Potentials

Tremolo-X supports many different potential types. In addition it includes various different parameters sets for different systems and purposes.

A selected list is given in the following:

Ac, Ag, Al, Ar, As, At, Au, B, Ba, Be, Bi, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Fr, Ga, Gd, Ge, H, He, Hf, Hg, Ho, I, In, Ir, K, Kr, La, Li, Lu, Mg, Mn, Mo, N, Na, Nb, Nd, Ne, Ni, Np, O, Os, P, Pa, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rb, Re, Rh, Rn, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Th, Ti, Tl, Tm, U, V, W, Xe, Y, Yb, Zn, Zr BBC+23, CO22, DZJ+23, GAE+10, GEG11, SID+24, YHZ+24
Ag ATV+87, SKC+11, WMH06, ZJW04
Ag, Al SKC+11
Ag, Al, Ar, As, At, Au, B, Ba, Be, Bi, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, H, He, Hf, Hg, Ho, I, In, Ir, K, Kr, La, Li, Lu, Mg, Mn, Mo, N, Na, Nb, Nd, Ne, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Rb, Re, Rh, Rn, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, V, W, Xe, Y, Yb, Zn, Zr CBG17, CEH+19, CME+20, FG06, GHS+15
Ag, Al, Au, Co, Cu, Fe, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, W, Zr ZJW04
Ag, Al, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh RS91
Ag, Al, Au, Pd, Pt LSB03
Ag, Al, Ba, Be, Ca, Co, Cr, Cu, Er, Fe, Gd, Ge, K, Li, Mg, Mn, Na, Nd, Ni, O, P, Sc, Si, Sn, Sr, Ti, Zn, Zr PMM+06
Ag, Au AFM+22
Ag, Au, Cu, Ir, Ni, Pd, Pt, Rh KQC+98
Ag, Au, Cu, Ni, Pd, Pt JSN96
Ag, Au, Cu, Ni, Pt, Rh CDU+99
Ag, C, Cu, H, N, O, Si, Zn LCV+16
Ag, Cu RAS00, WMH06, WT09
Ag, Cu, Zr FGS+10, KSL+09, SKC+11
Ag, H, Pd HWZ+13
Ag, O, Ta GOA+13
Al AZN+15, LEA04, MFM+99, MKB+08, SKC+11, SL00, WKG09, ZIP+09, ZJW04, ZM03
Al, As, Ga NNF+00
Al, As, Ga, In, N, P, Sb PMC07
Al, B, C, H, N, O LKV22
Al, B, K, Li, Na, O, Si SHI+20
Al, C, Ca, Cs, Cu, H, K, Mg, N, Na, O, S, Si, Sr PMJ+15
Al, C, Ca, Cs, H, K, Mg, N, Na, O, S, Si, Sr JPV+14
Al, C, Ca, H, O, S, Si LJG+12
Al, C, Ge, H, O ZHP+17
Al, C, H, N, Na, O, S, Si BLS12
Al, C, H, O HV16
Al, Ca, Fe, K, Mg, Na, O, Si, Ti GS07
Al, Ca, K, Li, Na, O, P, Si BMP21
Al, Ca, K, Li, Na, O, Si SHI+19
Al, Ca, Mg, O, Si JM07, MAT94
Al, Ca, Na, O, Si PGM12
Al, Co DKK+12
Al, Co, Cu, Fe, Mo, Ni, Pd, Ti JPD+18
Al, Co, Cu, Mo, Ni, Pt, Ti, V KSJ+17
Al, Co, Ni KJL15
Al, Cu MMZ22, SKC+11
Al, Cu, Fe, Mg, Si JGH+12
Al, Cu, N, O, Si, Ti, W IM01
Al, Cu, Zr CMS09, SKC+11
Al, Fe LL10, MMZ22, MSA+05
Al, Ga, N ZJD+13, ZJK+13
Al, H KSL11
Al, H, Li, O, Si NVK+12, OKC+16
Al, H, Ni AMB95, BSA+97
Al, H, V SKK+13
Al, Hf FMM22
Al, Li RDC21
Al, Mg KKL09, LOA+97, MAR+09
Al, Mg, Zn DBA+18
Al, Mn, Pd SBF+12
Al, N, O OL09
Al, N, Ti ASS19
Al, Nb FMM22
Al, Nb, Ti FJ96
Al, Ni EÅC+07, KT08, MIS04, MMP02, MMZ22, PM09
Al, Ni, Ti KKJ+17
Al, O SFT13
Al, O, P, Si VKV90
Al, O, Si JC88
Al, Pb LWS+00
Al, Sm MZY+15
Al, Ta FMM22
Al, Ti FMM22, SRW18, ZM03
Al, U PF15
Al, Zr FMM22, SKC+11
Ar, C, Co, Cu, H, He, Kr, N, Ne, Ni, O, Pt, S, Si, Xe, Zr KVY10
Ar, C, H, He, Kr, Ne YRS+16
As, Ga ANN+02, FTH+11, HKS08
As, Ga, In NNF+00
As, In HKS08
Au ATV+87, BJN12, GRS05, OLS10, SKC+11, ZIP+09, ZJW04
Au, C, Cl, F, H, Mg, N, Na, O, P, S, Ti MCÅ16
Au, C, H, Mo, Ni, O, S, Ti MZK+22
Au, C, H, S JVN+11
Au, H, O KFJ+10
Au, O, Si KC05
B, C, F, H, Li, Mo, N, Ni, O, P, S LSY+21
B, C, H, N PYH16
B, C, N MFM00
B, Ca, Li, Mg, Na, O, Si BPC+22
B, Ca, Mg, O, Si SSI+21
B, Ca, Na, O, Si WKW+18
B, H, N, O WDL+10
B, H, N, Si MG00
B, N MH05, MSH03, MSH07
B, N, O OL09
B, N, Si GGM03, MI01
B, O SSL+19
Ba, C, H, N, O, Pt, Si, Ti, Y, Zr NLG+13
Ba, C, H, N, O, Y, Zr VMJ+08
Be, C, H BJT+09
Be, H BJT+09
Be, O WZL+19
Be, W BHP+10
Bi ZDB+21
C BS12, EA05, LB10, LL05, SVG15, TER89, TER94
C, Ca, H, Mg, Na, O DCV22
C, Cl, Cs, F, H, I, K, Li, Na, O FSD+19
C, Cl, Cu, H, Mg, N, Na, O, P, S MCF+13, MLC13, VAZ+18, ZV18
C, Cl, Cu, H, O, S YAJ+17
C, Cl, F, H, K, Li, Mg, N, Na, O, P, S, Ti GSO+20
C, Cl, F, H, Mg, N, Na, O, P, S, Ti KV13, KVK13
C, Cl, F, H, N, Ni, O, Pt, S MVG10
C, Cl, F, H, N, O, S WVS14
C, Co, Cu, H, N, Ni, O, Pt, S, Si, Zr NVO+05
C, Cr, Fe, H, O, S SKV+15
C, Cu AM21
C, Cu, H, Mg, N, Na, O, P, S HBJ+13
C, F, H OLI15
C, F, H, Li, O, Si YPY+17
C, F, O, Si SSG+05
C, F, Si AG99
C, Fe HA08, HN09, LEE06, LKH+14
C, Fe, H IZV+16
C, Fe, H, N, O, S MFW21
C, Fe, H, O AVK10
C, Fe, Mn, Si ABD+19
C, Fe, Ti KJL09
C, Ga, H RMN+21
C, Ge, H, N, O, S, Si PD16
C, Ge, H, O NVE18
C, Ge, Si KEA66, MAR70
C, H BRE90, BSH+02, JET+05, KMP+18, LB10, MRL+17, NTG+14
C, H, In RMN+21
C, H, Li, N, O, S, Si AS14
C, H, N, Na, O, P, S, Si ZVJ14
C, H, N, O BTZ09, KAD+19, RVG+10, SVC+03
C, H, N, O, Pt, S, Si ZDZ+09
C, H, N, O, S MLC+10
C, H, N, O, S, Si KTG+12, LLZ+11, NSF+12, SZP+18, ZZV+09
C, H, N, O, S, Zr DKR+20
C, H, N, O, Si WSS+20
C, H, N, O, Ti JAC+12
C, H, N, Si OLI15
C, H, Na HNK16
C, H, Na, O, Si HRC+18
C, H, Ni, O TSZ+15
C, H, O AV17, CVG08, KHV+22, SJL+17
C, H, O, S MH16
C, H, O, Si CCV+05
C, H, O, V CVP+08
C, H, Pt SÅC+08
C, H, Si DS99
C, H, W EA05, JET+05
C, Li, Si OMV+23
C, N, Ti KL08
C, Pd, Pt JL20
C, Pt ANA02
C, Si DDW98, EA05, KEJ+14, TER89, TER90, TER94
Ca SKC+11
Ca, F MF93
Ca, F, Na, O, P, Si LMC+08
Ca, H, O, Si DGH07, FG90, LG01, SG04
Ca, Mg KJL15
Ca, Mg, Zn JSL19
Cd, Hg, S, Se, Te, Zn ZWM+13
Ce SKC+11
Cl, Cu, H, O VBD+10
Cl, F, Si HG04
Cl, Na AFN03, MF93
Co PM12, ZIN+14, ZJW04
Co, Cr, Fe, Mn, Ni CJS+18, CKS+17
Co, Cr, Mn CKS+17
Co, Cu WOL20
Co, Cu, Mo WOL20
Co, Ti, V OSL20
Cr, Fe LSP01
Cr, Fe, Ni BCT13
Cr, Fe, V LBK+01
Cu ATV+87, AV90, AZN+15, EA18, MKB+08, MMP+01, SKC+11, ZJW04
Cu, Fe HWW+12, LWS+05
Cu, Fe, Ni BPC+09
Cu, Mg BSJ04, SKC+11
Cu, Mo WOL20
Cu, N, Ti MDM+20
Cu, Ni LSB03
Cu, Si AKM+21
Cu, Zr BMK16, HAV+19, MKO+09, MSK07, PKB+07, SKC+11
Er, H PYL+11
F, Si AG99
Fe ABC+97, AZN+15, BAJ00, EA18, MEA07, MHS+03, MMA+10, PRM12, ZJW04
Fe, H LLK06
Fe, Mn KSL09
Fe, N LLK06
Fe, Nb SL08
Fe, Ni BPM09, ME95
Fe, P AMS+04, KKL12
Fe, Pt KKL06, MKA07
Fe, Ti SL08
Fe, V MHS+07
Ga, In, N DSL09, ZCG+11, ZJ15
Ga, N NAE+03, OLI15
Ga, N, O OL09
Ge KSL08
Ge, O MSM+09
Ge, O, Si CLL+13
Ge, Si GAB08, LLD95, TER89, TER90
H, He, W BGT14
H, Mo, S ORW+17
H, N, O, Si BCF+06
H, N, Si DJF99
H, Ni KSL11
H, Ni, O, Y, Zr LSI+19
H, Ni, V SKK+13
H, O MBB+98, PIS+12, WTV06, ZV17
H, O, Si NVE19, YAS96
H, O, Zn RDS+10
H, Pd SJV14, ZZW+08
H, Ru OPB+22
H, Si MA95
H, V SLF+11
H, W LSL+11
H, Zr LL14
Hf, Nb, Ta, Ti, Zr HLD+21
Hf, O AVJ15
Hf, O, Si BOL+14
Hf, O, Si, Ta, Ti THW+13
Hf, O, Zr WZW+12
In DSL08
In, N, O OL09
In, O WCS+09
Ir SKC+11
K, Li, Na, O, Si PMC+07
Li CGC+11
Li, Mg KJL12
Li, Nb, O AVJ15
Li, O, Ti KRY+10
Li, S IOB+15
Li, Si CGC+12, JLY+15
Mg SMB+06, ZJW04
Mg, Nd, Pb KL17
Mg, O FGV+23, MF93
Mg, O, Si LN88, MAM87
Mg, Sn, Y KJL15
Mg, Ti SKC+11
Mg, Y AGG+18, SKC+11
Mg, Zn JKL18
Mo ZJW04
Mo, S JPR13, WSP+17
Mo, U, Xe SKS+13
Mo, W LBK+01
N, Ti CLM+14
Na WGM15
Na, Sn KKL20
Nb FPW10
Nb, Ni ZAM+16
Nb, Ta LBK+01
Ni ATV+87, AZN+15, EA18, MFM+99, MKH+12, SKC+11, ZJW04
Ni, P SKC+11
Ni, Si HYO+17
Ni, Ti KGN15, KNB+19
Ni, Ti, V MKZ+17
Ni, W SPC+03
Ni, Zr MKH+12, SKC+11, WM15
O EJG+06
O, Pd SMJ+13
O, Pt FBS+14
O, Si MMM+07, SDH+10, TS02, YAS03, YSP07
O, Ta ABN+18
O, Ti HBD+10, MA91
O, Y, Zr SPW01
O, Zn EJG+06, NNP+96
Pb LSB03, SKC+11, ZJW04
Pb, Sn EBL+18
Pd SKC+11, ZJW04
Pd, Si SKC+11
Pd, V, Y KL13
Pt ANA02, SKC+11, ZJW04
Pt, Zr SKC+11
Re, W BBT+17
Rh SKC+11
Ru FMB+08
Se OJR+96
Si BKB+18, EA05, HDL+18, LEE07, SHA16, SW85, TER88
Si, U BBA+17
Sn KKK+18, VCS+17
Sr SKC+11
Ta LSA+03, RGG+13, SKC+11, ZJW04
Ti ACK92, KLB06, MUABP, ZJW04
U FP14, SSS12
U, Zr MBD+15
W HMB+22, MVG+13, ZJW04
Zn EJG+06
Zr KLB06, SKC+11, ZJW04

