TREMOLO-X is a powerful software package used for the numerical simulation of interactions between atoms and molecules, the molecular dynamics. It provides the environment to design new innovative materials.
TREMOLO-X uses highly efficient state of the art algorithms for the treatment of short- and long-range potentials, where much emphasis has been placed on the parallel implementation and its efficiency. All potential types are included which are commonly used for modeling of systems in the areas material science, nanotechnology and biophysics.
TREMOLO-X includes also TREMOLO-X-GUI, which is an user-friendly graphical user interface frontend. This provides an easy set-up and analysis of numerical experiments.
TREMOLO-X is already successfully applied in many different practical projects in different areas. The focus is on computations in nanotechnology, material science, biochemistry and biophysics.
User-friendly GUI frontend to setup simulations
Parallel version for distributed memory computers (MIMD) with the message passing interface (MPI)
Implementation of reactive many body potentials, like e.g. ReaxFF, COMB, COMB3, Brenner, Marian, Tersoff, Feuston-Garofalini, Stillinger-Weber and Sutton-Chen
Implementation of several core shell models (also anistropic)
Implementation of fixed bond, angle, torsion (dihedral) and inversion potentials
NVE, NVT and NPT ensemble, structural optimization and dissipative particle dynamics (DPD)
Several time integrators and local optimizers: Verlet, multistep like Beeman-Verlet as well as Fletcher-Reeves and Polak-Ribière
Replica exchange methods like Hybrid Monte Carlo and Parallel Tempering
Computation of many measuring quantities, e.g. diffusion coefficients, stress-strain diagrams, elastic constants, distribution functions, correlation functions and shortest-path-ring statistics
Fast implementation of short-range potentials via linked-cell method and parallelization by dynamic load-balanced domain decomposition
Fast algorithms for long-range potentials: Particle-Mesh-Ewald with domain decomposition and parallel 3D-FFT and parallel multigrid. Also Barnes-Hut/fast multiple methods and parallelisation by space-filling curves
Tremolo-X supports many different potential types. In addition it includes various different parameters sets for different systems and purposes.
A selected list is given in the following:
Ag | [ATVF87,SKC+11,WMH06,ZJW04] |
Ag, Al | [SKC+11] |
Ag, Al, Au, Co, Cu, Fe, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, W, Zr | [ZJW04] |
Ag, Al, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh | [RTS91] |
Ag, Al, Ba, Be, Ca, Co, Cr, Cu, Er, Fe, Gd, Ge, K, Li, Mg, Mn, Na, Nd, Ni, O, P, Sc, Si, Sn, Sr, Ti, Zn, Zr | [PMM+06] |
Ag, Au, Cu, Ir, Ni, Pd, Pt, Rh | [KQCG98] |
Ag, Au, Cu, Ni, Pt, Rh | [CDUT99] |
Ag, Cu | [WMH06,WT09] |
Ag, Cu, Zr | [FGS+10,SKC+11] |
Ag, H, Pd | [HWZZ13] |
Al | [LEA04,MKBA08,MFMP99,SKC+11,SL00,WKG09,ZJW04,ZM03] |
Al, As, Ga | [NNFK00] |
Al, As, Ga, In, N, P, Sb | [PMC07b] |
Al, C, Ca, Cs, Cu, H, K, Mg, N, Na, O, S, Si, Sr | [PMJvD15] |
Al, C, Ca, H, O, S, Si | [LJBGIS12] |
Al, Ca, Fe, K, Mg, Na, O, Si, Ti | [GS07] |
Al, Ca, Mg, O, Si | [JM07,Mat94] |
Al, Ca, Na, O, Si | [PGM12] |
Al, Cu | [SKC+11] |
Al, Cu, N, O, Si, Ti, W | [IM01] |
Al, Cu, Zr | [CMS09,SKC+11] |
Al, Fe | [MSAH05] |
Al, H, Li, O, Si | [NvDK+12] |
