Uncertainty Quantification in Gas Network Simulation

Barbara Fuchs

Numerical Data-Driven Prediction Fraunhofer Institute for Algorithms and Scientific Computing SCAI

> September 18th, 2018 Workshop Machine Learning b-it Bonn

- numerical simulation: uncertainties can arise in input data or model parameters
- uncertain parameters are modeled with random variables
- forward propagation: how do uncertainties in the input parameters affect the quantity of interest (Qol) ?
 - specific outcome of solution
 - moments of solution (expectation, variance)
 - cdf of solution
- standard methods: stochastic Galerkin, stochastic collocation, (quasi-) Monte Carlo

[Sullivan, 2015]

- scenario analyses are necessary to operate gas network safely and reliably
- scenarios are not really tested but simulated
 - multiphysical network simulator MYNTS by HPA
- uncertain input
 - how much gas does each customer withdraw?
- forward propagation
 - what happens when all customers need a lot of gas at once?
 - can the network meet all demand peaks?

Methods

- stochastic Galerkin and stochastic collation methods
 - solution must be sufficiently smooth
 - fast convergence rates
- gas networks: kinks in the solution due to pressure regulation

- (quasi-) Monte Carlo methods
 - weak requirements on solution
 - poor convergence rates

Simplex Stochastic Collocation

- discretize parameter space with simplices
- piecewise polynomial approximation of solution
 - Lagrange interpolation through nearest neighbors
 - exact in sampling points [Witteveen and Iaccarino, 2012a, 2012b, 2013]
- use the information whether a pressure regulator is active or not in the current simulation
 - separate approximation on each side of kink
 - at kink: minimum of both approximations

Results

- good pre-asymptotic behavior
- $\hfill \mbox{ model error of } 10^{-4}$ is reached with significantly fewer sampling points
 - speed up by factor > 20 compared to qMC

References

Sullivan, T. (2015). Introduction to Uncertainty Quantification. Texts in Applied Mathematics. Springer International Publishing.
Witteveen, J. and Iaccarino, G. (2012a). Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM Journal on Scientific Computing, 34(3).
Witteveen, J. and Iaccarino, G. (2012b). Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. <i>SIAM Journal on Scientific Computing</i> , 34(2):814–838.

Witteveen, J. and Iaccarino, G. (2013). Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification. Journal of Computational Physics, 239:1-21.

Thanks for your attention!

