could realistically be executed in practice with reasonable
effort.

For the day-ahead strategy, a price forecast is required. This
forecast can be generated via an internal fundamental model or
obtained from commercial providers. Based on our experience,
EXAA day-ahead prices do also serve as a reliable proxy. The
resulting optimal schedule can be submitted to the market as a
Loop Block order [18].

Similarly, for intraday auction-based strategies, forecasted
price data is necessary. These forecasts may be purchased, or
alternatively, mid-prices from the order book can be used as
reasonable estimates for auction outcomes when available.

Multi-market bidding:

Table 2 presents summary statistics of the realized profits

for the period from June 14, 2024, to July 1, 2025, across

the different bidding strategies. The results indicate that
multi-market bidding strategies generally yield higher profits
compared to single-market approaches. An exception is
observed in the case of the day-ahead bidding strategy
followed by redispatching in the intraday auction, which
achieves profit levels comparable to those obtained by directly
dispatching based solely on the intraday auction prices.



Rolling intrinsic for battery valuation in day-ahead and intraday markets

Consistent with the findings of [9] and in line with the empirical
results reported in [7], multi-market bidding strategies that
include participation in the day-ahead market tend to perform
similarly or even less favorably compared to strategies that focus
solely on intraday auction trading, followed by redispatching via
the rolling intrinsic approach in the continuous intraday market.

This effect is even more pronounced in the case of single-
market bidding, as illustrated in the right panel of Figure 6,
which displays the cumulative profit-and-loss (PnL) trajectories.
While the results in Table 2 indicate that the standard deviation
of profits is lower for day-ahead bidding relative to intraday or
rolling intrinsic strategies, this lower variability does not reflect
improved risk-adjusted performance. Rather, it is a consequence
of a reduced range of attainable profits, particularly on

the upside, which is not advantageous from an economic
standpoint. This observation is further supported by the left
panel of Figure 6, which plots the 20-day moving average of
profits and highlights the limited profit potential associated with
exclusive reliance on day-ahead market participation.

As expected, all markets display a comparable dispatch pattern,
as shown in Figure 7. Negative values represent charging activity,
while positive values indicate discharging. In winter, the timing
of charging shifts from midday to the early morning hours,
whereas discharging moves from the evening to the afternoon
and late morning. While dispatch strategies based on the rolling
intrinsic approach exhibit slightly higher volatility, they retain

the same fundamental characteristics. These seasonal patterns
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Figure 6: 20 day moving average of profit (in €/day) for the
single-market bidding strategies for a 2-h battery (top) and the

become even more apparent in Figure 8, which shows the mean
dispatch profiles averaged over two periods: April to September

(spring/summer) and October to March (autumn/winter). series of the cumulative sum of the profits.
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Intraday trading 15 min vs 1h products:
As outlined in Section 2.2, intraday markets also feature hourly
products, which generally exhibit higher trading volumes than

the corresponding 15-minute products. This raises the question

of whether hourly products could present a viable alternative
for battery arbitrage compared to 15-minute products. Table 3

reports results from the rolling intrinsic strategy applied to both

product types. Consistent with the prevailing view, that the
greater flexibility of 15-minute products enhances arbitrage
opportunities, our findings show that trading 15-minute
products yields, on average, nearly 20% higher returns than
hourly contracts.

products

traded mean median std min max
15 min

products 296.60 264.20 185.73 63.72 1982.93
1h products 240.43 219.20 157.06 52.74 1570.67

Table 3: Profit statistics (in €/day) for period 14/6/2024 to
1/7/12025 and a 2h-battery (see Table 1) using the rolling intrinsic
strategy in intraday continuous trading with five minute
frequency. Here, either quarter hour products or hour products
are traded.

Effect of bid-ask spreads and trading frequency:

The previous results showed that including intraday trading
using the rolling intrinsic approach after initial auction
marketing improves profitability. Here, the construction of bid-
ask prices as described in (11) and (12) may have a significant
influence on the resulting profit. To investigate the effects

of the chosen quantile within the construction as well as the
trading frequency, we present results for ID_ROLL in Table 4.

A decrease of intraday trading frequency from 5 to 30 min
intervals, which by construction also leads to an increase in
bid-ask spreads, leads to a decrease of approximately 14% to
a mean profit of 256 €/day compared to the base scenario

with 297 €/day. Eliminating the bid-ask spread by using a 50%
quantile increases the profit by around 9% up to 323 €/day.

mean median std min max
base (5 min) 296.60 264.20 185.73 63.72 1982.93
50% quantile 323.37 286.25 213.50 78.24 2478.72
30 min 255.67 221.67 168.38 7.95 1691.49

Table 4: Profit statistics (in €/day) for period 14/6/2024 to
1/7/12025 of ID_ROLL for 2h-battery using the default settings

(5 minute trading buckets and 20% quantile to create bid-ask
prices) in comparison to median value (bid equals ask price) and
30 minute trading buckets.

battery DA DA|ID_AUCT DA|ID_AUCT|ID_ROLL
1h 241.25 318.88 401.44
2h 228.75 285.30 339.15
4h 198.31 234.07 274.54

Table 5: Mean profit for batteries (in €/day) with different
C-rates for period 14/6/2024 to 1/7/2025 and different strategies.

