Uncertainty Quantification in Gas Network Simulation

Barbara Fuchs

Numerical Data-Driven Prediction
Fraunhofer Institute for Algorithms and Scientific Computing
SCAI

September 18th, 2018
Workshop Machine Learning
b-it Bonn
- numerical simulation: uncertainties can arise in input data or model parameters
- uncertain parameters are modeled with random variables
- **forward propagation**: how do uncertainties in the input parameters affect the quantity of interest (QoI)?
 - specific outcome of solution
 - moments of solution (expectation, variance)
 - cdf of solution
- standard methods: stochastic Galerkin, stochastic collocation, (quasi-) Monte Carlo

[Sullivan, 2015]
■ scenario analyses are necessary to operate gas network safely and reliably
■ scenarios are not really tested but simulated
 ■ multiphysical network simulator MYNTS by HPA
■ uncertain input
 ■ how much gas does each customer withdraw?
■ forward propagation
 ■ what happens when all customers need a lot of gas at once?
 ■ can the network meet all demand peaks?
Methods

- stochastic Galerkin and stochastic collation methods
 - solution must be sufficiently smooth
 - fast convergence rates
- gas networks: kinks in the solution due to pressure regulation

- (quasi-) Monte Carlo methods
 - weak requirements on solution
 - poor convergence rates
Simplex Stochastic Collocation

- discretize parameter space with simplices
- piecewise polynomial approximation of solution
 - Lagrange interpolation through nearest neighbors
 - exact in sampling points [Witteveen and Iaccarino, 2012a, 2012b, 2013]
- use the information whether a pressure regulator is active or not in the current simulation
 - separate approximation on each side of kink
 - at kink: minimum of both approximations
Results

- good pre-asymptotic behavior
- model error of 10^{-4} is reached with significantly fewer sampling points
 - speed up by factor > 20 compared to qMC

(a) $d = 2$
(b) $d = 3$
(c) $d = 4$

Thanks for your attention!