 

References

ABC+97
GJ Ackland, DJ Bacon, AF Calder, and T Harry
Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential
Philosophical Magazine A, 75(3), 713–732, 1997.

 

ABD+19
I Aslam, MI Baskes, DE Dickel, S Adibi, B Li, H Rhee, M Asle Zaeem, and MF Horstemeyer
Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential
Materialia, 8, 100473, 2019.

 

ABN+18
Oliver LG Alderman, CJ Benmore, J Neuefeind, E Coillet, A Mermet, V Martinez, Anthony Tamalonis, and Rick Weber
Amorphous tantala and its relationship with the molten state
Physical Review Materials, 2(4), 043602, 2018.

 

ACK92
Graeme J Ackland
Theoretical study of titanium surfaces and defects with a new many-body potential
Philosophical Magazine A, 66(6), 917–932, 1992.

 

AFM+22
Sk Md Ahnaf Akif Alvi, Abrar Faiyad, Md Adnan Mahathir Munshi, Mohammad Motalab, Md Mahbubul Islam, and Sourav Saha
Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential
Mechanics of Materials, 169, 104304, 2022.

 

AFN03
Jamshed Anwar, Daan Frenkel, and Massimo G. Noro
Calculation of the melting point of NaCl by molecular simulation
The Journal of Chemical Physics, 118(2), 728-735, 2003.

 

AG99
Cameron F Abrams and David B Graves
Molecular dynamics simulations of Si etching by energetic CF 3+
Journal of applied physics, 86(11), 5938–5948, 1999.

 

AGG+18
Rasool Ahmad, Sébastien Groh, Maryam Ghazisaeidi, and William A Curtin
Modified embedded-atom method interatomic potential for Mg–Y alloys
Modelling and Simulation in Materials Science and Engineering, 26(6), 065010, 2018.

 

AKM+21
Kamyar Akbari Roshan, Mahdi Khajeh Talkhoncheh, Jonathan E Mueller, William A Goddard III, and Adri CT van Duin
Development of the ReaxFF Reactive Force Field for Cu/Si Systems with Application to Copper Cluster Formation during Cu Diffusion Inside Silicon
The Journal of Physical Chemistry C, 125(35), 19455–19466, 2021.

 

AM21
Arpit Agrawal and Reza Mirzaeifar
Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties
Computational Materials Science, 188, 110204, 2021.

 

AMB95
James E Angelo, Neville R Moody, and Michael I Baskes
Trapping of hydrogen to lattice defects in nickel
Modelling and Simulation in Materials Science and Engineering, 3(3), 289, 1995.

 

AMS+04
GJ Ackland, MI Mendelev, DJ Srolovitz, S Han, and AV Barashev
Development of an interatomic potential for phosphorus impurities in α-iron
Journal of Physics: Condensed Matter, 16(27), S2629, 2004.

 

ANA02
Karsten Albe, Kai Nordlund, and Robert S Averback
Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon
Physical Review B, 65(19), 195124, 2002.

 

ANN+02
Karsten Albe, Kai Nordlund, Janne Nord, and Antti Kuronen
Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs
Physical Review B, 66(3), 035205, 2002.

 

AS14
QuantumWise A/S
Atomistix ToolKit 2014 Reference Manual
2014.

 

ASS19
GA Almyras, Davide Giuseppe Sangiovanni, and Kostas Sarakinos
Semi-empirical force-field model for the Ti1- xAlxN (0≤ x≤ 1) system
Materials, 12(2), 215, 2019.

 

ATV+87
GJ Ackland, G Tichy, V Vitek, and MW Finnis
Simple N-body potentials for the noble metals and nickel
Philosophical Magazine A, 56(6), 735–756, 1987.

 

AV17
Chowdhury Ashraf and Adri CT van Duin
Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics
The Journal of Physical Chemistry A, 121(5), 1051–1068, 2017.

 

AV90
Graeme J Ackland and Vaclav Vitek
Many-body potentials and atomic-scale relaxations in noble-metal alloys
Physical review B, 41(15), 10324, 1990.

 

AVJ15
R. M. Araujo, M. E. G. Valerio, and R. A. Jackson
Computer modelling of hafnium doping in lithium niobate
ArXiv e-prints, 2015.

 

AVK10
Masoud Aryanpour, Adri C. T. van Duin, and James D. Kubicki
Development of a Reactive Force Field for Iron–Oxyhydroxide Systems
The Journal of Physical Chemistry A, 114(21), 6298-6307, 2010.

 

AZN+15
Ebrahim Asadi, Mohsen Asle Zaeem, Sasan Nouranian, and Michael I Baskes
Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method
Acta Materialia, 86, 169–181, 2015.

 

BAJ00
Anatoly B Belonoshko, R Ahuja, and Börje Johansson
Quasi–Ab initio molecular dynamic study of Fe melting
Physical Review Letters, 84(16), 3638, 2000.

 

BBA+17
Benjamin Beeler, Michael Baskes, David Andersson, Michael WD Cooper, and Yongfeng Zhang
A modified Embedded-Atom Method interatomic potential for uranium-silicide
Journal of Nuclear Materials, 495, 267–276, 2017.

 

BBC+23
Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell, Xavier R. Advincula, Mark Asta, William J. Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cărare, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius, Zakariya El-Machachi, Edvin Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Clare P. Grey, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, Ioan-Bogdan Magdău, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O'Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn, Christopher Sutton, Cas van der Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Fabian Zills, and Gábor Csányi
A foundation model for atomistic materials chemistry
2023.

 

BBT+17
G Bonny, A Bakaev, D Terentyev, and Yu A Mastrikov
Interatomic potential to study plastic deformation in tungsten-rhenium alloys
Journal of Applied Physics, 121(16), 165107, 2017.

 

BCF+06
Salomon R. Billeter, Alessandro Curioni, Dominik Fischer, and Wanda Andreoni
Ab initio derived augmented Tersoff potential for silicon oxynitride compounds and their interfaces with silicon
Phys. Rev. B, 73(15), 155329, 2006.

 

BCT13
G Bonny, N Castin, and D Terentyev
Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy
Modelling and Simulation in Materials Science and Engineering, 21(8), 085004, 2013.

 

BGT14
Giovanni Bonny, Petr Grigorev, and Dmitry Terentyev
On the binding of nanometric hydrogen–helium clusters in tungsten
Journal of Physics: Condensed Matter, 26(48), 485001, 2014.

 

BHP+10
C Björkas, KOE Henriksson, M Probst, and K Nordlund
A Be–W interatomic potential
Journal of Physics: Condensed Matter, 22(35), 352206, 2010.

 

BJN12
M Backman, N Juslin, and K Nordlund
Bond order potential for gold
The European Physical Journal B, 85(9), 1–5, 2012.

 

BJT+09
C Björkas, N Juslin, H Timko, K Vörtler, K Nordlund, K Henriksson, and P Erhart
Interatomic potentials for the Be-C-H system
Journal of Physics: Condensed Matter, 21(44), 445002, 2009.

 

BKB+18
Albert P Bartók, James Kermode, Noam Bernstein, and Gábor Csányi
Machine learning a general-purpose interatomic potential for silicon
Physical Review X, 8(4), 041048, 2018.

 

BLS12
Chen Bai, Lianchi Liu, and Huai Sun
Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a reaxff force field
The Journal of Physical Chemistry C, 116(12), 7029–7039, 2012.

 

BMK16
Valery Borovikov, Mikhail I Mendelev, and Alexander H King
Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals
Modelling and Simulation in Materials Science and Engineering, 24(8), 085017, 2016.

 

BMP21
Marco Bertani, Maria Cristina Menziani, and Alfonso Pedone
Improved empirical force field for multicomponent oxide glasses and crystals
Physical Review Materials, 5(4), 045602, 2021.

 

BOL+14
G Broglia, G Ori, L Larcher, and M Montorsi
Molecular dynamics simulation of amorphous HfO 2 for resistive RAM applications
Modelling and Simulation in Materials Science and Engineering, 22(6), 065006, 2014.

 

BPC+09
Giovanni Bonny, Roberto C Pasianot, Nicolas Castin, and Lorenzo Malerba
Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing
Philosophical Magazine, 89(34-36), 3531–3546, 2009.

 

BPC+22
Marco Bertani, Annalisa Pallini, Marina Cocchi, Maria Cristina Menziani, and Alfonso Pedone
A new self-consistent empirical potential model for multicomponent borate and borosilicate glasses
Journal of the American Ceramic Society, 2022.

 

BPM09
Giovanni Bonny, RC Pasianot, and Lorenzo Malerba
Fe–Ni many-body potential for metallurgical applications
Modelling and Simulation in Materials Science and Engineering, 17(2), 025010, 2009.

 

BRE90
D. W. Brenner
Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
Phys. Rev. B, 42(15), 9458-9471, 1990.

 

BS12
Edson P. Bellido and Jorge M. Seminario
Molecular Dynamics Simulations of Ion-Bombarded Graphene
The Journal of Physical Chemistry C, 116(6), 4044-4049, 2012.

 

BSA+97
MI Baskes, Xianwei Sha, JE Angelo, and NR Moody
Trapping of hydrogen to lattice defects in nickel
Modelling and Simulation in Materials Science and Engineering, 5(6), 651, 1997.

 

BSH+02
D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
J, Phys.: Condens. Matter, 783-802, 2002.

 

BSJ04
Nicholas P Bailey, Jakob Schiøtz, and Karsten W Jacobsen
Simulation of Cu-Mg metallic glass: Thermodynamics and structure
Physical Review B, 69(14), 144205, 2004.

 

BTZ09
Joanne Budzien, Aidan P Thompson, and Sergey V Zybin
Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate
The Journal of Physical Chemistry B, 113(40), 13142–13151, 2009.

 

CBG17
Eike Caldeweyher, Christoph Bannwarth, and Stefan Grimme
Extension of the D3 dispersion coefficient model
The Journal of chemical physics, 147(3), 034112, 2017.

 

CCV+05
Kimberly Chenoweth, Sam Cheung, Adri CT Van Duin, William A Goddard, and Edward M Kober
Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field
Journal Of The American Chemical Society, 127(19), 7192–7202, 2005.