Al, H, Ni | [AMB95,BSAM97] |
Al, Mg | [LOA+97,MARH09] |
Al, Mn, Pd | [SBFT12] |
Al, N, O | [OL09] |
Al, Nb, Ti | [FJ96] |
Al, Ni | [KT08,MMP02,Mis04,PPM09] |
Al, O | [SFT13] |
Al, O, P, Si | [VBKVS90] |
Al, O, Si | [JC88] |
Al, Pb | [LWS+00] |
Al, Sm | [MZY+15] |
Al, Ti | [ZM03] |
Al, Zr | [SKC+11] |
As, Ga | [ANNK02,FTH+11,HKS08] |
As, Ga, In | [NNFK00] |
As, In | [HKS08] |
Au | [ATVF87,BJN12,GRS05,Ols10,SKC+11,ZJW04] |
Au, H, O | [KFJvD10] |
B, C, N | [MFM00] |
B, H, N, O | [WDLY10] |
B, H, N, Si | [MG00] |
B, N | [MSH03,MH05,MSH07] |
B, N, O | [OL09] |
B, N, Si | [GGM03,MI01] |
Ba, C, H, N, O, Pt, Si, Ti, Y, Zr | [NLGI+13] |
Be, C, H | [BJT+09] |
Be, H | [BJT+09] |
Be, W | [BHPN10] |
C | [BS12,EA05,LB10,SvDG15,Ter94,Ter89] |
C, Cl, F, H, N, Ni, O, Pt, S | [MvDG10] |
C, Co, Cu, H, N, Ni, O, Pt, S, Si, Zr | [NvDO+05] |
C, Cr, Fe, H, O, S | [SKV+15] |
C, Fe | [HN09,HA08] |
C, Fe, H, O | [AvDK10] |
C, Ge, Si | [Kea66,Mar70] |
C, H | [JET+05,LB10] |
C, H, N, O | [BTZ09,SvDC+03] |
C, H, N, O, S | [MLC+10] |
C, H, N, O, S, Si | [KTGS+12,NSF+12,ZZvD+09] |
C, H, N, O, Ti | [JBAC+12] |
C, H, Ni, O | [TSZ+15] |
C, H, O | [CvDG08] |
C, H, O, Si | [CCVD+05] |
C, H, O, V | [CvDG08] |
C, H, W | [EA05,JET+05] |
C, Pt | [ANA02] |
C, Si | [DDdlRW98,EA05,Ter90,Ter94,Ter89] |
Ca | [SKC+11] |
Ca, F | [MF93] |
Ca, F, Na, O, P, Si | [LMC+08] |
Ca, H, O, Si | [DGH07,FG90,LG01,SG04] |
Cd, Hg, S, Se, Te, Zn | [ZWM+13] |
Ce | [SKC+11] |
Cl, Na | [MF93,AFN03] |
Co | [PM12,ZJW04] |
Cr, Fe, Ni | [BCT13] |
Cu | [ATVF87,MKBA08,MMP+01,SKC+11,ZJW04] |
Cu, Fe | [HWW+12] |
Cu, Fe, Ni | [BPCM09] |
Cu, Mg | [SKC+11] |
Cu, Zr | [MSK07,MKO+09,SKC+11] |
Er, H | [PYL+11] |
Fe | [ABCH97,BAJ00,MHS+03,MEA07,ZJW04] |
Fe, Ni | [BPM09,ME95] |
Fe, P | [AMS+04] |
Fe, Pt | [MKA07] |
Fe, V | [MHS+07] |
Ga, In, N | [ZJ15,ZCG+11] |
Ga, N | [NAEN03] |
Ga, N, O | [OL09] |
Ge, O | [MSM+09] |
Ge, O, Si | [CLL+13] |
Ge, Si | [Gab08,LLD95,Ter90,Ter89] |
H, He, W | [BGT14] |
H, N, O, Si | [BCFA06] |
H, N, Si | [dBMJF99] |
H, O | [PISS12] |
H, O, Si | [Yas96] |
H, O, Zn | [RvDS+10] |
H, Pd | [SJvD14,ZZWH08] |
H, W | [LSL+11] |
Hf, O | [AVJ15] |
Hf, O, Si | [BOLM14] |
Hf, O, Si, Ta, Ti | [THW+13] |
Hf, O, Zr | [WZWG12] |
In, N, O | [OL09] |
Ir | [SKC+11] |
K, Li, Na, O, Si | [PMC+07a] |
Li, Nb, O | [AVJ15] |
Li, O, Ti | [KRYL10] |
Li, S | [IOB+15] |
Mg | [SMB+06,ZJW04] |
Mg, O | [MF93] |
Mg, O, Si | [LN88,MAM87] |
Mg, Ti | [SKC+11] |
Mg, Y | [SKC+11] |
Mo | [ZJW04] |
Mo, S | [JPR13] |
Mo, U, Xe | [SKS+13] |
N, Ti | [CLM+14] |
Na | [WGM15] |
Nb | [FPW10] |
Ni | [ATVF87,MKH+12,MFMP99,SKC+11,ZJW04] |
Ni, P | [SKC+11] |
Ni, Zr | [MKH+12,SKC+11,WM15] |
O | [EJG+06] |
O, Si | [SDH+10,MMMS07,TS02,Yas03,YSP07] |
O, Ti | [MA91,HBD+10] |
O, Y, Zr | [SPW01] |
O, Zn | [EJG+06,NNP+96] |
Pb | [SKC+11,ZJW04] |
Pd | [SKC+11,ZJW04] |
Pd, Si | [SKC+11] |
Pt | [ANA02,SKC+11,ZJW04] |
Pt, Zr | [SKC+11] |
Rh | [SKC+11] |
Ru | [FMBS08] |
Se | [OJRS96] |
Si | [EA05,SW85,Ter88a,Ter88b] |
Sr | [SKC+11] |
Ta | [LSAL03,RGG+13,SKC+11,ZJW04] |
Ti | [Ack92,MUABP,ZJW04] |
U | [SSS12] |
W | [ZJW04] |
Zn | [EJG+06] |
Zr | [SKC+11,ZJW04] |
This is a list of a few selected projects and cooperations which use TREMOLO-X as the primary tool for molecular dynamics simulations. This gives you an impression of what TREMOLO-X can do for you. If you are interested in licensing TREMOLO-X, please contact us.
