BNenrich: Bayesian Networks for Patient Specific Pathway Enrichment by Integrating Multi-Omics Data with Partial Overlaps

Aybuge Altay

1st supervisor: Prof. Dr. Martin Hofmann-Apitius 2nd supervisor: Prof. Dr. Holger Fröhlich

Motivation

BNenrich: Bayesian Networks for Patient Specific Pathway Enrichment by Integrating Multi-Omics Data with Partial Overlaps

- The idea of systems biology: "the whole is greater than the sum of the parts*"
- The characterization of patient level diversity can be conceptualized via pathway topologies as alterations often involve common pathways
- It is important to deal with the heterogeneity in the coverage of omics data types to be able to utilize all the available resources rather than coupled samples
- Bayesian Network has been applied in data integration over a decade and showed successful results

Overview of the Methodology

• The method measures the agreement of patient's network profile with the other patients' profile to estimate patient-wise enrichment scores

Overview of the Methodology

Colorectal adenocarcinoma (COADREAD) (CRC)

Results

 All the pathways that were declared as significant by BNenrich were found to be related to the disease in the literature

Results (cont.)

- Diagnostic accuracy (sensitivity-specificity)
 - BNenrich showed the best performance of accuracy when tested with the above mentioned pathways

	BNenrich Multi-Omics	BNenrich RNAseq	ssGSEA	GSVA	PLAGE
AUC Scores 95 % CI	$0.9062 \\ 0.7182-1$	$0.7812 \\ 0.5093-1$	$0.7812 \\ 0.5429-1$	$0.3906 \\ 0.09101 - 0.6902$	0.7969 0.5569-1

Results (cont.)

3. Clear patient stratification basis 1 2 0.8 Non-negative Matrix \bullet consensus 1 0.6 Factorization (NMF) 2 silhouette 0.4 clustering 0.93 0.2 0.13 0 댾

Future Outlook

 The method needs to be further evaluated on more datasets: TCGA Breast Cancer Dataset

 Better understanding about the sensitivity and specificity of the method: study with simulated data

http://gnw.sourceforge.net/genenetworkbenchmarks.html

Thank you!