 

CDU+99
T Cagin, G Dereli, M Uludoğan, and M Tomak
Thermal and mechanical properties of some fcc transition metals
Physical Review B, 59(5), 3468, 1999.

 

CEH+19
Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth, and Stefan Grimme
A generally applicable atomic-charge dependent London dispersion correction
The Journal of chemical physics, 150(15), 154122, 2019.

 

CGC+11
Zhiwei Cui, Feng Gao, Zhihua Cui, and Jianmin Qu
Developing a second nearest-neighbor modified embedded atom method interatomic potential for lithium
Modelling and simulation in materials science and engineering, 20(1), 015014, 2011.

 

CGC+12
Zhiwei Cui, Feng Gao, Zhihua Cui, and Jianmin Qu
A second nearest-neighbor embedded atom method interatomic potential for Li–Si alloys
Journal of Power Sources, 207, 150–159, 2012.

 

CJS+18
Won-Mi Choi, Yong Hee Jo, Seok Su Sohn, Sunghak Lee, and Byeong-Joo Lee
Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study
npj Computational Materials, 4(1), 1–9, 2018.

 

CKS+17
Won-Mi Choi, Yongmin Kim, Donghyuk Seol, and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems
Computational Materials Science, 130, 121–129, 2017.

 

CLL+13
Claire Y Chuang, Qiming Li, Darin Leonhardt, Sang M Han, and Talid Sinno
Atomistic analysis of Ge on amorphous SiO 2 using an empirical interatomic potential
Surface Science, 609, 221–229, 2013.

 

CLM+14
Y-T Cheng, T Liang, J A Martinez, S R Phillpot, and S B Sinnott
A charge optimized many-body potential for titanium nitride (TiN)
Journal of Physics: Condensed Matter, 26(26), 265004, 2014.

 

CME+20
Eike Caldeweyher, Jan-Michael Mewes, Sebastian Ehlert, and Stefan Grimme
Extension and evaluation of the D4 London-dispersion model for periodic systems
Physical Chemistry Chemical Physics, 22(16), 8499–8512, 2020.

 

CMS09
YQ Cheng, E Ma, and HW Sheng
Atomic level structure in multicomponent bulk metallic glass
Physical review letters, 102(24), 245501, 2009.

 

CO22
Chi Chen and Shyue Ping Ong
A universal graph deep learning interatomic potential for the periodic table
Nature Computational Science, 2(11), 718–728, 2022.

 

CVG08
Kimberly Chenoweth, Adri CT van Duin, and William A Goddard
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
The Journal of Physical Chemistry A, 112(5), 1040–1053, 2008.

 

CVP+08
Kimberly Chenoweth, Adri CT Van Duin, Petter Persson, Mu-Jeng Cheng, Jonas Oxgaard, and William A Goddard Iii
Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts
The Journal of Physical Chemistry C, 112(37), 14645–14654, 2008.

 

DBA+18
Doyl E Dickel, Michael I Baskes, Imran Aslam, and Christopher D Barrett
New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys
Modelling and simulation in materials science and engineering, 26(4), 045010, 2018.

 

DCV22
Nabankur Dasgupta, Chen Chen, and Adri CT Van Duin
Development and application of ReaxFF methodology for understanding the chemical dynamics of metal carbonates in aqueous solutions
Physical Chemistry Chemical Physics, 24(5), 3322–3337, 2022.

 

DDW98
R Devanathan, T Diaz de la Rubia, and WJ Weber
Displacement threshold energies in β-SiC
Journal of nuclear materials, 253(1), 47–52, 1998.

 

DGH07
Jorge S Dolado, Michael Griebel, and Jan Hamaekers
A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels
Journal of the American Ceramic Society, 90(12), 3938–3942, 2007.

 

DJF99
F de Brito Mota, JF Justo, and A Fazzio
Hydrogen role on the properties of amorphous silicon nitride
Journal of applied physics, 86(4), 1843–1847, 1999.

 

DKK+12
Wei-Ping Dong, Hyun-Kyu Kim, Won-Seok Ko, Byeong-Moon Lee, and Byeong-Joo Lee
Atomistic modeling of pure Co and Co–Al system
Calphad, 38, 7–16, 2012.

 

DKR+20
Swarit Dwivedi, Malgorzata Kowalik, Nilton Rosenbach, Dalal S Alqarni, Yun Kyung Shin, Yongjian Yang, John C Mauro, Akshat Tanksale, Alan L Chaffee, and Adri CT Van Duin
Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C
The Journal of Physical Chemistry Letters, 12(1), 177–184, 2020.

 

DS99
A. J. Dyson and P. V. Smith
Improved empirical interatomic potential for C—Si—H systems
Molecular Physics, 96(10), 1491-1507, 1999.

 

DSL08
Eun Cheol Do, Young-Han Shin, and Byeong-Joo Lee
A modified embedded-atom method interatomic potential for indium
Calphad, 32(1), 82–88, 2008.

 

DSL09
Eun Cheol Do, Young-Han Shin, and Byeong-Joo Lee
Atomistic modeling of III–V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1- xInxN
Journal of Physics: Condensed Matter, 21(32), 325801, 2009.

 

DZJ+23
Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel, and Gerbrand Ceder
CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling
Nature Machine Intelligence, 1–11, 2023.

 

EA05
P. Erhart and K. Albe
Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide
Physical Review B, 71(3), 035211, 2005.

 

EA18
S Alireza Etesami and Ebrahim Asadi
Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method
Journal of Physics and Chemistry of Solids, 112, 61–72, 2018.

 

EBL+18
S Alireza Etesami, Michael I Baskes, Mohamed Laradji, and Ebrahim Asadi
Thermodynamics of solid Sn and PbSn liquid mixtures using molecular dynamics simulations
Acta Materialia, 161, 320–330, 2018.

 

EJG+06
Paul Erhart, Niklas Juslin, Oliver Goy, Kai Nordlund, Ralf Müller, and Karsten Albe
Analytic bond-order potential for atomistic simulations of zinc oxide
Journal of Physics: Condensed Matter, 18(29), 6585, 2006.

 

EÅC+07
André Costa e Silva, John Ågren, Maria Teresa Clavaguera-Mora, D Djurovic, Tomas Gomez-Acebo, Byeong-Joo Lee, Zi-Kui Liu, Peter Miodownik, and Hans Juergen Seifert
Applications of computational thermodynamics—the extension from phase equilibrium to phase transformations and other properties
Calphad, 31(1), 53–74, 2007.

 

FBS+14
Donato Fantauzzi, Jochen Bandlow, Lehel Sabo, Jonathan E Mueller, Adri CT van Duin, and Timo Jacob
Development of a ReaxFF potential for Pt–O systems describing the energetics and dynamics of Pt-oxide formation
Physical Chemistry Chemical Physics, 16(42), 23118–23133, 2014.

 

FG06
Christopher J Fennell and J Daniel Gezelter
Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics
The Journal of chemical physics, 124(23), 234104, 2006.

 

FG90
BP Feuston and SH Garofalini
Onset of polymerization in silica sols
Chemical physics letters, 170(2), 264–270, 1990.

 

FGS+10
T Fujita, PF Guan, HW Sheng, A Inoue, T Sakurai, and MW Chen
Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass
Physical Review B, 81(14), 140204, 2010.

 

FGV+23
Florian Fiesinger, Daniel Gaissmaier, Matthias van den Borg, Julian Beßner, Adri C. T. van Duin, and Timo Jacob
Development of a Mg/O ReaxFF Potential to describe the Passivation Processes in Magnesium-Ion Batteries**
ChemSusChem, 16(3), e202201821, 2023.

 

FJ96
Diana Farkas and Chris Jones
Interatomic potentials for ternary Nb-Ti-Al alloys
Modelling and Simulation in Materials Science and Engineering, 4(1), 23, 1996.

 

FMB+08
Andrea Fortini, Mikhail I Mendelev, Sergey Buldyrev, and David Srolovitz
Asperity contacts at the nanoscale: Comparison of Ru and Au
Journal of Applied Physics, 104(7), 074320–074320, 2008.

 

FMM22
Rahele Fereidonnejad, Ahmad Ostovari Moghaddam, and Mohammad Moaddeli
Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems
Computational Materials Science, 213, 111685, 2022.

 

FP14
Julian Roberto Fernandez and MI Pascuet
On the accurate description of uranium metallic phases: a MEAM interatomic potential approach
Modelling and Simulation in Materials Science and Engineering, 22(5), 055019, 2014.

 

FPW10
Michael R Fellinger, Hyoungki Park, and John W Wilkins
Force-matched embedded-atom method potential for niobium
Physical Review B, 81(14), 144119, 2010.

 

FSD+19
Mark V Fedkin, Yun Kyung Shin, Nabankur Dasgupta, Jejoon Yeon, Weiwei Zhang, Diana Van Duin, Adri CT van Duin, Kento Mori, Atsushi Fujiwara, Masahiko Machida, and others
Development of the ReaxFF Methodology for Electrolyte–Water Systems
The Journal of Physical Chemistry A, 123(10), 2125–2141, 2019.

 

FTH+11
Kristen A Fichthorn, Yogesh Tiwary, Thomas Hammerschmidt, Peter Kratzer, and Matthias Scheffler
Analytic many-body potential for GaAs (001) homoepitaxy: Bulk and surface properties
Physical Review B, 83(19), 195328, 2011.

 

GAB08
Alice-Agnes Gabriel
Atomistic simulation of solid-phase epitaxial regrowth of amorphous Germanium
2008.

 

GAE+10
Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
The Journal of chemical physics, 132(15), 154104, 2010.

 

GEG11
Stefan Grimme, Stephan Ehrlich, and Lars Goerigk
Effect of the damping function in dispersion corrected density functional theory
Journal of computational chemistry, 32(7), 1456–1465, 2011.

 

GGM03
Marcus Gastreich, Julian D Gale, and Christel M Marian
Charged-particle potential for boron nitrides, silicon nitrides, and borosilazane ceramics: Derivation of parameters and probing of capabilities
Physical Review B, 68(9), 094110, 2003.

 

GHS+15
S Alireza Ghasemi, Albert Hofstetter, Santanu Saha, and Stefan Goedecker
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
Physical review B, 92(4), 045131, 2015.

 

GOA+13
H Gao, A Otero-de-la-Roza, SM Aouadi, ER Johnson, and A Martini
An empirical model for silver tantalate
Modelling and Simulation in Materials Science and Engineering, 21(5), 055002, 2013.

 

GRS05
Gregory Grochola, Salvy P Russo, and Ian K Snook
On fitting a gold embedded atom method potential using the force matching method
The Journal of chemical physics, 123, 204719, 2005.

 

GS07
"Bertrand Guillot and Nicolas Sator"
A computer simulation study of natural silicate melts. Part I: Low pressure properties
Geochimica et Cosmochimica Acta , 71(5), 1249 - 1265, 2007.

 

GSO+20
Karthik Ganeshan, Yun Kyung Shin, Naresh C Osti, Yangyunli Sun, Kaitlyn Prenger, Michael Naguib, Madhusudan Tyagi, Eugene Mamontov, De-en Jiang, and Adri CT Van Duin
Structure and dynamics of aqueous electrolytes confined in 2D-TiO2/Ti3C2T2 MXene heterostructures
ACS Applied Materials & Interfaces, 12(52), 58378–58389, 2020.

 

HA08
Derek J Hepburn and Graeme J Ackland
Metallic-covalent interatomic potential for carbon in iron
Physical Review B, 78(16), 165115, 2008.

 

HAV+19
HS Huang, LQ Ai, ACT Van Duin, M Chen, and YJ Lü
ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals
The Journal of Chemical Physics, 151(9), 094503, 2019.

 

HBD+10
X. J. Han, L. Bergqvist, P. H. Dederichs, H. Müller-Krumbhaar, J. K. Christie, S. Scandolo, and P. Tangney
Polarizable interatomic force field for TiO 2 parametrized using density functional theory
Phys. Rev. B, 81(13), 134108, 2010.

