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Uncertainty Quantification

� numerical simulation: uncertainties can arise in input data or
model parameters

� uncertain parameters are modeled with random variables
� forward propagation: how do uncertainties in the input

parameters affect the quantity of interest (QoI) ?
� specific outcome of solution
� moments of solution (expectation, variance)
� cdf of solution

� standard methods: stochastic Galerkin, stochastic collocation,
(quasi-) Monte Carlo

[Sullivan, 2015]
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Application: Gas Networks

� scenario analyses are necessary to operate gas network safely
and reliably

� scenarios are not really tested but simulated
� multiphysical network simulator MYNTS by HPA

� uncertain input
� how much gas does each customer withdraw?

� forward propagation
� what happens when all customers need a lot of gas at once?
� can the network meet all demand peaks?
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Methods

� stochastic Galerkin and stochastic collation methods
� solution must be sufficiently smooth
� fast convergence rates

� gas networks: kinks in the solution due to pressure regulation
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� (quasi-) Monte Carlo methods
� weak requirements on solution
� poor convergence rates
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Simplex Stochastic Collocation

� discretize parameter space with simplices
� piecewise polynomial approximation of solution

� Lagrange interpolation through nearest neighbors
� exact in sampling points [Witteveen and Iaccarino, 2012a, 2012b, 2013]

� use the information whether a pressure regulator is active or
not in the current simulation

� separate approximation on each side of kink
� at kink: minimum of both approximations
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Results

� good pre-asymptotic behavior
� model error of 10−4 is reached with significantly fewer

sampling points
� speed up by factor > 20 compared to qMC
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(a) d = 2
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(b) d = 3
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(c) d = 4
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Thanks for your attention!
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