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Setting

Problem

Given some ensemble of N nuclei with positions xi ∈ R3 and
atomic numbers Zi ∈ N, find the ensemble’s electronic energy
E = E({(xi, Zi)}i=1,...,N ) and its derivatives with respect to the
atoms’ positions.

In theory, this is can be achieved by solving the electronic
Schrödinger equation

H(e) |Φ⟩ = E |Φ⟩ .
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Dimension Reduction

■ The original problem is very high dimensional, as we want to
handle tens or hundreds of thousands of particles.

■ Move to “site energies” V with

E =
∑
i

V (Dxi),

where Dxi is the neighborhood of atom i.
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Invariants

Analogously to the previous talk, the site energies obey invariants
■ with respect to Euclidean transformations of the

neighborhood and
■ with respect to permutation of chemically equivalent atoms.



Fighting the Curse of Dimensionality
Tobias Olbrich

Descriptors

■ To employ ML techniques for learning V , we need to map
atomic neighborhoods to some tuple of real numbers.

■ Key challenge: choose such maps (aka. descriptors) such that
■ they guarantee the neighborhoods’ invariants,
■ they can tell different neighborhoods apart, and
■ they can be evaluated efficiently.
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Existing Machine Learning Potentials

■ Gaussian approximation potentials, using spherical
harmonics and Gaussian kernels. (Bartók)

■ Neural network potentials, using a set of atom-centered
symmetry functions and feed-forward neural networks.
(Behler)

■ Moment tensor potentials, using invariant polynomials.
(Shapeev)
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Fitting and Prediction Error for Tungsten Dataset
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Conclusion

■ Express high-dimensional global problem through smaller
local problems.

■ Encode known properties in descriptors of the local problem.
■ Last, apply machine learning to find good approximations.
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Thank you for your attention!

Questions?