 

HBJ+13
Liangliang Huang, Teresa Bandosz, Kaushik L Joshi, Adri CT Van Duin, and Keith E Gubbins
Reactive adsorption of ammonia and ammonia/water on CuBTC metal-organic framework: A ReaxFF molecular dynamics simulation
The Journal of chemical physics, 138(3), 034102, 2013.

 

HDL+18
Xiusong Huang, Xixi Dong, Lehua Liu, and Peijie Li
An improved modified embedded-atom method potential to fit the properties of silicon at high temperature
Computational Materials Science, 153, 251–257, 2018.

 

HG04
David Humbird and David B. Graves
Improved interatomic potentials for silicon–fluorine and silicon–chlorine
The Journal of Chemical Physics, 120(5), 2405-2412, 2004.

 

HKS08
Thomas Hammerschmidt, P Kratzer, and M Scheffler
Analytic many-body potential for InAs/GaAs surfaces and nanostructures: Formation energy of InAs quantum dots
Physical Review B, 77(23), 235303, 2008.

 

HLD+21
Xiusong Huang, Lehua Liu, Xianbao Duan, Weibing Liao, Jianjun Huang, Huibin Sun, and Chunyan Yu
Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential
Materials & Design, 202, 109560, 2021.

 

HMB+22
Praveenkumar Hiremath, Solveig Melin, Erik Bitzek, and Pär AT Olsson
Effects of interatomic potential on fracture behaviour in single-and bicrystalline tungsten
Computational Materials Science, 207, 111283, 2022.

 

HN09
Krister OE Henriksson and K Nordlund
Simulations of cementite: An analytical potential for the Fe-C system
Physical Review B, 79(14), 144107, 2009.

 

HNK16
Eirik Hjertenæs, Anh Quynh Nguyen, and Henrik Koch
A ReaxFF force field for sodium intrusion in graphitic cathodes
Physical Chemistry Chemical Physics, 18(46), 31431–31440, 2016.

 

HRC+18
Seung Ho Hahn, Jessica Rimsza, Louise Criscenti, Wei Sun, Lu Deng, Jincheng Du, Tao Liang, Susan B Sinnott, and Adri CT Van Duin
Development of a ReaxFF reactive force field for NaSiO x/water systems and its application to sodium and proton self-diffusion
The Journal of Physical Chemistry C, 122(34), 19613–19624, 2018.

 

HV16
Sungwook Hong and Adri CT van Duin
Atomistic-scale analysis of carbon coating and its effect on the oxidation of aluminum nanoparticles by ReaxFF-molecular dynamics simulations
The Journal of Physical Chemistry C, 120(17), 9464–9474, 2016.

 

HWW+12
Huai Yu Hou, Rong Shan Wang, Jing Tao Wang, Xiang Bing Liu, Guang Chen, and Ping Huang
An analytic bond-order potential for the Fe–Cu system
Modelling and Simulation in Materials Science and Engineering, 20(4), 045016, 2012.

 

HWZ+13
Lucas Michael Hale, Bryan Matthew Wong, Jonathan A Zimmerman, and XW Zhou
Atomistic potentials for palladium–silver hydrides
Modelling and Simulation in Materials Science and Engineering, 21(4), 045005, 2013.

 

HYO+17
Shuichiro Hashimoto, Ryo Yokogawa, Shunsuke Oba, Shuhei Asada, Taiyu Xu, Motohiro Tomita, Atsushi Ogura, Takashi Matsukawa, Meishoku Masahara, and Takanobu Watanabe
Enhanced nickelidation rate in silicon nanowires with interfacial lattice disorder
Journal of Applied Physics, 122(14), 144305, 2017.

 

IM01
T. Iwasaki and H. Miura
Molecular dynamics analysis of adhesion strength of interfaces between thin films
Journal of Materials Research, 16(06), 1789–1794, 2001.

 

IOB+15
Md Mahbubul Islam, Alireza Ostadhossein, Oleg Borodin, A Todd Yeates, William W Tipton, Richard G Hennig, Nitin Kumar, and Adri CT van Duin
ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials
Physical Chemistry Chemical Physics, 17(5), 3383–3393, 2015.

 

IZV+16
Md Mahbubul Islam, Chenyu Zou, Adri CT van Duin, and Sumathy Raman
Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study
Physical Chemistry Chemical Physics, 18(2), 761–771, 2016.

 

JAC+12
Andres Jaramillo-Botero, Qi An, Mu-Jeng Cheng, William A Goddard III, Luther W Beegle, and Robert Hodyss
Hypervelocity Impact Effect of Molecules from Enceladus’ Plume and Titan’s Upper Atmosphere on NASA’s Cassini Spectrometer from Reactive Dynamics Simulation
Physical review letters, 109(21), 213201, 2012.

 

JC88
R. A. Jackson and C. R. A. Catlow
Computer Simulation Studies of Zeolite Structure
Molecular Simulation,, 1(4), 207–224, 1988.

 

JET+05
N Juslin, P Erhart, P Traskelin, J Nord, Krister OE Henriksson, K Nordlund, E Salonen, and K Albe
Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system
Journal of applied physics, 98(12), 123520–123520, 2005.

 

JGH+12
Bohumir Jelinek, Sebastien Groh, Mark F Horstemeyer, Jeffery Houze, Seong-Gon Kim, Gregory J Wagner, Amitava Moitra, and Michael I Baskes
Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys
Physical Review B, 85(24), 245102, 2012.

 

JKL18
Hyo-Sun Jang, Kyeong-Min Kim, and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system
Calphad, 60, 200–207, 2018.

 

JL20
Ga-Un Jeong and Byeong-Joo Lee
Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system
Computational Materials Science, 185, 109946, 2020.

 

JLY+15
Hyun Jung, Minho Lee, Byung Chul Yeo, Kwang-Ryeol Lee, and Sang Soo Han
Atomistic observation of the lithiation and delithiation behaviors of silicon nanowires using reactive molecular dynamics simulations
The Journal of Physical Chemistry C, 119(7), 3447–3455, 2015.

 

JM07
Sandro Jahn and Paul A. Madden
Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system
Physics of the Earth and Planetary Interiors , 162(1–2), 129 - 139, 2007.

 

JPD+18
Ga-Un Jeong, Chang Seo Park, Hyeon-Seok Do, Seul-Mi Park, and Byeong-Joo Lee
Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M= Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems
Calphad, 62, 172–186, 2018.

 

JPR13
Jin-Wu Jiang, Harold S Park, and Timon Rabczuk
Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity
Journal of Applied Physics, 114(6), 064307, 2013.

 

JPV+14
Kaushik L Joshi, George Psofogiannakis, Adri CT Van Duin, and Sumathy Raman
Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite
Physical Chemistry Chemical Physics, 16(34), 18433–18441, 2014.

 

JSL19
Hyo-Sun Jang, Donghyuk Seol, and Byeong-Joo Lee
Modified embedded-atom method interatomic potential for the Mg–Zn–Ca ternary system
Calphad, 67, 101674, 2019.

 

JSN96
Karsten W Jacobsen, Per Stoltze, and JK Nørskov
A semi-empirical effective medium theory for metals and alloys
Surface Science, 366(2), 394–402, 1996.

 

JVN+11
Tommi T Järvi, Adri CT Van Duin, Kai Nordlund, and William A Goddard III
Development of interatomic reaxff potentials for Au–S–C–H systems
The Journal of Physical Chemistry A, 115(37), 10315–10322, 2011.

 

KAD+19
Malgorzata Kowalik, Chowdhury Ashraf, Behzad Damirchi, Dooman Akbarian, Siavash Rajabpour, and Adri CT Van Duin
Atomistic scale analysis of the carbonization process for C/H/O/N-based polymers with the ReaxFF reactive force field
The Journal of Physical Chemistry B, 123(25), 5357–5367, 2019.

 

KC05
Chin-Lung Kuo and Paulette Clancy
Development of atomistic MEAM potentials for the silicon–oxygen–gold ternary system
Modelling and Simulation in Materials Science and Engineering, 13(8), 1309, 2005.

 

KEA66
P. N. Keating
Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure
Phys. Rev., 145(2), 637–645, 1966.

 

KEJ+14
Kyung-Han Kang, Taihee Eun, Myong-Chul Jun, and Byeong-Joo Lee
Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach
Journal of Crystal Growth, 389, 120–133, 2014.

 

KFJ+10
John A. Keith, Donato Fantauzzi, Timo Jacob, and Adri C. T. van Duin
Reactive forcefield for simulating gold surfaces and nanoparticles
Phys. Rev. B, 81(23), 235404, 2010.

 

KGN15
Won-Seok Ko, Blazej Grabowski, and Jörg Neugebauer
Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition
Physical Review B, 92(13), 134107, 2015.

 

KHV+22
Michał Kański, Sviatoslav Hrabar, Adri CT van Duin, and Zbigniew Postawa
Development of a Charge-Implicit ReaxFF for C/H/O Systems
The journal of physical chemistry letters, 13(2), 628–633, 2022.

 

KJL09
Hyun-Kyu Kim, Woo-Sang Jung, and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems
Acta Materialia , 57(11), 3140 - 3147, 2009.

 

KJL12
Young-Min Kim, In-Ho Jung, and Byeong-Joo Lee
Atomistic modeling of pure Li and Mg–Li system
Modelling and Simulation in Materials Science and Engineering, 20(3), 035005, 2012.

 

KJL15
Ki-Hyun Kim, Jong Bae Jeon, and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for Mg–X (X= Y, Sn, Ca) binary systems
Calphad, 48, 27–34, 2015.

 

KKJ+17
Young-Kwang Kim, Hong-Kyu Kim, Woo-Sang Jung, and Byeong-Joo Lee
Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys
Computational Materials Science, 139, 225–233, 2017.

 

KKK+18
Won-Seok Ko, Dong-Hyun Kim, Yong-Jai Kwon, and Min Hyung Lee
Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential
Metals, 8(11), 900, 2018.

 

KKL06
Jaesong Kim, Yangmo Koo, and Byeong-Joo Lee
Modified embedded-atom method interatomic potential for the Fe–Pt alloy system
Journal of materials research, 21(1), 199–208, 2006.

 

KKL09
Young-Min Kim, Nack J Kim, and Byeong-Joo Lee
Atomistic modeling of pure Mg and Mg–Al systems
Calphad, 33(4), 650–657, 2009.

 

KKL12
Won-Seok Ko, Nack J Kim, and Byeong-Joo Lee
Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system
Journal of Physics: Condensed Matter, 24(22), 225002, 2012.

 

KKL20
Yongmin Kim, Won-Seok Ko, and Byeong-Joo Lee
Second nearest-neighbor modified embedded atom method interatomic potentials for the Na unary and Na-Sn binary systems
Computational Materials Science, 185, 109953, 2020.

 

KL08
Young-Min Kim and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems
Acta Materialia , 56(14), 3481 - 3489, 2008.

 

KL13
Won-Seok Ko and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for pure Y and the V–Pd–Y ternary system
Modelling and Simulation in Materials Science and Engineering, 21(8), 085008, 2013.

 

KL17
Ki-Hyun Kim and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems
Calphad, 57, 55–61, 2017.

 

KLB06
Young-Min Kim, Byeong-Joo Lee, and MI Baskes
Modified embedded-atom method interatomic potentials for Ti and Zr
Physical Review B, 74(1), 014101, 2006.

 

KMP+18
Michał Kański, Dawid Maciazek, Zbigniew Postawa, Chowdhury M Ashraf, Adri CT Van Duin, and Barbara J Garrison
Development of a charge-implicit ReaxFF potential for hydrocarbon systems
The Journal of Physical Chemistry Letters, 9(2), 359–363, 2018.

 

KNB+19
Sepideh Kavousi, Brian R Novak, Michael I Baskes, Mohsen Asle Zaeem, and Dorel Moldovan
Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification
Modelling and Simulation in Materials Science and Engineering, 28(1), 015006, 2019.