Value of Charge and Discharge Capacities:

In this section, we analyze the variation in economic value
associated with different charge and discharge capacities,
commonly expressed in terms of the C-rate. Specifically, we
examine the performance of batteries with one-hour, two-
hour, and four-hour durations, as specified in Table 1. For
investment decisions, it is essential to estimate the potential
profits achievable at different C-rates, particularly given

that battery capital costs are typically dependent on this
parameter. Table 5 presents the mean profits obtained over
the period from 14 June 2024 to 1 July 2025, based on three
operational strategies: day-ahead optimization (DA), day-ahead
optimization with redispatch (DA|ID_AUCT) via the intraday
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Figure 8: Mean of dispatches for different strategies over the history divided into two seasons: Season 1 includes April to September

and season 2 the other months.



auction, and redispatch via the intraday auction followed by
continuous trading using a rolling intrinsic approach
(DA|ID_AUCT|ID_ROLL). We see that the increase in value
between the 1-hour and 2-hour battery for the observed
period is far below the theoretical upper bound of 200% and
just 5% for the day-ahead market, 12% between bidding

on the day-ahead market and redispatching on the intraday
auction and 18% adding a rolling intrinsic strategy at the end.

Effect of cycle limitations:

In the baseline setting, battery operation was restricted to

one full load cycle per day. We now relax this assumption and
assess the effect of allowing for multiple cycles. Table 6 reports
profit statistics for up to four daily cycles of the 2h-battery
configuration (see Table 1). The results show diminishing
marginal returns: the increase from one to two cycles adds
about 130 €/day on average, while expanding from two to four
cycles yields only an additional 93 €/day. Figure 9 illustrates this
trend with cumulative profits and a 20-day moving average of
daily profits.

label mean median std min max
1daily cycle 34093 306.04 309.50 94.47 495751
2 daily cycles  466.16  411.27 38735 127.49 6267.92
3 daily cycles 530.13 462.83 42735 168.92 6806.51
4 daily cycles 559.13 489.53 439.79 164.48 6889.85

Table 6: Profit statistics (in €/day) for a 2-hour battery with
market bidding at the intraday auction followed by a rolling
intrinsic strategy.

Daily cycle limits are a modeling simplification, as battery
warranties typically specify annual cycle constraints. Daily
constraints are often used either to reduce optimization
complexity or to align with service provider contracts. A flexible
yearly allocation could, in principle, improve profitability by
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concentrating operation on high-profit days and reducing
activity on low-profit days.

label mean median std min max
0% 340.93 306.04 309.50 94.47 4957.51
5% of days 351.36 305.67 400.40 0.00 6267.92
10% of days 352.15 305.67 409.51 0.00 6267.92
15% of days 351.47 307.25 417.98 0.00 6267.92
20% of days 349.50 314.24 425.10 0.00 6267.92
25% of days 346.17 31594 433.23 0.00 6267.92

Table 7: Statistics of profits (in €/day) for different strategies
that suspend operations on less profitable days. The percentage
indicates the share of days on which operations may be
suspended.

Closer inspection, however, shows limited potential. A single
cycle generates on average 340 €/day, whereas the incremental
profit from a second cycle is only 130 €/day. To test the impact
of flexible allocation, we apply an ex-post strategy: for a given
share of days, operation is suspended on the least profitable
days and replaced with two cycles on the days where the
incremental benefit is highest. Results in Table 7 show that
under this optimized allocation, profits improve by at most
3.2% compared to the baseline of one cycle per day. This shows
that operating with more than one cycle per day — increasing
annual cycles — can generate non-negligible additional revenues.
Consequently, operators must balance the short-term, relatively
secure gains from additional cycling against the long-term costs,
which may include accelerated battery degradation, warranty
violations, or reduced operational flexibility later in the year. This
trade-off underscores the importance of explicitly accounting
for warranty structures and long-term asset value when
designing dispatch strategies.
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Figure 9: Cumulative sum of profits for different maximum cycle constraints (left) and 20 day moving average of profits (in €/day) (right).



5. Conclusion

This paper has examined the profitability of different bidding
strategies for Battery Energy Storage Systems (BESS) in the
Central European wholesale power markets, with a particular
focus on the interplay between day-ahead and intraday
markets. Our analysis builds on the rolling intrinsic approach,
which proved to be a robust method for intraday trading by
dynamically capturing short-term price fluctuations. To better
approximate market realities, liquidity constraints were explicitly
represented through bid-ask spreads, highlighting their
significant impact on achievable revenues.

The results demonstrate that multi-market bidding strategies
consistently outperform single-market participation, regardless
of whether this is limited to the day-ahead auction, the intraday
auctions, or continuous intraday trading. While pure intraday,
i.e. first the intraday auction followed by continuous intraday
trading, tend to achieve the highest returns, integrating the
day-ahead market into multi-market strategies slightly reduces
profitability. Nevertheless, from a risk perspective, participation
in both markets remains attractive: bidding in the day-ahead
auction as well as the intraday auction increases the likelihood
of successfully securing profitable trades, thereby reducing the
risk of non-execution that arises when relying on a single market
alone. These findings are in line with recent literature showing
that coordinated or combined market strategies can improve the
robustness of storage operation under uncertainty [7, 9].

Finally, the analysis of maximum cycle limits reveals further
potential for more sophisticated bidding strategies. In
particular, strategies that relax strict daily cycling constraints
while ensuring compliance with annual throughput restrictions
could unlock additional value. This suggests that the design of
intertemporal constraints plays a crucial role in capturing the
full economic potential of storage assets and deserves more
attention in future research.

Building on these insights, several directions for future research
emerge. First, extending the rolling intrinsic approach with
stochastic forecasting methods could better capture price
uncertainties and improve decision-making under volatile
market conditions. Here, due to the high dimensionality of the
problem, a deep hedging approach involving neural networks
[19] which has been successfully applied in the energy context
for green PPAs [20] may be an interesting direction. Second,
exploring market coupling beyond energy-only products,

such as integrating reserve or balancing markets, may provide
additional revenue streams and risk-hedging opportunities for
BESS operators. Third, further work should investigate long-term
operational constraints, particularly strategies that coordinate
daily and yearly cycling requirements in a unified framework.
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