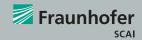
Tobias Olbrich



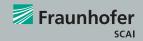
Fighting the Curse of Dimensionality Machine Learning for High Dimensional Potential Energy Functions

Tobias Olbrich

Fraunhofer Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven, 53754 Sankt Augustin, Germany

September 18, 2018

Tobias Olbrich

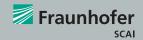

Setting

Problem

Given some ensemble of N nuclei with positions $x_i \in \mathbb{R}^3$ and atomic numbers $Z_i \in \mathbb{N}$, find the ensemble's electronic energy $E = E(\{(x_i, Z_i)\}_{i=1,...,N})$ and its derivatives with respect to the atoms' positions.

In theory, this is can be achieved by solving the electronic Schrödinger equation

$$H^{(e)} |\Phi\rangle = E |\Phi\rangle.$$


Tobias Olbrich

Dimension Reduction

- The original problem is very high dimensional, as we want to handle tens or hundreds of thousands of particles.
- Move to "site energies" V with

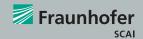
$$E = \sum_{i} V(Dx_i),$$

where Dx_i is the neighborhood of atom *i*.

Tobias Olbrich

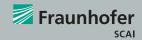
Invariants

Analogously to the previous talk, the site energies obey invariants

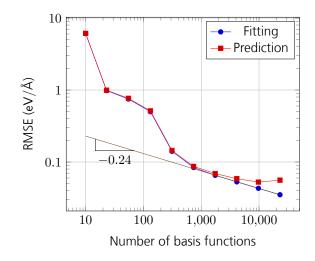

- with respect to Euclidean transformations of the neighborhood and
- with respect to permutation of chemically equivalent atoms.

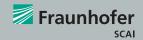
Tobias Olbrich

Descriptors


- To employ ML techniques for learning V, we need to map atomic neighborhoods to some tuple of real numbers.
- Key challenge: choose such maps (aka. descriptors) such that
 - they guarantee the neighborhoods' invariants,
 - they can tell different neighborhoods apart, and
 - they can be evaluated efficiently.

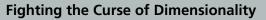
Tobias Olbrich

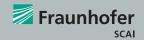

Existing Machine Learning Potentials


- Gaussian approximation potentials, using spherical harmonics and Gaussian kernels. (Bartók)
- Neural network potentials, using a set of *atom-centered* symmetry functions and feed-forward neural networks. (Behler)
- Moment tensor potentials, using invariant polynomials. (Shapeev)

Tobias Olbrich

Fitting and Prediction Error for Tungsten Dataset




Tobias Olbrich

- Express high-dimensional global problem through smaller local problems.
- Encode known properties in descriptors of the local problem.
- Last, apply machine learning to find good approximations.

Tobias Olbrich

Thank you for your attention! Questions?