 

KQC+98
Yoshitaka Kimura, Yue Qi, Tahir Cagin, and WA Goddard
The quantum Sutton–Chen many-body potential for properties of fcc metals
Phys. Rev., to be submitted, 1998.

 

KRY+10
Sebastien Kerisit, Kevin M. Rosso, Zhenguo Yang, and Jun Liu
Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs
The Journal of Physical Chemistry C, 114(44), 19096-19107, 2010.

 

KSJ+17
Jin-Soo Kim, Donghyuk Seol, Joonho Ji, Hyo-Sun Jang, Yongmin Kim, and Byeong-Joo Lee
Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M= Al, Co, Cu, Mo, Ni, Ti, V) binary systems
Calphad, 59, 131–141, 2017.

 

KSL+09
K-H Kang, I Sa, J-C Lee, E Fleury, and B-J Lee
Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system
Scripta Materialia, 61(8), 801–804, 2009.

 

KSL08
Eun Ha Kim, Young-Han Shin, and Byeong-Joo Lee
A modified embedded-atom method interatomic potential for Germanium
Calphad, 32(1), 34–42, 2008.

 

KSL09
Young-Min Kim, Young-Han Shin, and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system
Acta Materialia, 57(2), 474–482, 2009.

 

KSL11
Won-Seok Ko, Jae-Hyeok Shim, and Byeong-Joo Lee
Atomistic modeling of the Al–H and Ni–H systems
Journal of Materials Research, 26(12), 1552–1560, 2011.

 

KT08
Sefa Kazanc and Cengiz Tatar
Investigation of the effect of pressure on some physical parameters and thermoelastic phase transformation of NiAl alloy
International Journal of Solids and Structures, 45(11), 3282–3289, 2008.

 

KTG+12
Anant D Kulkarni, Donald G Truhlar, Sriram Goverapet Srinivasan, Adri CT van Duin, Paul Norman, and Thomas E Schwartzentruber
Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential
The Journal of Physical Chemistry C, 117(1), 258–269, 2012.

 

KV13
Sung-Yup Kim and Adri CT Van Duin
Simulation of titanium metal/titanium dioxide etching with chlorine and hydrogen chloride gases using the ReaxFF reactive force field
The Journal of Physical Chemistry A, 117(27), 5655–5663, 2013.

 

KVK13
Sung-Yup Kim, Adri CT van Duin, and James D Kubicki
Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl-, methanol, and formic acid using a reactive force field
Journal of Materials Research, 28(3), 513, 2013.

 

KVY10
Amar M Kamat, Adri CT Van Duin, and Alexei Yakovlev
Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field
The Journal of Physical Chemistry A, 114(48), 12561–12572, 2010.

 

LB10
L Lindsay and DA Broido
Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
Physical Review B, 81(20), 205441, 2010.

 

LBK+01
Byeong-Joo Lee, MI Baskes, Hanchul Kim, and Yang Koo Cho
Second nearest-neighbor modified embedded atom method potentials for bcc transition metals
Physical Review B, 64(18), 184102, 2001.

 

LCV+16
A Lloyd, D Cornil, ACT Van Duin, Diana van Duin, Roger Smith, Steven D Kenny, J Cornil, and D Beljonne
Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO
Surface Science, 645, 67–73, 2016.

 

LEA04
Xiang-Yang Liu, Furio Ercolessi, and James B Adams
Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy
Modelling and Simulation in Materials Science and Engineering, 12(4), 665, 2004.

 

LEE06
Byeong-Joo Lee
A modified embedded-atom method interatomic potential for the Fe–C system
Acta Materialia , 54(3), 701 - 711, 2006.

 

LEE07
Byeong-Joo Lee
A modified embedded atom method interatomic potential for silicon
Calphad, 31(1), 95–104, 2007.

 

LG01
David A Litton and Stephen H Garofalini
Modeling of hydrophilic wafer bonding by molecular dynamics simulations
Journal of Applied Physics, 89(11), 6013–6023, 2001.

 

LJG+12
Lianchi Liu, Andres Jaramillo-Botero, William A Goddard III, and Huai Sun
Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations
The Journal of Physical Chemistry A, 116(15), 3918–3925, 2012.

 

LKH+14
Laalitha SI Liyanage, Seong-Gon Kim, Jeff Houze, Sungho Kim, Mark A Tschopp, Michael I Baskes, and Mark F Horstemeyer
Structural, elastic, and thermal properties of cementite (Fe 3 C) calculated using a modified embedded atom method
Physical Review B, 89(9), 094102, 2014.

 

LKV22
Aditya Lele, Predrag Krstic, and Adri CT van Duin
ReaxFF Force Field Development for Gas-Phase hBN Nanostructure Synthesis
The Journal of Physical Chemistry A, 2022.

 

LL05
Byeong-Joo Lee and Jin Wook Lee
A modified embedded atom method interatomic potential for carbon
Calphad, 29(1), 7–16, 2005.

 

LL10
Eunkoo Lee and Byeong-Joo Lee
Modified embedded-atom method interatomic potential for the Fe–Al system
Journal of Physics: Condensed Matter, 22(17), 175702, 2010.

 

LL14
Byeong-Moon Lee and Byeong-Joo Lee
A comparative study on hydrogen diffusion in amorphous and crystalline metals using a molecular dynamics simulation
Metallurgical and Materials Transactions A, 45(6), 2906–2915, 2014.

 

LLD95
Mohamed Laradji, DP Landau, and B Dünweg
Structural properties of Si 1-x Ge x alloys: A Monte Carlo simulation with the Stillinger-Weber potential
Physical Review B, 51(8), 4894, 1995.

 

LLK06
Byeong-Joo Lee, Tae-Ho Lee, and Sung-Joon Kim
A modified embedded-atom method interatomic potential for the Fe–N system: a comparative study with the Fe–C system
Acta materialia, 54(17), 4597–4607, 2006.

 

LLZ+11
Lianchi Liu, Yi Liu, Sergey V. Zybin, Huai Sun, and William A. Goddard
ReaxFF-lg: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials
The Journal of Physical Chemistry A, 115(40), 11016-11022, 2011.

 

LMC+08
G Lusvardi, G Malavasi, M Cortada, L Menabue, M C Menziani, A Pedone, and U Segre
Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation.
J Phys Chem B, 112(40), 12730-9, 2008.

 

LN88
Kurt Leinenweber and Alexandra Navrotsky
A transferable interatomic potential for crystalline phases in the system MgO—SiO2
Physics and Chemistry of Minerals, 15(6), 588-596, 1988.

 

LOA+97
Xiang-Yang Liu, PP Ohotnicky, JB Adams, C Lane Rohrer, and RW Hyland Jr
Anisotropic surface segregation in Al Mg alloys
Surface science, 373(2), 357–370, 1997.

 

LSA+03
Youhong Li, Donald J Siegel, James B Adams, and Xiang-Yang Liu
Embedded-atom-method tantalum potential developed by the force-matching method
Physical Review B, 67(12), 125101, 2003.

 

LSB03
Byeong-Joo Lee, Jae-Hyeok Shim, and MI Baskes
Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method
Physical Review B, 68(14), 144112, 2003.

 

LSI+19
Shu-Sheng Liu, Leton C Saha, Albert Iskandarov, Takayoshi Ishimoto, Tomokazu Yamamoto, Yoshitaka Umeno, Syo Matsumura, and Michihisa Koyama
Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells
Communications Chemistry, 2(1), 1–9, 2019.

 

LSL+11
Xiao-Chun Li, Xiaolin Shu, Yi-Nan Liu, Fei Gao, and Guang-Hong Lu
Modified analytical interatomic potential for a W–H system with defects
Journal of Nuclear Materials, 408(1), 12–17, 2011.

 

LSP01
Byeong-Joo Lee, Jae-Hyeok Shim, and Hyun Min Park
A semi-empirical atomic potential for the Fe-Cr binary system
Calphad, 25(4), 527–534, 2001.

 

LSY+21
Yue Liu, Qintao Sun, Peiping Yu, Yu Wu, Liang Xu, Hao Yang, Miao Xie, Tao Cheng, and William A Goddard III
Effects of High and Low Salt Concentrations in Electrolytes at Lithium–Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method
The Journal of Physical Chemistry Letters, 12, 2922–2929, 2021.

 

LWS+00
A Landa, P Wynblatt, DJ Siegel, JB Adams, ON Mryasov, and X-Y Liu
Development of glue-type potentials for the Al–Pb system: phase diagram calculation
Acta materialia, 48(8), 1753–1761, 2000.

 

LWS+05
Byeong-Joo Lee, Brian D Wirth, Jae-Hyeok Shim, Junhyun Kwon, Sang Chul Kwon, and Jun-Hwa Hong
Modified embedded-atom method interatomic potential for the Fe- Cu alloy system and cascade simulations on pure Fe and Fe- Cu alloys
Physical Review B, 71(18), 184205, 2005.

 

MA91
Masanori Matsui and Masaki Akaogi
Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2
Molecular Simulation, 6(4-6), 239-244, 1991.

 

MA95
M. V. R. Murty and H. A. Atwater
Empirical interaction potential for Si-H interactions
Phys. Rev. B, 51(8), 4889–4893, 1995.

 

MAM87
Masanori Matsui, Masaki Akaogi, and Takeo Matsumoto
Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3
Physics and Chemistry of Minerals, 14(2), 101–106, 1987.

 

MAR+09
MI Mendelev, M Asta, MJ Rahman, and JJ Hoyt
Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys
Philosophical Magazine, 89(34-36), 3269–3285, 2009.

 

MAR70
Richard M. Martin
Elastic Properties of ZnS Structure Semiconductors
Phys. Rev. B, 1(10), 4005–4011, 1970.

 

MAT94
M. Matsui
A transferable interatomic potential model for crystals and melts in the system CaO–MgO–Al 2O 3–SiO 3
MinMag, 58, 571–572, 1994.

 

MBB+98
A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins
The Journal of Physical Chemistry B, 102(18), 3586-3616, 1998.

 

MBD+15
AP Moore, B Beeler, C Deo, MI Baskes, and MA Okuniewski
Atomistic modeling of high temperature uranium–zirconium alloy structure and thermodynamics
Journal of Nuclear Materials, 467, 802–819, 2015.

 

MCF+13
Susanna Monti, Alessandro Corozzi, Peter Fristrup, Kaushik L Joshi, Yun Kyung Shin, Peter Oelschlaeger, Adri CT Van Duin, and Vincenzo Barone
Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field
Physical Chemistry Chemical Physics, 15(36), 15062–15077, 2013.

 

MCÅ16
Susanna Monti, Vincenzo Carravetta, and Hans Ågren
Simulation of gold functionalization with cysteine by reactive molecular dynamics
The journal of physical chemistry letters, 7(2), 272–276, 2016.

 

MDM+20
Abu Shama Mohammad Miraz, Nisha Dhariwal, WJ Meng, Bala R Ramachandran, and Collin D Wick
Development and application of interatomic potentials to study the stability and shear strength of Ti/TiN and Cu/TiN interfaces
Materials & Design, 196, 109123, 2020.

 

ME95
R Meyer and P Entel
Molecular dynamics study of iron-nickel alloys
Le Journal de Physique IV, 5(C2), C2–123, 1995.

 

MEA07
M. Müller, P. Erhart, and K. Albe
Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials
Journal of Physics: Condensed Matter, 19(32), 326220, 2007.

 

MF93
P. J. Mitchell and D. Fincham
Shell model simulations by adiabatic dynamics
Journal of Physics: Condensed Matter, 5(8), 1031–1038, 1993.

 

MFM+99
Y Mishin, D Farkas, MJ Mehl, and DA Papaconstantopoulos
Interatomic potentials for monoatomic metals from experimental data and ab initio calculations
Physical Review B, 59(5), 3393, 1999.

 

MFM00
Katsuyuki Matsunaga, Craig Fisher, and Hideaki Matsubara
Tersoff potential parameters for simulating cubic boron carbonitrides
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 39(1A/B), L48–L51, 2000.