Have a look at the Gallery and the Literature for additional simulation results obtained with TREMOLO-X.
[1] J. S. Dolado, M. Griebel, J. Hamaekers, and F. Heber. The nano-branched structure of cementitious calcium-silicate-hydrate gel. Journal of Materials Chemistry, 21:4445-4449, 2010.
[ bib | DOI ]
[2] A. M. Bittner, F. Heber, and J. Hamaekers. Biomolecules as soft matter surfaces. Surface Science, 603:1922-1925, 2009.
[ bib | DOIhttp://www.sciencedirect.com/science/article/B6TVX-4VC7DTV-B/2/bb6491befc5814a4384cfe65182d1fe9 ]
[3] M. Griebel, J. Hamaekers, and F. Heber. A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Computational Materials Science, 45(4):1097-1103, 2009.
[ bib | .pdf 1 ]
[4] H. Manzano, J. Dolado, M. Griebel, and J. Hamaekers. A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels. physica status solidi (a) - applications and materials science, 205(6):1324-1329, 2008. Also as INS Preprint No. 0707.
[ bib | DOI | http | .pdf 1 ]
[5] J. S. Dolado, M. Griebel, and J. Hamaekers. A molecular dynamics study of cementitious silicate hydrate (C-S-H) gels. Journal of the American Ceramic Society, 90(12):3938-3942, 2007. Also as INS Preprint No. 0701.
[ bib | .ps.gz 1 | .pdf 1 ]
[6] M. Griebel and J. Hamaekers. Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-B-N. Computational Materials Science, 39(3):502-517, 2007. Also as INS Preprint No. 0501.
[ bib | .ps.gz 1 | .pdf 1 ]
[7] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites. In M. Rieth and W. Schommers, editors, Handbook of Theoretical and Computational Nanotechnology, volume 9, chapter 8, pages 409-454. American Scientific Publishers, 2006. Also as INS Preprint No. 0502.
[ bib | .html | .ps.gz 1 | .pdf 1 ]
[8] M. Griebel, J. Hamaekers, and R. Wildenhues. Molecular dynamics simulations of the influence of chemical cross-links on the elastic moduli of polymer-carbon nanotube composites. In J. Sanchez, editor, Proceedings 1st Nanoc-Workshop, LABEIN, Bilbao, Spain, 2005. Also as INS Preprint No. 0503.
[ bib | .pdf 1 ]
[9] M. Griebel and J. Hamaekers. Molecular dynamics of mechanical properties of boron-nitride nanotubes embedded in Si-B-N ceramics. In N. M. Ghoniem, editor, Conference Proceedings, Second International Conference on Multiscale Materials Modeling, pages 51-55, Mechanical and Aerospace Engineering Department, University of California Los Angeles, October 11-15 2004.
[ bib | .ps.gz 1 | .pdf 1 ]
[10] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 193(17-20):1773-1788, 2004.
[ bib | .ps.gz 1 | .pdf 1 ]
[11] M. Griebel, L. Jager, and A. Voigt. Predicting material parameters for intrinsic point defect diffusion in silicon crystal growth. Solid State Phenomena, 95-96:35-40, 2004.
[ bib | .pdf 1 ]
[12] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. In D. Hui, editor, ICCE-10, pages 213-214, College of Engineering, University of New Orleans, July 20-26 2003. International Community for Composites Engineering.
[ bib | .ps.gz 1 | .pdf 1 ]
[13] S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube - polymer interfaces. Journal of Physical Chemistry B, 106(12):3046-3048, 2002.
[ bib | http | .pdf 1 ]
[14] A. Caglar and M. Griebel. On the numerical simulation of Fullerene nanotubes: C100.000.000 and beyond! In R. Esser, P. Grassberger, J. Grotendorst, and M. Lewerenz, editors, Molecular Dynamics on Parallel Computers, NIC, Jülich 8-10 February 1999. World Scientific, 2000.
[ bib | .ps.gz 1 ]
[15] S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel. Reinforcement mechanisms in polymer nanotube composites: Simulated non-bonded and cross-linked systems. In Proceedings of the MRS Fall Meeting, 2000.
[ bib | .ps.gz 1 ]
[1] M. Griebel, S. Knapek, and G. Zumbusch. Numerical Simulation in Molecular Dynamics. Springer, Berlin, Heidelberg, 2007.
[ bib | springer.de ]
[2] M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Moleküldynamik. Numerik, Algorithmen, Parallelisierung, Anwendungen. Springer, Berlin, Heidelberg, 2003.
[ bib | springer.de | amazon.de ]