Longitudinal data modeling for Alzheimer's disease: Examples of Predictive and Generative models

Supervisor: Prof. Dr. Martin Hofmann-Apitius Co-supervisor: Prof. Dr. Holger Fröhlich

Presented by: Meemansa Sood

Alzheimer's Disease

- Understanding the pathophysiological process of the disease
- Stage specific disease progression
- Understanding the role of biomarkers in the predictive analyses of progression of disease

Scientific Challenge

- Understand and model diseases in a longitudinal manner
- Need to agglomerate and understand multi-scale data

- Issues:
 - · Failure of several clinical trials around established hypotheses
 - Intermittent patient drop outs
 - Lack of enough neurological data

Machine Learning Strategies

Bayesian Networks (BNs)

- BNs gives probabilistic relationships among a set of variables
- Generative as well as predictive model

- BN can model temporal processes
- Model can (partially) learn causal relationships from multi-modal data

Overview of Workflow

SCAI

BN as generative model

- •Unfolding of time dependent variables
- •Constraints for possible edges

Results of BN Structure Learning

Variable Importances:		
	variable	relative_importance
1	CDRSB.b]	1.000000
2	MMSE. b]	0.972977
3	ADAS11.b]	0.953378
4	FAQ. b]	0.928205
5	ADAS13.bl	0.908452
6	RAVLT.immediate.bl	0.723133
7	RAVLT.perc.forgetting.bl	0.571820
8	RAVLT. learning. bl	0.517162
9	RAVLT.forgetting.bl	0.026748

BN used as a predictive model

Virtual Patient Simulation

1

Comparison based on the distance measure

- Gower's generated dissimilarity matrix
- k nearest neighbours of each virtual patient determined (k = 9)*

• Develop a classifier

Conclusion

 Bayesian networks can be used for obtaining inter-dependencies among multivariate features

• Predict values of features at future time points from previous time points

• Quantitative evidence, can be further developed for data-driven virtual clinical trial and creation of virtual patients

Acknowledgement

- Akrishta Sahay
- Reagon Karki
- Prof. Dr. Holger Fröhlich

Thank you