 

MFW21
Evgeny Moerman, David Furman, and David J Wales
Development of ReaxFF Reactive Force Field for Aqueous Iron–Sulfur Clusters with Applications to Stability and Reactivity in Water
Journal of chemical information and modeling, 61(3), 1204–1214, 2021.

 

MG00
Christel M Marian and Marcus Gastreich
A systematic theoretical study of molecular Si/N, B/N, and Si/B/N (H) compounds and parameterisation of a force-field for molecules and solids
Journal of Molecular Structure: THEOCHEM, 506(1), 107–129, 2000.

 

MH05
Won Ha Moon and Ho Jung Hwang
A modified Stillinger–Weber empirical potential for boron nitride
Applied surface science, 239(3), 376–380, 2005.

 

MH16
Julian Müller and Bernd Hartke
ReaxFF reactive force field for disulfide mechanochemistry, fitted to multireference ab initio data
Journal of chemical theory and computation, 12(8), 3913–3925, 2016.

 

MHS+03
MI Mendelev, S Han, DJ Srolovitz, GJ Ackland, DY Sun, and M Asta
Development of new interatomic potentials appropriate for crystalline and liquid iron
Philosophical magazine, 83(35), 3977–3994, 2003.

 

MHS+07
Mikhail I Mendelev, Seungwu Han, Won-joon Son, Graeme J Ackland, and David J Srolovitz
Simulation of the interaction between Fe impurities and point defects in V
Physical Review B, 76(21), 214105, 2007.

 

MI01
Katsuyuki Matsunaga and Yuji Iwamoto
Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron
Journal of the American Ceramic Society, 84(10), 2213–2219, 2001.

 

MIS04
Yuri Mishin
Atomistic modeling of the γ and γ'-phases of the Ni–Al system
Acta materialia, 52(6), 1451–1467, 2004.

 

MKA07
M. Müller, P. Erhart K., and Albe
Thermodynamics of L1_ 0 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential
Physical Review B, 76(15), 155412, 2007.

 

MKB+08
MI Mendelev, MJ Kramer, CA Becker, and M Asta
Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu
Philosophical Magazine, 88(12), 1723–1750, 2008.

 

MKH+12
MI Mendelev, MJ Kramer, SG Hao, KM Ho, and CZ Wang
Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy
Philosophical Magazine, 92(35), 4454–4469, 2012.

 

MKO+09
MI Mendelev, MJ Kramer, RT Ott, DJ Sordelet, D Yagodin, and P Popel
Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys
Philosophical Magazine, 89(11), 967–987, 2009.

 

MKZ+17
Sascha B Maisel, W-S Ko, J-L Zhang, Blazej Grabowski, and Jörg Neugebauer
Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys
Physical Review Materials, 1(3), 033610, 2017.

 

MLC+10
Thomas R. Mattsson, J. Matthew D. Lane, Kyle R. Cochrane, Michael P. Desjarlais, Aidan P. Thompson, Flint Pierce, and Gary S. Grest
First-principles and classical molecular dynamics simulation of shocked polymers
Phys. Rev. B, 81(5), 054103, 2010.

 

MLC13
Susanna Monti, Cui Li, and Vincenzo Carravetta
Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu (110)
The Journal of Physical Chemistry C, 117(10), 5221–5228, 2013.

 

MMA+10
Lorenzo Malerba, Mihai-Cosmin Marinica, N Anento, C Björkas, H Nguyen, C Domain, F Djurabekova, Pär Olsson, K Nordlund, A Serra, and others
Comparison of empirical interatomic potentials for iron applied to radiation damage studies
Journal of Nuclear Materials, 406(1), 19–38, 2010.

 

MMM+07
S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani
Interatomic potential for Si–O systems using Tersoff parameterization
Computational materials science, 39(2), 334–339, 2007.

 

MMP+01
Yu Mishin, MJ Mehl, DA Papaconstantopoulos, AF Voter, and JD Kress
Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations
Physical Review B, 63(22), 224106, 2001.

 

MMP02
Y Mishin, MJ Mehl, and DA Papaconstantopoulos
Embedded-atom potential for B2-NiAl
Physical Review B, 65(22), 224114, 2002.

 

MMZ22
Avik Mahata, Tanmoy Mukhopadhyay, and Mohsen Asle Zaeem
Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point
Computational Materials Science, 201, 110902, 2022.

 

MRL+17
Qian Mao, Yihua Ren, KH Luo, and Adri CT van Duin
Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons
The Journal of chemical physics, 147(24), 244305, 2017.

 

MSA+05
M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, and S. Han
Effect of Fe segregation on the migration of a non-symmetric Sigma 5 tilt grain boundary in Al
J. Mater. Res., 20(1), 208-218, 2005.

 

MSH03
Won Ha Moon, Myung Sik Son, and Ho Jung Hwang
Molecular-dynamics simulation of structural properties of cubic boron nitride
Physica B: Condensed Matter, 336(3), 329–334, 2003.

 

MSH07
Won Ha Moon, Myung Sik Son, and Ho Jung Hwang
Theoretical study on structure of boron nitride fullerenes
Applied surface science, 253(17), 7078–7081, 2007.

 

MSK07
MI Mendelev, DJ Sordelet, and MJ Kramer
Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses
Journal of Applied Physics, 102(4), 043501–043501, 2007.

 

MSM+09
D. Marrocchelli, M. Salanne, P.A. Madden, C. Simon, and P. Turq
The construction of a reliable potential for GeO2 from first principles
Molecular Physics, 107(4-6), 443-452, 2009.

 

MUABP
M.I. Mendelev, T.L. Underwood, and G.J. Ackland
Interatomic Potentials for the Simulation of Defects, Plasticity and Phase Transformations in Titanium
TBP.

 

MVG+13
Mihai-Cosmin Marinica, Lisa Ventelon, MR Gilbert, L Proville, SL Dudarev, J Marian, G Bencteux, and F Willaime
Interatomic potentials for modelling radiation defects and dislocations in tungsten
Journal of Physics: Condensed Matter, 25(39), 395502, 2013.

 

MVG10
Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard
Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel
The Journal of Physical Chemistry C, 114(11), 4939-4949, 2010.

 

MZK+22
Qian Mao, Yuwei Zhang, Malgorzata Kowalik, Nadire Nayir, Michael Chandross, and Adri C. T. van Duin
Oxidation and hydrogenation of monolayer MoS2 with compositing agent under environmental exposure: The ReaxFF Mo/Ti/Au/O/S/H force field development and applications
Frontiers in Nanotechnology, 4, 2022.

 

MZY+15
MI Mendelev, F Zhang, Z Ye, Y Sun, MC Nguyen, SR Wilson, CZ Wang, and KM Ho
Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy
Modelling and Simulation in Materials Science and Engineering, 23(4), 045013, 2015.

 

NAE+03
J. Nord, K. Albe, P. Erhart, and K. Nordlund
Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride
Journal of Physics: Condensed Matter, 15(32), 5649, 2003.

 

NLG+13
Saber Naserifar, Lianchi Liu, William A Goddard III, Theodore T Tsotsis, and Muhammad Sahimi
Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field
The Journal of Physical Chemistry C, 117(7), 3308–3319, 2013.

 

NNF+00
K Nordlund, J Nord, J Frantz, and J Keinonen
Strain-induced Kirkendall mixing at semiconductor interfaces
Computational materials science, 18(3), 283–294, 2000.

 

NNP+96
Mats Nyberg, Martin A. Nygren, Lars G. M. Pettersson, David H. Gay, and Andrew L. Rohl
Hydrogen Dissociation on Reconstructed ZnO Surfaces
The Journal of Physical Chemistry, 100(21), 9054-9063, 1996.

 

NSF+12
David A Newsome, Debasis Sengupta, Hosein Foroutan, Michael F Russo, and Adri CT van Duin
Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I
The Journal of Physical Chemistry C, 116(30), 16111–16121, 2012.

 

NTG+14
Sasan Nouranian, Mark A Tschopp, Steven R Gwaltney, Michael I Baskes, and Mark F Horstemeyer
An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method
Physical Chemistry Chemical Physics, 16(13), 6233–6249, 2014.

 

NVE18
Nadire Nayir, Adri CT Van Duin, and Sakir Erkoc
Development of a ReaxFF reactive force field for interstitial oxygen in germanium and its application to GeO2/Ge interfaces
The Journal of Physical Chemistry C, 123(2), 1208–1218, 2018.

 

NVE19
Nadire Nayir, Adri CT Van Duin, and Sakir Erkoc
Development of the reaxff reactive force field for inherent point defects in the si/silica system
The Journal of Physical Chemistry A, 123(19), 4303–4313, 2019.

 

NVK+12
Badri Narayanan, Adri CT van Duin, Branden B Kappes, Ivar E Reimanis, and Cristian V Ciobanu
A reactive force field for lithium–aluminum silicates with applications to eucryptite phases
Modelling and Simulation in Materials Science and Engineering, 20(1), 015002, 2012.

 

NVO+05
Kevin D Nielson, Adri CT van Duin, Jonas Oxgaard, Wei-Qiao Deng, and William A Goddard
Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes
The Journal of Physical Chemistry A, 109(3), 493–499, 2005.

 

OJR+96
C. Oligschleger, R. O. Jones, S. M. Reimann, and H. R. Schober
Model interatomic potential for simulations in selenium
Phys. Rev. B, 53(10), 6165–6173, 1996.

 

OKC+16
Alireza Ostadhossein, Sung-Yup Kim, Ekin D Cubuk, Yue Qi, and Adri CT van Duin
Atomic insight into the lithium storage and diffusion mechanism of SiO2/Al2O3 electrodes of lithium ion batteries: ReaxFF reactive force field modeling
The Journal of Physical Chemistry A, 120(13), 2114–2127, 2016.

 

OL09
Onyekwelu U Okeke and JE Lowther
Molecular dynamics of binary metal nitrides and ternary oxynitrides
Physica B: Condensed Matter, 404(20), 3577–3581, 2009.

 

OLI15
AQcomputare GmbH Oliver Böhm
CHF parameter set Version 4.6
2015.

 

OLS10
Pär AT Olsson
Transverse resonant properties of strained gold nanowires
Journal of Applied Physics, 108(3), 034318, 2010.

 

OMV+23
Stéphane B. Olou’ou Guifo, Jonathan E. Mueller, Diana van Duin, Mahdi K. Talkhoncheh, Adri C. T. van Duin, David Henriques, and Torsten Markus
Development and Validation of a ReaxFF Reactive Force Field for Modeling Silicon–Carbon Composite Anode Materials in Lithium-Ion Batteries
The Journal of Physical Chemistry C, 127(6), 2818-2834, 2023.

 

OPB+22
Chidozie Onwudinanti, Mike Pols, Geert Brocks, Vianney Koelman, Adri C. T. van Duin, Thomas Morgan, and Shuxia Tao
A ReaxFF Molecular Dynamics Study of Hydrogen Diffusion in Ruthenium–The Role of Grain Boundaries
The Journal of Physical Chemistry C, 126(13), 5950-5959, 2022.

 

ORW+17
Alireza Ostadhossein, Ali Rahnamoun, Yuanxi Wang, Peng Zhao, Sulin Zhang, Vincent H Crespi, and Adri CT van Duin
ReaxFF reactive force-field study of molybdenum disulfide (MoS2)
The journal of physical chemistry letters, 8(3), 631–640, 2017.

 

OSL20
Sang-Ho Oh, Donghyuk Seol, and Byeong-Joo Lee
Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M= Ti, V) binary systems
Calphad, 70, 101791, 2020.

 

PD16
George Psofogiannakis and Adri C.T. van Duin
Development of a ReaxFF reactive force field for Si/Ge/H systems and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces
Surface Science, 646, 253 - 260, 2016.

 

PF15
MI Pascuet and JR Fernández
Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy
Journal of Nuclear Materials, 467, 229–239, 2015.

 

PGM12
Alfonso Pedone, Elisa Gambuzzi, and Maria Cristina Menziani
Unambiguous Description of the Oxygen Environment in Multicomponent Aluminosilicate Glasses from 17O Solid State NMR Computational Spectroscopy
The Journal of Physical Chemistry C, 116(27), 14599-14609, 2012.

 

PIS+12
Carlos Pinilla, Amir H. Irani, Nicola Seriani, and Sandro Scandolo
Ab initio parameterization of an all-atom polarizable and dissociable force field for water
The Journal of Chemical Physics, 136(11), 2012.

 

PKB+07
A Pǎduraru, Abder Kenoufi, Nicholas P Bailey, and Jacob Schiøtz
An interatomic potential for studying CuZr bulk metallic glasses
Advanced Engineering Materials, 9(6), 505–508, 2007.

 

PM09
GP Purja Pun and Y Mishin
Development of an interatomic potential for the Ni-Al system
Philosophical Magazine, 89(34-36), 3245–3267, 2009.

 

PM12
GP Purja Pun and Y Mishin
Embedded-atom potential for hcp and fcc cobalt
Physical Review B, 86(13), 134116, 2012.

 

PMC+07
Alfonso Pedone, Gianluca Malavasi, Alastair N Cormack, Ulderico Segre, and M Cristina Menziani
Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques
Chemistry of materials, 19(13), 3144–3154, 2007.

 

PMC07
D Powell, MA Migliorato, and AG Cullis
Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors
Physical Review B, 75(11), 115202, 2007.

 

PMJ+15
George M Psofogiannakis, John F McCleerey, Eugenio Jaramillo, and Adri CT van Duin
ReaxFF Reactive Molecular Dynamics Simulation of the Hydration of Cu-SSZ-13 Zeolite and the Formation of Cu Dimers
The Journal of Physical Chemistry C, 119(12), 6678–6686, 2015.

 

PMM+06
A. Pedone, G. Malavasi, M. Menziani, A. Cormack, and U. Segre
A new self-consistent empirical interatomic potential model for oxides, silicates and silica-based glasses
J. Phys. Chem. B, 110, 11780–11795, 2006.

 

PRM12
Laurent Proville, David Rodney, and Mihai-Cosmin Marinica
Quantum effect on thermally activated glide of dislocations
Nature materials, 11(10), 845, 2012.

 

PYH16
Sung Jin Pai, Byung Chul Yeo, and Sang Soo Han
Development of the ReaxFF CBN reactive force field for the improved design of liquid CBN hydrogen storage materials
Physical Chemistry Chemical Physics, 18(3), 1818–1827, 2016.

 

PYL+11
SM Peng, Li Yang, XG Long, HH Shen, Qing-Qiang Sun, XT Zu, and Fei Gao
Bond-Order Potential for Erbium-Hydride System
The Journal of Physical Chemistry C, 115(50), 25097–25104, 2011.

 

RAS00
Torben Rasmussen
Simulation of misfit dislocation loops at the A g/C u (111) interface
Physical Review B, 62(19), 12664, 2000.

 

RDC21
Swagata Roy, Amlan Dutta, and Nirupam Chakraborti
A novel method of determining interatomic potential for Al and Al-Li alloys and studying strength of Al-Al3Li interphase using evolutionary algorithms
Computational Materials Science, 190, 110258, 2021.

 

RDS+10
David Raymand, Adri C.T. van Duin, Daniel Spångberg, William A. Goddard III, and Kersti Hermansson
Water adsorption on stepped ZnO surfaces from MD simulation
Surface Science , 604(9–10), 741 - 752, 2010.

 

RGG+13
R Ravelo, TC Germann, O Guerrero, Q An, and BL Holian
Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations
Physical Review B, 88(13), 134101, 2013.

 

RMN+21
Siavash Rajabpour, Qian Mao, Nadire Nayir, Joshua A Robinson, and Adri CT Van Duin
Development and Applications of ReaxFF Reactive Force Fields for Group-III Gas-Phase Precursors and Surface Reactions with Graphene in Metal–Organic Chemical Vapor Deposition Synthesis
The Journal of Physical Chemistry C, 125(19), 10747–10758, 2021.

 

RS91
H Rafii-Tabar and AP Sulton
Long-range Finnis-Sinclair potentials for fcc metallic alloys
Philosophical Magazine Letters, 63(4), 217–224, 1991.

 

RVG+10
Obaidur Rahaman, Adri CT Van Duin, William A Goddard III, and Douglas J Doren
Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization
The Journal of Physical Chemistry B, 115(2), 249–261, 2010.

 

SBF+12
Daniel Schopf, Peter Brommer, Benjamin Frigan, and Hans-Rainer Trebin
Embedded atom method potentials for Al-Pd-Mn phases
Physical Review B, 85(5), 054201, 2012.

 

SDH+10
Tzu-Ray Shan, Bryce D. Devine, Jeffery M. Hawkins, Aravind Asthagiri, Simon R. Phillpot, and Susan B. Sinnott
Second-generation charge-optimized many-body potential for Si/SiO 2 and amorphous silica
Phys. Rev. B, 82(23), 235302, 2010.

 

SFT13
Joanne Sarsam, Michael W. Finnis, and Paul Tangney
Atomistic force field for alumina fit to density functional theory
The Journal of Chemical Physics, 139(20), 204704, 2013.

 

SG04
Xiaotao Su and Stephen H Garofalini
Role of nitrogen on the atomistic structure of the intergranular film in silicon nitride: A molecular dynamics study
Journal of materials research, 19(12), 3679–3687, 2004.

 

SHA16
Alexander V Shapeev
Moment tensor potentials: A class of systematically improvable interatomic potentials
Multiscale Modeling & Simulation, 14(3), 1153–1173, 2016.

 

SHI+19
Siddharth Sundararaman, Liping Huang, Simona Ispas, and Walter Kob
New interaction potentials for alkali and alkaline-earth aluminosilicate glasses
The Journal of Chemical Physics, 150(15), 154505, 2019.

 

SHI+20
Siddharth Sundararaman, Liping Huang, Simona Ispas, and Walter Kob
New interaction potentials for borate glasses with mixed network formers
The Journal of Chemical Physics, 152(10), 104501, 2020.

 

SID+24
Tomoya Shiota, Kenji Ishihara, Tuan Minh Do, Toshio Mori, and Wataru Mizukami
Taming Multi-Domain, -Fidelity Data: Towards Foundation Models for Atomistic Scale Simulations
2024.

 

SJL+17
Roger Smith, Kenny Jolley, Chris Latham, Malcolm Heggie, Adri van Duin, Diana van Duin, and Houzheng Wu
A ReaXFF carbon potential for radiation damage studies
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 393, 49–53, 2017.

 

SJV14
Thomas P Senftle, Michael J Janik, and Adri CT van Duin
A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations
The Journal of Physical Chemistry C, 118(9), 4967–4981, 2014.

 

SKC+11
HW Sheng, MJ Kramer, A Cadien, T Fujita, and MW Chen
Highly optimized embedded-atom-method potentials for fourteen fcc metals
Physical Review B, 83(13), 134118, 2011.

 

SKK+13
Jae-Hyeok Shim, Won-Seok Ko, Ki-Hyun Kim, Heung-Soon Lee, Young-Su Lee, Jin-Yoo Suh, Young Whan Cho, and Byeong-Joo Lee
Prediction of hydrogen permeability in V–Al and V–Ni alloys
Journal of membrane science, 430, 234–241, 2013.

 

SKS+13
DE Smirnova, A Yu Kuksin, SV Starikov, VV Stegailov, Z Insepov, J Rest, and AM Yacout
A ternary EAM interatomic potential for U–Mo alloys with xenon
Modelling and Simulation in Materials Science and Engineering, 21(3), 35011–35034, 2013.

 

SKV+15
Yun Kyung Shin, Hyunwook Kwak, Alex V Vasenkov, Debasis Sengupta, and Adri CT van Duin
Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst
ACS Catalysis, 5(12), 7226–7236, 2015.

 

SL00
Jess B Sturgeon and Brian B Laird
Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum
Physical Review B, 62(22), 14720, 2000.

 

SL08
Inyoung Sa and Byeong-Joo Lee
Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems
Scripta Materialia, 59(6), 595–598, 2008.

 

SLF+11
Jae-Hyeok Shim, Young-Su Lee, Eric Fleury, Young Whan Cho, Won-Seok Ko, and Byeong-Joo Lee
A modified embedded-atom method interatomic potential for the V–H system
Calphad, 35(3), 302–307, 2011.

 

SMB+06
DY Sun, MI Mendelev, CA Becker, K Kudin, Tomorr Haxhimali, M Asta, JJ Hoyt, A Karma, and DJ Srolovitz
Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg
Physical Review B, 73(2), 024116, 2006.

 

SMJ+13
Thomas P Senftle, Randall J Meyer, Michael J Janik, and Adri CT Van Duin
Development of a ReaxFF potential for Pd/O and application to palladium oxide formation
The Journal of chemical physics, 139(4), 044109, 2013.

 

SPC+03
Jae-Hyeok Shim, Sung Il Park, Young Whan Cho, and Byeong-Joo Lee
Modified embedded-atom method calculation for the Ni–W system
Journal of materials research, 18(8), 1863–1867, 2003.

 

SPW01
Patrick K. Schelling, Simon R. Phillpot, and Dieter Wolf
Mechanism of the Cubic-to-Tetragonal Phase Transition in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation
Journal of the American Ceramic Society, 84(7), 1609–1619, 2001.

 

SRW18
Shoutian Sun, Bala Ramu Ramachandran, and Collin D Wick
Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model
Journal of Physics: Condensed Matter, 30(7), 075002, 2018.

 

SSG+05
VV Smirnov, AV Stengach, KG Gaynullin, VA Pavlovsky, S Rauf, PJ Stout, and PLG Ventzek
Molecular-dynamics model of energetic fluorocarbon-ion bombardment on SiO 2 I. Basic model and CF 2+-ion etch characterization
Journal of applied physics, 97(9), 093302, 2005.

 

SSI+21
Yueh-Ting Shih, Siddharth Sundararaman, Simona Ispas, and Liping Huang
New interaction potentials for alkaline earth silicate and borate glasses
Journal of Non-Crystalline Solids, 565, 120853, 2021.

 

SSL+19
C. Scherer, F. Schmid, M. Letz, and J. Horbach
Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations
Computational Materials Science, 159, 73 - 85, 2019.

 

SSS12
DE Smirnova, SV Starikov, and VV Stegailov
Interatomic potential for uranium in a wide range of pressures and temperatures
Journal of Physics: Condensed Matter, 24(1), 015702, 2012.

 

SVC+03
Alejandro Strachan, Adri CT van Duin, Debashis Chakraborty, Siddharth Dasgupta, and William A Goddard III
Shock waves in high-energy materials: The initial chemical events in nitramine RDX
Physical Review Letters, 91(9), 098301, 2003.

 

SVG15
Sriram Goverapet Srinivasan, Adri CT van Duin, and P Ganesh
Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene
The Journal of Physical Chemistry A, 119(4), 571–580, 2015.

 

SW85
F. H. Stillinger and T. A. Weber
Computer simulation of local order in condensed phases of silicon
Phys. Rev. B, 31(8), 5262–5271, 1985.

 

SZP+18
Federico A Soria, Weiwei Zhang, Patricia A Paredes-Olivera, Adri CT Van Duin, and Eduardo M Patrito
Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules
The Journal of Physical Chemistry C, 122(41), 23515–23527, 2018.

 

SÅC+08
Carlos F Sanz-Navarro, Per-Olof Åstrand, De Chen, Magnus Rønning, Adri CT Van Duin, Timo Jacob, and William A Goddard
Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets
The Journal of Physical Chemistry A, 112(7), 1392–1402, 2008.

 

TER88
J. Tersoff
Empirical interatomic potential for silicon with improved elastic properties
Physical Review B, 38, 9902–9905, 1988.

 

TER89
J. Tersoff
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
Phys. Rev. B, 39(8), 5566–5568, 1989.

 

TER90
J. Tersoff
Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
Physical Review B, 41(5), 3248–3248, 1990.

 

TER94
J. Tersoff
Chemical order in amorphous silicon carbide
Physical Review B, 49(23), 16349, 1994.

 

THW+13
JP Trinastic, R Hamdan, Y Wu, L Zhang, and Hai-Ping Cheng
Unified interatomic potential and energy barrier distributions for amorphous oxides
The Journal of chemical physics, 139(15), 154506, 2013.

 

TS02
Paul Tangney and Sandro Scandolo
An ab initio parametrized interatomic force field for silica
The Journal of chemical physics, 117(19), 8898–8904, 2002.

 

TSZ+15
F Tavazza, TP Senftle, C Zou, CA Becker, and AC T van Duin
Molecular Dynamics Investigation of the Effects of Tip–Substrate Interactions during Nanoindentation
The Journal of Physical Chemistry C, 119(24), 13580–13589, 2015.

 

VAZ+18
Aniruddh Vashisth, Chowdhury Ashraf, Weiwei Zhang, Charles E Bakis, and Adri CT van Duin
Accelerated ReaxFF simulations for describing the reactive cross-linking of polymers
The Journal of Physical Chemistry A, 122(32), 6633–6642, 2018.

 

VBD+10
Adri CT Van Duin, Vyacheslav S Bryantsev, Mamadou S Diallo, William A Goddard, Obaidur Rahaman, Douglas J Doren, David Raymand, and Kersti Hermansson
Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases
The Journal of Physical Chemistry A, 114(35), 9507–9514, 2010.

 

VCS+17
Joseph R Vella, Mohan Chen, Frank H Stillinger, Emily A Carter, Pablo G Debenedetti, and Athanassios Z Panagiotopoulos
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
Physical Review B, 95(6), 064202, 2017.

 

VKV90
BWH Van Beest, GJ Kramer, and RA Van Santen
Force fields for silicas and aluminophosphates based on ab initio calculations
Physical Review Letters, 64(16), 1955, 1990.

 

VMJ+08
Adri CT Van Duin, Boris V Merinov, Seung Soon Jang, and William A Goddard
ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia
The Journal of Physical Chemistry A, 112(14), 3133–3140, 2008.

 

WCS+09
Aron Walsh, C Richard A Catlow, Alexey A Sokol, and Scott M Woodley
Physical properties, intrinsic defects, and phase stability of indium sesquioxide
Chemistry of Materials, 21(20), 4962–4969, 2009.

 

WDL+10
Michael R. Weismiller, Adri C. T. van Duin, Jongguen Lee, and Richard A. Yetter
ReaxFF Reactive Force Field Development and Applications for Molecular Dynamics Simulations of Ammonia Borane Dehydrogenation and Combustion
The Journal of Physical Chemistry A, 114(17), 5485-5492, 2010.

 

WGM15
SR Wilson, KGSH Gunawardana, and MI Mendelev
Solid-liquid interface free energies of pure bcc metals and B2 phases
The Journal of chemical physics, 142(13), 134705, 2015.

 

WKG09
JM Winey, Alison Kubota, and YM Gupta
A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum
Modelling and Simulation in Materials Science and Engineering, 17(5), 055004, 2009.

 

WKW+18
Mengyi Wang, N.M. Anoop Krishnan, Bu Wang, Morten M. Smedskjaer, John C. Mauro, and Mathieu Bauchy
A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses
Journal of Non-Crystalline Solids, 498, 294 - 304, 2018.

 

WM15
SR Wilson and MI Mendelev
Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation
Philosophical Magazine, 95(2), 224–241, 2015.

 

WMH06
PL Williams, Y Mishin, and JC Hamilton
An embedded-atom potential for the Cu–Ag system
Modelling and Simulation in Materials Science and Engineering, 14(5), 817, 2006.

 

WOL20
Jaemin Wang, Sang-Ho Oh, and Byeong-Joo Lee
Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (M= Co, Mo) binary systems
Computational Materials Science, 178, 109627, 2020.

 

WSP+17
Mingjian Wen, Sharmila N Shirodkar, Petr Plecháč, Efthimios Kaxiras, Ryan S Elliott, and Ellad B Tadmor
A force-matching Stillinger-Weber potential for MoS2: Parameterization and Fisher information theory based sensitivity analysis
Journal of Applied Physics, 122(24), 244301, 2017.

 

WSS+20
Yang Wang, Yuqing Shi, Qiang Sun, Kang Lu, Momoji Kubo, and Jingxiang Xu
Development of a Transferable ReaxFF Parameter Set for Carbon-and Silicon-Based Solid Systems
The Journal of Physical Chemistry C, 124(18), 10007–10015, 2020.

 

WT09
Henry H Wu and Dallas R Trinkle
Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data
Computational Materials Science, 47(2), 577–583, 2009.

 

WTV06
Yujie Wu, Harald L. Tepper, and Gregory A. Voth
Flexible simple point-charge water model with improved liquid-state properties
The Journal of Chemical Physics, 124(2), 024503, 2006.

 

WVS14
Mitchell A Wood, Adri CT van Duin, and Alejandro Strachan
Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study
The Journal of Physical Chemistry A, 118(5), 885–895, 2014.

 

WZL+19
Jie Wei, Wei Zhou, Song Li, Pei Shen, Shuai Ren, Alice Hu, and Wenzhong Zhou
Modified embedded atom method potential for modeling the thermodynamic properties of high thermal conductivity beryllium oxide
ACS omega, 4(4), 6339–6346, 2019.

 

WZW+12
Yin Wang, Ferdows Zahid, Jian Wang, and Hong Guo
Structure and dielectric properties of amorphous high-κ oxides: HfO 2, ZrO 2, and their alloys
Phys. Rev. B, 85(22), 224110, 2012.

 

YAJ+17
Jejoon Yeon, Heather L Adams, Chad E Junkermeier, Adri CT van Duin, Wilfred T Tysoe, and Ashlie Martini
Development of a ReaxFF force field for Cu/S/C/H and reactive MD simulations of methyl thiolate decomposition on Cu (100)
The Journal of Physical Chemistry B, 122(2), 888–896, 2017.

 

YAS03
Akio Yasukawa
An Interatomic Potential for Strength Analysis under Atomospheric Influence
Ibaraki district conference, 2003, 71-72, 2003.

 

YAS96
Akio Yasukawa
Using An Extended Tersoff Interatomic Potential to Analyze The Static-Fatigue Strength of SiO 2 under Atmospheric Influence
JSME international journal. Ser. A, Mechanics and material engineering, 39(3), 313-320, 1996.

 

YHZ+24
Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen, Shuizhou Chen, Claudio Zeni, Matthew Horton, Robert Pinsler, Andrew Fowler, Daniel Zügner, Tian Xie, Jake Smith, Lixin Sun, Qian Wang, Lingyu Kong, Chang Liu, Hongxia Hao, and Ziheng Lu
MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures
arXiv preprint arXiv:2405.04967, 2024.

 

YPY+17
Kang-Seop Yun, Sung Jin Pai, Byung Chul Yeo, Kwang-Ryeol Lee, Sun-Jae Kim, and Sang Soo Han
Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field
The journal of physical chemistry letters, 8(13), 2812–2818, 2017.

 

YRS+16
Kichul Yoon, Ali Rahnamoun, Jacob L Swett, Vighter Iberi, David A Cullen, Ivan V Vlassiouk, Alex Belianinov, Stephen Jesse, Xiahan Sang, Olga S Ovchinnikova, and others
Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation
ACS nano, 10(9), 8376–8384, 2016.

 

YSP07
Jianguo Yu, Susan B. Sinnott, and Simon R. Phillpot
Charge optimized many-body potential for the Si∕SiO 2 system
Phys. Rev. B, 75(8), 085311, 2007.

 

ZAM+16
Y Zhang, R Ashcraft, MI Mendelev, CZ Wang, and KF Kelton
Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy
The Journal of chemical physics, 145(20), 204505, 2016.

 

ZCG+11
Zhenli Zhang, Alok Chatterjee, Christoph Grein, Anthony J Ciani, and Peter W Chung
Atomic-scale modeling of In x Ga<<_ SUB__>>1-x N quantum dot self-assembly
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29(3), 03C133, 2011.

 

ZDB+21
Henan Zhou, Doyl E Dickel, Michael I Baskes, Sungkwang Mun, and Mohsen Asle Zaeem
A modified embedded-atom method interatomic potential for bismuth
Modelling and Simulation in Materials Science and Engineering, 29(6), 065008, 2021.

 

ZDZ+09
Luzheng Zhang, Adri CT van Duin, Sergey V Zybin, and William A Goddard Iii
Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field
The Journal of Physical Chemistry B, 113(31), 10770–10778, 2009.

 

ZHP+17
Yuanxia Zheng, Sungwook Hong, George Psofogiannakis, G Bruce Rayner Jr, Suman Datta, Adri CT van Duin, and Roman Engel-Herbert
Modeling and in situ probing of surface reactions in atomic layer deposition
ACS applied materials & interfaces, 9(18), 15848–15856, 2017.

 

ZIN+14
Xue-Qing Zhang, Eldhose Iype, Silvia V Nedea, Antonius PJ Jansen, Bartłomiej M Szyja, Emiel JM Hensen, and Rutger A van Santen
Site stability on cobalt nanoparticles: a molecular dynamics ReaxFF reactive force field study
The Journal of Physical Chemistry C, 118(13), 6882–6886, 2014.

 

ZIP+09
VV Zhakhovskii, NA Inogamov, Yu V Petrov, SI Ashitkov, and K Nishihara
Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials
Applied Surface Science, 255(24), 9592–9596, 2009.

 

ZJ15
Xiaowang Zhou and Reese E. Jones
Towards Molecular Dynamics Simulations of InGaN Nanostructures.
2015.

 

ZJD+13
Xiao Wang Zhou, Reese E Jones, John C Duda, and Patrick E Hopkins
Molecular dynamics studies of material property effects on thermal boundary conductance
Physical Chemistry Chemical Physics, 15(26), 11078–11087, 2013.

 

ZJK+13
Xiao Wang Zhou, Reese E Jones, Christopher James Kimmer, John C Duda, and Patrick E Hopkins
Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations
Physical Review B, 87(9), 094303, 2013.

 

ZJW04
XW Zhou, RA Johnson, and HNG Wadley
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
Physical Review B, 69(14), 144113, 2004.

 

ZM03
Rajendra R Zope and Yu Mishin
Interatomic potentials for atomistic simulations of the Ti-Al system
Physical Review B, 68(2), 024102, 2003.

 

ZV17
Weiwei Zhang and Adri CT van Duin
Second-generation ReaxFF water force field: improvements in the description of water density and OH-anion diffusion
The Journal of Physical Chemistry B, 121(24), 6021–6032, 2017.

 

ZV18
Weiwei Zhang and Adri CT Van Duin
Improvement of the ReaxFF description for functionalized hydrocarbon/water weak interactions in the condensed phase
The Journal of Physical Chemistry B, 122(14), 4083–4092, 2018.

 

ZVJ14
Bo Zhang, Adri CT van Duin, and J Karl Johnson
Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures
The Journal of Physical Chemistry B, 118(41), 12008–12016, 2014.

 

ZWM+13
XW Zhou, DK Ward, JE Martin, FB van Swol, JL Cruz-Campa, and D Zubia
Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te
Physical Review B, 88(8), 085309, 2013.

 

ZZV+09
Luzheng Zhang, Sergey V Zybin, Adri CT van Duin, Siddharth Dasgupta, William A Goddard III, and Edward M Kober
Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations
The Journal of Physical Chemistry A, 113(40), 10619–10640, 2009.

 

ZZW+08
XW Zhou, JA Zimmerman, BM Wong, and JJ Hoyt
An embedded-atom method interatomic potential for Pd–H alloys
Journal of Materials Research, 23(03), 704–718, 2008.